<<

Governors State University OPUS Open Portal to University Scholarship

All Student Theses Student Theses

Spring 7-13-2017 Transfinite James Roger Clark Governors State University

Follow this and additional works at: http://opus.govst.edu/theses Part of the Theory Commons, and the Theory Commons

Recommended Citation Clark, James Roger, "Transfinite Ordinal Arithmetic" (2017). All Student Theses. 97. http://opus.govst.edu/theses/97

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Department This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University Scholarship. It has been accepted for inclusion in All Student Theses by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact [email protected].

TRANSFINITE ORDINAL ARITHMETIC

James Roger Clark III B.A., University of St. Francis, 2011

Thesis

Submitted in partial fulfillment of the requirements for the Degree of Masters of Science, with a Major in Mathematics

SPRING 2017 GOVERNORS STATE UNIVERSITY University Park, IL 60484 James Clark Transfinite Ordinal Arithmetic Spring 2017

Abstract: Following the literature from the origin of in the late 19th century to more current times, an arithmetic of finite and transfinite ordinal is outlined. The concept of a set is outlined and directed to the understanding that an ordinal, a special kind of number, is a particular kind of well-ordered set. From this, the idea of counting ordinals is introduced. With the fundamental notion of counting addressed: then , , and are defined and developed by established fundamentals of Set Theory. Many known theorems are based upon this foundation. Ultimately, as part of the conclusion, a table of many simplified results of ordinal arithmetic with these three operations are presented.

Page | i

James Clark Transfinite Ordinal Arithmetic Spring 2017

Table of Contents

0. Introduction pp 1-9 Set Theory and Sets p 3 Ordinals and Cardinals Defined p 3 and Recursive Definitions p 8

1. Ordinal Addition pp 10-27 Formal Definition of Addition Using p 11 Recursive Definition of Addition p 17 Results and Proofs p 17

2. Ordinal Multiplication pp 28-40 Results and Proofs p 30

3. Ordinal Exponentiation pp 41-55 Results and Proofs p 43

4. Conclusion pp 56-61 Table of Ordinal Addition p 59 Table of Ordinal Multiplication p 60 Table of Ordinal Exponentiation p 61

References p 62

Page | ii

James Clark Transfinite Ordinal Arithmetic Spring 2017

List of Figures

Figure 1 โ€“ Visualization of + p 10

Figure 2 โ€“ Visualization of ๐›ผ๐›ผDichotomy๐›ฝ๐›ฝ Paradox p 14 Figure 3 โ€“ Visualization of p 16

Figure 4 โ€“ Visualization of ๐œ”๐œ” + p 16 Figure 5 โ€“ Visualization of ๐œ”๐œ”2 ๐œ”๐œ” p 28 Figure 6 โ€“ Visualization of ๐œ”๐œ” p 42 2 Figure 7 โ€“ Visualization of ๐œ”๐œ”Multiples of p 42 2 ๐œ”๐œ”

Page | iii

James Clark Transfinite Ordinal Arithmetic Spring 2017

To find the principles of mathematical being as a whole, we must ascend to those all-pervading principles that generate everything from themselves: namely the Limit [ Monad] and the Unlimited [Infinite Dyad]. For these, the two highest principles after the indescribable and utterly incomprehensible causation of the One, give rise to everything else, including mathematical beings. Proclus1

The study and contemplation of dates back to antiquity. We can identify

forms of infinity from at least as early as the Pythagoreans and the Platonists. Among the

earliest of these ideas was to associate the infinite with the unbounded Dyad, in opposition

to the bounded limit or Monad. Embedded in the very definition of a set are these very

notions of unity and the division of duality, in the unified set and its distinct elements,

respectively. Geometrically these were attributed to the line and point. Theologically the

Finite Monad was attributed to God, as the limit and source of all things, and to the Infinite was often associated the Devil, through the associated division and strife of Duality.2 We

could muse about the history of controversy and argumentation surrounding the infinite

being perhaps more than mere coincidence.

We further see the concept of the infinite popping up throughout history from the

paradoxes of Zeno to the infinitesimal Calculus of Leibniz and Newton. We find a continuity

of development of our relationship with the infinite, which pervades Western intellectual

culture. However, as long as our dance with the infinite has gone on, it has ever been met

with a critical eye. This is perhaps the echoes of the Pythagorean legend of the traitor who

discovered and/or revealed the concept of the incommensurables which poked holes in the

perfection of Pythagorean thought. The same sort of minds that couldnโ€™t recognize the

1 Proclus. A Commentary on the First Book of Euclidโ€™s Elements. p 4. My addition in brackets. 2 Iamblichus. The Theology of Arithmetic.

