bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390419; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. BETA- AND GAMMA-SYNUCLEINS MODULATE SYNAPTIC VESICLE-BINDING OF ALPHA-SYNUCLEIN Kathryn E. Carnazza1#, Lauren Komer1#, André Pineda1, Yoonmi Na1, Trudy Ramlall2, Vladimir L. Buchman3, David Eliezer2, Manu Sharma1, Jacqueline Burré1,* 1Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA. 2Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021, USA. 3School of Biosciences, Cardiff University, Cardiff CF103AX, UK & Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), Chernogolovka 142432, Moscow Region, Russian Federation. #These authors contributed equally to this work. *Correspondence:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390419; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY α-Synuclein (αSyn), β-synuclein (βSyn), and γ-synuclein (γSyn) are abundantly expressed in the vertebrate nervous system. αSyn functions in neurotransmitter release via binding to and clustering synaptic vesicles and chaperoning of SNARE-complex assembly. The functions of βSyn and γSyn are unknown. Functional redundancy of the three synucleins and mutual compensation when one synuclein is deleted have been proposed, but with conflicting evidence. Here, we demonstrate that βSyn and γSyn have a reduced affinity towards membranes compared to αSyn, and that direct interaction of βSyn or γSyn with αSyn results in reduced membrane binding of αSyn.