Page | 1

James Clark Transfinite Ordinal Arithmetic Spring 2017 genius of Leibnizโ€™s as a for the Calculus, to replace it with cumbersome limit symbolism, only for the idea of infinitesimals to find new footing in the 20th century through the work of . 3 It seems that finitists are only willing to accept that which they can actually see, but as Giordano Bruno would argue a few centuries before

Cantor:

Itโ€™s not with our senses that we may see the infinite; the senses cannot reach the conclusion we seek, because the infinite is not an object for the senses. 4

In other words, the infinite is accessible only to the mind.

It is only in last century or so that the infinite really started to have rigorous mathematical foundation that is widely accepted โ€“ and that is the fruit of โ€™s brainchild. While Georg Cantorโ€™s theory of Transfinite Numbers certainly didnโ€™t appear out of a vacuum, we largely owe our modern acceptance of the infinite as a proper, formal mathematical object, or objects, to him and his Set Theory. In 1874, Cantor published his first article on the subject called โ€œOn a Property of the Collection of All Real Algebraic

Numbers.โ€ By 1895, some 20 years later at the age of 50, he had a well-developed concept of the Transfinite Numbers as we see in his Contributions to the Founding of the Theory of

Transfinite Numbers.5

While Cantorโ€™s symbolism would in some cases seem somewhat foreign to a student of modern Set Theory, it is his conceptual foundation and approach to dealing with the infinite that has carried on into today. Set Theory has found its way into seemingly every

3 Robinson, Abraham. Non-standard Analysis. 4 Bruno, Giordano. On the Infinite, the , & the Worlds. โ€œFirst Dialogue.โ€ p 36. 5 Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers.

Page | 2

James Clark Transfinite Ordinal Arithmetic Spring 2017

area of mathematics and seems to unify most, if not all, of modern mathematics by the use of

common symbolism this area of study.

Set Theory and Sets

While Cantor is credited as the father of Set Theory, the notion of sets certainly

predates Cantor. We see sophisticated writings on the subject from the likes of Bernard

Balzano, whose work had significant influence upon the work of Cantor. Consistent with

Cantor, Balzano defined a set as โ€œan aggregate of well-defined objects, or a whole composed

of well-defined members.โ€6 In the strict sense of the word, a set can be a collection of

anything real, imagined, or both. So we could have a set of pieces of candy in a bag. We could also have the set of the fantasy creatures of a phoenix, a dragon, and a unicorn. We could also have the set containing a pink elephant, the number two, and the planet Jupiter.

However, in Set Theory, we generally are observing specific kinds of sets of mathematical objects.

Ordinals and Cardinals Defined

The two primary types of number discussed in Set Theory are called ordinals and

cardinals. While cardinal numbers are not the focus of the present paper, it is still of value

to observe its character in contrast with ordinal numbers, to get a clearer sense of the nature

of the latter. Cardinal numbers are also much more quickly understood. A ,

in its simplest sense, is just how many of something there is. So if I have the set of five

athletes running a race, the of that set of people is 5. If we are discussing the fifth

person to complete the race, this corresponds to an ordinal of 5, and it implies that four came

6 Balzano, Bernard. Paradoxes of the Infinite. p 76.

Page | 3

James Clark Transfinite Ordinal Arithmetic Spring 2017 before it. So both of these relate to the number 5. This becomes less immediately intuitive from our general sense of number when we jump into looking at transfinite numbers.

Ordinality has more to do with how a set is organized, or ordered.

We build up our concept of the pure sets based first upon the of the , which states simply that there exists an empty set, symbolically:

[ , ].

In other words, there exists some set โˆƒsuch๐ด๐ด โˆ€ ๐‘ฅ๐‘ฅthat๐‘ฅ๐‘ฅ โˆ‰ for๐ด๐ด any and every object , is not in . We denote the empty set as empty set brackets๐ด๐ด { } or as . ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐ด๐ด

To construct the remainder of the ordinals, weโˆ… will require another one of the of ZFC, namely the . This axiom states the existence of a set that contains the empty set as one of its elements, and for every of the set (the empty set being the first of such elements) there exists another element of the set that itself is a set containing that element. Symbolically this is represented as

( = ) .

โˆƒ๐ด๐ด ๏ฟฝโˆ… โˆˆ ๐ด๐ด โˆง โˆ€๐‘ฅ๐‘ฅ ๏ฟฝ๐‘ฅ๐‘ฅ โˆˆ ๐ด๐ด โ†’ โˆƒ๐‘ฆ๐‘ฆ๏ฟฝ๐‘ฆ๐‘ฆ โˆˆ ๐ด๐ด โˆง โˆ€๐‘ง๐‘ง ๐‘ง๐‘ง โˆˆ ๐‘ฆ๐‘ฆ โ†” ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๏ฟฝ๏ฟฝ๏ฟฝ So given the set contains the empty set , it also contains the set containing the empty set in the form { }. This newly discovered elementโˆ… is then further subject to the same clause, so our set alsoโˆ… contains { } as a member. This goes on , and looks something like ๐ด๐ด ๏ฟฝ โˆ… ๏ฟฝ

= , { }, { } , { } , { } , { } , { } , โ€ฆ .

๐ด๐ด ๏ฟฝโˆ… โˆ… ๏ฟฝ โˆ… ๏ฟฝ ๏ฟฝ๏ฟฝ โˆ… ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โˆ… ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ The set of ordinals can then be constructed from these two axioms paired with the concept of the . The ordinals are essentially specific combinations of elements of the set guaranteed to exist by the above Axiom of Infinity. Per the definition of an ordinal by

Page | 4

James Clark Transfinite Ordinal Arithmetic Spring 2017

John von Neumann in 1923: โ€œEvery ordinal is the set of all ordinals that precede it.โ€7 So the

first ordinal is the empty set . The second is the set containing the previous ordinal, so it

looks like { }. The third is theโˆ… set containing all the previous ordinals, so , { } . The fourth

gets a little โˆ…messier and is a set containing all the previous ordinals like ๏ฟฝ,โˆ…{ }โˆ…, ๏ฟฝ, { } . This

is clearly not a convenient form of notation. Next will be outlined a m๏ฟฝoreโˆ… โˆ…practical๏ฟฝโˆ… โˆ… ๏ฟฝform๏ฟฝ of

symbolism, followed by a formal definition of an .

So instead of the cumbersome sets within sets within sets within sets, etc., we will

give each ordinal a name, or label. This custom of giving each ordinal a label from the non-

negative integers is generally credited to von Neumann. In his work, he uses the equals sign,

and this custom has continued in literature for the last century, including more recent

publications such as Keith Devlinโ€™s The Joy of Sets.8 Some modern mathematicians have

adopted symbolism other than the simple equals sign for sake of clarity. Here will use the

delta-equal-to symbolism ( ), used by Takeuti in Introduction to Axiomatic Set Theory, to set up our definitions, and thereafterโ‰œ will assume the definitions hold.9 So the empty set is

defined to be represented by the symbol 0, the set containing the empty set will be 1, etc.

0

1 { โ‰œ} =โˆ… {0}

2 โ‰œ, {โˆ…} = {0,1}

3 ,โ‰œ{ ๏ฟฝ}โˆ…, โˆ…, {๏ฟฝ } = {0,1,2}

โ‰œ ๏ฟฝโˆ… โˆ… ๏ฟฝโˆ… โˆ… ๏ฟฝ๏ฟฝ 4 , { }, , { } , , { }, , { } = {0,1,2,3}

โ‰œ ๏ฟฝโˆ… โˆ… ๏ฟฝโˆ… โˆ… ๏ฟฝ ๏ฟฝโˆ… โˆ… ๏ฟฝโˆ… โˆ… ๏ฟฝ๏ฟฝ๏ฟฝ

7 von Neumann, John. โ€œOn the Introduction of Transfinite Numbers.โ€ p 347. 8 Devlin, Keith. The Joy of Sets. 9 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 41.

Page | 5

James Clark Transfinite Ordinal Arithmetic Spring 2017

5 {0,1,2,3,4}

6 โ‰œ{0,1,2,3,4,5}

Cantor defined ordinals as follows. โ‰œ

Every simply ordered aggregate has a definite ordered type ; this type is the general concept which results from if we abstract from the nature of its elements while retaining their order of precedence,๐‘€๐‘€ so that out of them proceed๐‘€๐‘€๏ฟฝ units which stand in a definite relation of precedence๐‘€๐‘€ to one another. 10

More formally, an ordinal is a well-ordered set such that every element less than the ordinal

is an element of that set. Symbolically an ordinal is defined to be

{ | ๐›ผ๐›ผ< },

where is the set of all ordinals.11 For๐›ผ๐›ผ โ‰œ any๐‘ฅ๐‘ฅ โˆˆtwo๐‘‹๐‘‹ ordinals๐‘ฅ๐‘ฅ ๐›ผ๐›ผ and , if < then , and if

then๐‘‹๐‘‹ < . The less than relation and the member๐›ผ๐›ผ relation๐›ฝ๐›ฝ ๐›ผ๐›ผare interchangeable.๐›ฝ๐›ฝ ๐›ผ๐›ผ โˆˆ ๐›ฝ๐›ฝ In

this๐›ผ๐›ผ โˆˆ ๐›ฝ๐›ฝpaper, the๐›ผ๐›ผ less๐›ฝ๐›ฝ than relationship will be used predominantly.

A successor ordinal is the ordinal that follows any given ordinal. The successor of an

ordinal is often denoted , but we will use the symbolism more convenient for arithmetic + of the form๐›ผ๐›ผ = + 1. The๐›ผ๐›ผ successor of the ordinal is defined symbolically as + ๐›ผ๐›ผ ๐›ผ๐›ผ + 1 { }๐›ผ๐›ผ.

For example, we would intuitively think๐›ผ๐›ผ thatโ‰œ the๐›ผ๐›ผ successorโˆช ๐›ผ๐›ผ of 5 is 6, per our sense of integers.

We will see this is also the case for our ordinals. Using the above notation, along with the knowledge that the ordinal 5 = {0,1,2,3,4}, we find that

5 + 1 = 5 {5} = {0,1,2,3,4} {5} = {0,1,2,3,4,5} = 6.

โˆช โˆช

10 Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. pp 151-152. 11 Devlin, Keith. The Joy of Sets. p 66.

Page | 6

James Clark Transfinite Ordinal Arithmetic Spring 2017

A is one that is โ€œbeyond infinite.โ€ The first transfinite ordinal is the set of

all finite ordinals as well as their supremum, symbolically {0,1,2, โ€ฆ }. This first

transfinite ordinal also has a successor + 1, the second transfinite๐œ”๐œ” โ‰œ ordinal. By the above

definition of a successor ordinal: ๐œ”๐œ”

+ 1 = { } = {0,1,2, โ€ฆ , }.

Note that in this paper,๐œ”๐œ” for the ๐œ”๐œ”sakeโˆช ๐œ”๐œ”of simplicity, when๐œ”๐œ” we add a successor ordinal

+ 1 like + ( + 1) that we will generally refer to this as + + 1. To denote the

successor๐›ผ๐›ผ of๐›ฝ๐›ฝ a sum,๐›ผ๐›ผ we will always use parenthesis to denote that๐›ฝ๐›ฝ we ๐›ผ๐›ผare doing so. Thus the

successor of the ordinal + will be denoted as ( + ) + 1.

Every ordinal has๐›ผ๐›ผ a๐›ฝ๐›ฝ successor ordinal. ๐›ผ๐›ผ Not๐›ฝ๐›ฝ all ordinals have an immediate

predecessor. With the exception of 0, any ordinal that doesnโ€™t have an immediate

predecessor is called a . If an ordinal is a limit ordinal, we denote this as

, where is the of all limit ordinals. Symbolically๐›ผ๐›ผ we can say ๐›ผ๐›ผ โˆˆ

๐พ๐พ๐ผ๐ผ๐ผ๐ผ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ 0 [ + 1 = ], .

If an ordinal is not a limit ๐›ผ๐›ผordinal,โ‰  โˆง โˆ„therefore๐›ฝ๐›ฝ ๐›ฝ๐›ฝ it ๐›ผ๐›ผ(withโˆ€๐›ผ๐›ผ theโˆˆ ๐พ๐พ ๐ผ๐ผ๐ผ๐ผexception of 0, which is also a

nonlimit ordinal)๐›ฝ๐›ฝ has an immediate predecessor, then we denote this as . Symbolically

we can say ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ

= 0 [ + 1 = ], .

All ordinals fall into one of these๐›ผ๐›ผ twoโˆจ clasโˆƒ๐›ฝ๐›ฝses.๐›ฝ๐›ฝ Note๐›ผ๐›ผ thatโˆ€๐›ผ๐›ผ โˆˆ and๐พ๐พ๐ผ๐ผ are not ordinals.

Therefore, it is not appropriate to say something like <๐พ๐พ๐ผ๐ผ in๐พ๐พ place๐ผ๐ผ๐ผ๐ผ of .

The first limit ordinal is also our first transfinite๐›ผ๐›ผ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ ordinal. The๐›ผ๐›ผ โˆˆ ordinal๐พ๐พ๐ผ๐ผ๐ผ๐ผ is the supremum of all finite ordinals,๐œ”๐œ” and has as its member all finite ordinals, symbolically๐œ”๐œ”

{0,1,2, โ€ฆ }.

๐œ”๐œ” โ‰œ Page | 7

James Clark Transfinite Ordinal Arithmetic Spring 2017

Notice this set has no last element, and thus has no immediate predecessor, which is the

definition of a limit ordinal. There is no ordinal๐œ”๐œ” such that + 1 = . If there were, we

would have a contradiction. As every element of ๐›ผ๐›ผ is finite, if๐›ผ๐›ผ there were๐œ”๐œ” some element

that was an immediate predecessor of , being a ๐œ”๐œ”member of would imply that is finite.๐›ผ๐›ผ

This would then imply that , being the๐œ”๐œ” ๐›ผ๐›ผ successor of a finite๐œ”๐œ” ordinal, would therefore๐›ผ๐›ผ be finite. There we have the desired๐œ”๐œ” contradiction.

One of the more interesting results of Set Theory is that it shows the existence of different kinds of infinity. We see this happen both in the case of the present subject of ordinals as well as with the further development of cardinals. While we must give credit to

Cantor for these conclusions and their proof, the idea itself was not an original one, as we see from the writing of Bernard Balzano who died three years after the birth of Cantor.

Even in the examples of the infinite so far considered, it could not escape our notice that not all infinite sets can be deemed equal with respect to the multiplicity of the members. On the contrary, many of them are greater (or smaller) than some other in the sense that the one includes the other as part of itself (or stands to the other in the relation of part to the whole). Many consider this as yet another paradox, and indeed, in the eyes of all who define the infinite as that which is incapable of increase, the idea of one infinite being greater than another must seem not merely paradoxical, but even downright contradictory. 12

Transfinite Induction and Recursive Definitions

As transfinite ordinals often behave differently than finite ordinals, we have to use

methods of proof appropriate to transfinite ordinals to properly deal with them. A common

method, which is used heavily in this paper, is called Transfinite Induction. The structure,

outlined by Suppes,13 is done in three parts as follows. As it turns out, most often we are

doing induction on , so the following outline is in terms of induction on for ease in

๐›พ๐›พ ๐›พ๐›พ

12 Balzano, Bernard. Paradoxes of the Infinite. p 95. 13 Suppes, Patrick. Axiomatic Set Theory. p 197.

Page | 8

James Clark Transfinite Ordinal Arithmetic Spring 2017

translation. In the case of each proof using this schema, each portion will be appropriately

labeled at Part 1, Part 2, and Part 3.

Part 1 is to demonstrate that the hypothesis works for the base case. Generally this is done

with = 0. As we will see, this is not always the case, particularly when 0 isnโ€™t an option due to the๐›พ๐›พ way the ordinal in question is defined.

Part 2 is akin to weak induction. We assume the hypothesis holds for , and show it holds

for the case of the successor ordinal + 1. ๐›พ๐›พ

Part 3 is akin to strong induction. We๐›พ๐›พ assume that is a limit ordinal, symbolically .

We further assume the hypothesis holds for all elements๐›พ๐›พ of . With this in mind, we๐›พ๐›พ โˆˆ then๐พ๐พ๐ผ๐ผ๐ผ๐ผ

demonstrate that the hypothesis holds for . ๐›พ๐›พ

As all ordinals fall into the category๐›พ๐›พ of either a limit ordinal or not a limit ordinal, if

the hypothesis holds for all three parts, then the hypothesis holds for all ordinals. Generally

Set Theory theorems are only presented that hold for all ordinals, from both classes of and

, so that the theorem always work no matter the ordinals being used. ๐พ๐พ๐ผ๐ผ

๐พ๐พ๐ผ๐ผ๐ผ๐ผ Similar in form to Transfinite Induction, we will use Transfinite Recursion to lay out

some definitions as fundamental standards of behavior for our arithmetical operations. The three parts of these recursive definitions are essentially the same as those of the induction process. The difference is that instead of proving, we take the statements as fundamental truths, without proof.

Page | 9

James Clark Transfinite Ordinal Arithmetic Spring 2017

1. Ordinal Addition

Now that we have a sense of what ordinals are and how to count them, we will introduce the first arithmetical operation โ€“ addition. First will be shown the simple, intuitive conceptions of addition, and then a very formal definition. Finally, for practical purposes, addition will be codified into a recursive definition.

Let us start with a general sense of what it means to add two ordinals. If we add two ordinals like + , this means that we count number of times, and then we count more times afterward๐›ผ๐›ผ . ๐›ฝ๐›ฝThe order in which these are๐›ผ๐›ผ added makes a difference, particularly๐›ฝ๐›ฝ when working with transfinite ordinals. Assuming and are finite ordinals, the sum can be represented in the following visual, intuitive way๐›ผ๐›ผ (note:๐›ฝ๐›ฝ the ellipses the following diagram imply an ambiguous number of terms, and does not imply counting without end as it generally does in Set Theory). If and are finite ordinals then = {0,1,2, โ€ฆ , 1} and

= {0,1,2, โ€ฆ , 1}, where ๐›ผ๐›ผ1 is the๐›ฝ๐›ฝ immediate predecessor๐›ผ๐›ผ of , and ๐›ผ๐›ผ โˆ’1 is the immediate๐›ฝ๐›ฝ predecessor๐›ฝ๐›ฝ โˆ’ of . Figure๐›ผ๐›ผ โˆ’ 1 illustrates this rather intuitively. ๐›ผ๐›ผ ๐›ฝ๐›ฝ โˆ’

๐›ฝ๐›ฝ

Figure 1. Visualization of +

๐›ผ๐›ผ ๐›ฝ๐›ฝ

Page | 10

James Clark Transfinite Ordinal Arithmetic Spring 2017

Formal Definition of Addition Using the Cartesian Product

John von Neumann, while not using that specific phrase, introduced the concept of

in 1923. Given any well-ordered set , we define a mapping ( ) of each element

of that set to an ordinal. In this way then, the๐ด๐ด set itself inherits the๐‘“๐‘“ quality๐‘ฅ๐‘ฅ of being an

ordinal. If is the first element of , then we map๐ด๐ด that to the first ordinal 0. The second

element ๐‘Ž๐‘Žis0 mapped to the second ๐ด๐ดordinal 1. For a concrete example, let us suppose then

that =๐‘Ž๐‘Ž{1 , , , } and is well-ordered by < < < , then

( ๐ด๐ด) 0๐‘Ž๐‘Ž, 0 ๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž0 ๐‘Ž๐‘Ž1 ๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž3

๐‘“๐‘“(๐‘Ž๐‘Ž0) โ‰œ 1,

๐‘“๐‘“(๐‘Ž๐‘Ž1) โ‰œ 2, and

๐‘“๐‘“(๐‘Ž๐‘Ž2) โ‰œ 3.

Therefore๐‘“๐‘“ ๐‘Ž๐‘Ž3 โ‰œ {0,1,2,3} = 4, and A is said to have order type of 4.14

The๐ด๐ด formalโ‰œ definition of ordinal addition is presented as a Cartesian product, well-

ordered in a specific way to be defined. We define the sum of two ordinals and to be

+ ร— {0} ร— {1}. ๐›ผ๐›ผ ๐›ฝ๐›ฝ

This overbar means that the sum๐›ผ๐›ผ of๐›ฝ๐›ฝ โ‰œ and๏ฟฝ๐›ผ๐›ผ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝis๏ฟฝ๏ฟฝโˆช ๏ฟฝthe๏ฟฝ๐›ฝ๐›ฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝorder๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ type (given the well-ordering defined below) of the set of the ๐›ผ๐›ผcross products๐›ฝ๐›ฝ of ร— {0} and ร— {1}. The values 0

and 1 in the given definition above need only be such that๐›ผ๐›ผ 0 < 1, and๐›ฝ๐›ฝ not all texts use the

same values. It would be just as good to say that

+ ร— { } ร— { }, < .

๐›ผ๐›ผ ๐›ฝ๐›ฝ โ‰œ ๐›ผ๐›ผ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘š๐‘š๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ๏ฟฝ๐›ฝ๐›ฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘›๐‘›๏ฟฝ๏ฟฝ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โ„Ž ๐‘ก๐‘กโ„Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘š๐‘š ๐‘›๐‘›

14 von Neumann, John. โ€œOn the Introduction of Transfinite Numbers.โ€ p 348.

Page | 11

James Clark Transfinite Ordinal Arithmetic Spring 2017

However, for practical purposes of adding two values, we will just stick with the 0 and 1.

This has to be ordered in a very specific way to get consistent results, so we say that for two

ordered pairs ( , ) and ( , ):

๐‘ข๐‘ข ๐‘ฅ๐‘ฅ ๐‘ฃ๐‘ฃ ๐‘ฆ๐‘ฆ ( , ) < ( , ) <

and ๐‘ข๐‘ข ๐‘ฅ๐‘ฅ ๐‘ฃ๐‘ฃ ๐‘ฆ๐‘ฆ ๐‘–๐‘–๐‘–๐‘– ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ

( , ) < ( , ) = < .

So for the ordered pairs (3,5)๐‘ข๐‘ข and๐‘ฅ๐‘ฅ (1,7๐‘ฃ๐‘ฃ), ๐‘ฆ๐‘ฆwe ๐‘–๐‘–see๐‘–๐‘– ๐‘ฅ๐‘ฅ that๐‘ฆ๐‘ฆ (๐‘Ž๐‘Ž3๐‘Ž๐‘Ž,5๐‘Ž๐‘Ž)๐‘ข๐‘ข< (1๐‘ฃ๐‘ฃ,7) as 5 < 7. For the ordered

pairs (6,2) and (9,2), we see that (6,2) < (9,2) as 6 < 9 and the second terms are the same.

Let us also consider a set where there are missing elements. For example, we define

the ordinal 6 = {0,1,2,3,4,5}. In order for this set to actually be equal to 6, it must contain all

ordinals less than 6. Clearly this is not the case with the set {1,2,3,4,5}. However, it is still

well-ordered such that each element that is less than another element is still a member of

that element. So we must further define order type. The Order Type of a well-ordered set , denoted , is defined to be the smallest ordinal isomorphic to . Any two well-ordered sets๐ด๐ด with the ๐ด๐ดsameฬ… order type represent the same ordinal. So in the๐ด๐ด case of the set {1,2,3,4,5}, it is isomorphic to {0,1,2,3,4} = 5. Therefore the set of ordinals {0,1,2,3,4} is said to have an order type of 5.

As an example, the sum of the two values 2 and 3 is

2 + 3 = 2 ร— {0} 3 ร— {1}

Recalling that the ordinal 2 = {0,1} and the๏ฟฝ๏ฟฝ ๏ฟฝordinal๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ 3๏ฟฝ๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ{๏ฟฝ0๏ฟฝ๏ฟฝ,1,2}, we have

= {0,1} ร— {0} {0,1,2} ร— {1}

= {(0๏ฟฝ,๏ฟฝ0๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(๏ฟฝ1๏ฟฝ๏ฟฝ,๏ฟฝ0๏ฟฝ)๏ฟฝ,๏ฟฝ๏ฟฝ(๏ฟฝ0โˆช๏ฟฝ๏ฟฝ,1๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(๏ฟฝ1๏ฟฝ๏ฟฝ,๏ฟฝ1๏ฟฝ)๏ฟฝ๏ฟฝ,๏ฟฝ(๏ฟฝ2๏ฟฝ๏ฟฝ,1๏ฟฝ)}.

This set is isomorphic to {0,1,2,3๏ฟฝ๏ฟฝ,4๏ฟฝ๏ฟฝ}๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ5๏ฟฝ๏ฟฝ, ๏ฟฝand๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝt๏ฟฝherefore๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ2๏ฟฝ๏ฟฝ+๏ฟฝ๏ฟฝ๏ฟฝ3๏ฟฝ๏ฟฝ=๏ฟฝ 5.

Page | 12

James Clark Transfinite Ordinal Arithmetic Spring 2017

So this is simple enough, and this matches with our intuition about adding whole numbers. In the case of adding finite ordinals, the particular ordering defined above doesnโ€™t really affect the resulting sum. For finite ordinals, we could order the union set in any way

we like and still have the same result. The particular ordering defined above really shows

its worth when we starting adding transfinite ordinals. It will now be shown that + 2

2 + , and thus motivate why the order in which we add ordinals has to be clearly defined.๐œ”๐œ” โ‰ 

๐œ”๐œ” Let us start by looking at the sum of 2 and :

2 + = 2 ร— {0} ๐œ”๐œ” ร— {1}.

Recalling that 2 = {0,1} and = {0,1๐œ”๐œ”,2, โ€ฆ๏ฟฝ}๏ฟฝ,๏ฟฝ ๏ฟฝwe๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ then๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ๏ฟฝ๐œ”๐œ”๏ฟฝ ๏ฟฝhave๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthe statement

๐œ”๐œ”= {0,1} ร— {0} {0,1,2, โ€ฆ } ร— {1}.

Then by taking the Cartesian product๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝwe๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝhave๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= {(0,0), (1,0), (0,1), (1,1), (2,1), โ€ฆ }.

This set is isomorphic to {0,1,2๏ฟฝ,๏ฟฝ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ}๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝand๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthus๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

๐œ”๐œ” 2 + = .

Letโ€™s continue by looking at the sum of๐œ”๐œ” and๐œ”๐œ” 2:

+ 2 = ร— {๐œ”๐œ”0} 2 ร— {1}

= {๐œ”๐œ”0,1,2, โ€ฆ }๐œ”๐œ”๏ฟฝ๏ฟฝร—๏ฟฝ๏ฟฝ๏ฟฝ{๏ฟฝ0๏ฟฝ}๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ{๏ฟฝ0๏ฟฝ๏ฟฝ,1๏ฟฝ๏ฟฝ}๏ฟฝ๏ฟฝร—๏ฟฝ๏ฟฝ๏ฟฝ{1}.

Then by taking the Cartesian product๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝwe๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝhave๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= {(0,0), (1,0), (2,0), โ€ฆ , (0,1), (1,1)}.

The striking difference at this๏ฟฝ point,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝas๏ฟฝ๏ฟฝ๏ฟฝ compared๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ with๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthe๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝprevious๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ example, is where the

ellipses fall. The ellipses, in the context of set theory anyway, just imply counting for forever.

In the previous example, they occurred at the tail end of the set notation. Here, however,

Page | 13

James Clark Transfinite Ordinal Arithmetic Spring 2017

they fall somewhere before the end. So this set would be isomorphic to {0,1,2, โ€ฆ , , + 1},

which is greater than . Thus 2 + + 2. ๐œ”๐œ” ๐œ”๐œ”

So we see here๐œ”๐œ” there are values๐œ”๐œ” โ‰  ๐œ”๐œ” beyond our first conception of infinity. In some

respect, it seems like we havenโ€™t really captured the infinite. As soon as we apply a metric to

it (in this case ), the nature of the infinite immediately defies this metric and show us there is now something๐œ”๐œ” more, something greater: + 1. It is unlikely we will ever find the largest

infinity, as the infinite is by definition beyond๐œ”๐œ” measure and unbounded. As Plutarch wrote:

I am all that has been, and is, and shall be, no one has yet raised my veil.15

It is helpful for the development of an intuition about the behavior of counting and addition to have a visual representation. The supertask is an excellent sort of representation

for a visual representation of infinity. It is based upon the philosophy of Zeno of Elea,

famously known for his paradoxes about the infinite. James F. Thomson, writes of the

supertask in a more modern symbolic-logic version of Zenoโ€™s Dichotomy Paradox (see Figure

2):

To complete any journey you must complete an infinite number of journeys. For to arrive from A to B you must first go from A to Aโ€™, the mid-point of A of B, and thence to Aโ€™โ€™, the mid-point of Aโ€™ and B, and so on. But it is logically absurd that someone should have completed all of an infinite number of journeys, just as it is logically absurd that someone should have completed all of an infinite number of tasks. Therefore, it is absurd that anyone has ever completed any journey.16

Figure 2 - Visualization of Zeno's Dichotomy Paradox

15 Plutarch. Isis and Osiris. 16 Benacerraf, Paul. Tasks, Super-Tasks, and the Modern Eleatics. p 766.

Page | 14

James Clark Transfinite Ordinal Arithmetic Spring 2017

Thomson uses the notion of the supertask in an argument about a lamp (which is strikingly similar to the dilemma of final term in an infinite alternating product, discussed in the afterthoughts of Theorem 3.5):

There are certain reading-lamps that have a button in the base. If the lamp is off and you press the button the lamp goes on, and if the lamp is on and your press the button, the lamp goes off. So if the lamp was originally off and you pressed the button an odd number of times, the lamp is on, and if you pressed the button an even number of times the lamp is off. Suppose now that the lamp is off, and I succeed in pressing the button an infinite number of times, perhaps making one jab in one minute, another jab in the next half minute, and so onโ€ฆ After I have completed the whole infinite sequence of jabs, i.e. at the end of the two minutes, is the lamp on or off?...It cannot be on, because I did not ever turn it on without at least turning it off. It cannot be off, because I did in the first place turn it on, and thereafter I never turned it off without at once turning it on. But the lamp must be either on or off. This is a contradiction.17

Thomson used this model to show the absurdity of physical objects engaged in an

infinite number of tasks (which cooperates with Brunoโ€™s assertion that the infinite is not for

the senses). However, the mathematical philosopher Paul Benacerraf adopted the model as

logically possible (to the realm of the intelligible, the Platonic world opposite that of the

sensible) and applied to counting to infinity or โ€œwhat happens at the th momentโ€.18

Imagine an infinite number of fence posts, or vertical lines, that๐œ”๐œ” are all equidistant.

Obviously in this sense, it is not directly observable. Put the fence posts into a geometric

proportion converging to zero, and the infinite is thus represented. Figure 3 is such a visual

representation of counting to infinity, a representation of the ordinal .

๐œ”๐œ”

17 Benacerraf, Paul. Tasks, Super-Tasks, and the Modern Eleatics. pp 767-768. 18 Ibid. p 777.

Page | 15

James Clark Transfinite Ordinal Arithmetic Spring 2017

Figure 3. Visualization of

๐œ”๐œ”

Recall that {0,1,2, โ€ฆ } and that is not a part of this set. For that matter, if it isnโ€™t already clear,๐œ”๐œ” noโ‰œ ordinal is a member ๐œ”๐œ”of itself. So were we to count all the way to infinity, the next ordinal would be omega. The value following is + 1. Recall from the definition of a successor ordinal, and by the fact that = {0,1,2๐œ”๐œ”, โ€ฆ }๐œ”๐œ”, that

+ 1 = { } = {0,1๐œ”๐œ”,2, โ€ฆ , }.

Figure 4 is a representation of๐œ”๐œ” these next๐œ”๐œ” โˆช two๐œ”๐œ” ordinals, in the๐œ”๐œ” mix of the ordinal + , which we will in the section on multiplication refer to as 2. ๐œ”๐œ” ๐œ”๐œ”

๐œ”๐œ”

Figure 4. Visualization of +

๐œ”๐œ” ๐œ”๐œ” Page | 16

James Clark Transfinite Ordinal Arithmetic Spring 2017

Recursive Definition of Addition

As the above symbolism using the Cartesian product is cumbersome, it is more practical to have a simple definition of addition that will work for us in any situation. To make this work, we set up a recursive definition of addition, based upon the number which we are adding on the right hand side. The following is adapted from Patrick Suppesโ€™

Axiomatic Set Theory.19

Recursive Definition of Ordinal Addition

1. + 0 0 + .

๐›ผ๐›ผAddingโ‰œ zero on๐›ผ๐›ผ โ‰œ the๐›ผ๐›ผ right (as well as on the left) serves as the additive identity.

2. + + 1 ( + ) + 1.

๐›ผ๐›ผAdding๐›ฝ๐›ฝ theโ‰œ successor๐›ผ๐›ผ ๐›ฝ๐›ฝ ordinal + 1 to an ordinal is the same as the successor of the

sum of + . ๐›ฝ๐›ฝ ๐›ผ๐›ผ

3. When ๐›ผ๐›ผ is a๐›ฝ๐›ฝ limit ordinal

๐›ฝ๐›ฝ + + .

๐›ผ๐›ผ ๐›ฝ๐›ฝ โ‰œ ๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ ๐›พ๐›พ<๐›ฝ๐›ฝ In other words, the supremum of all + , where < , is + . This will be used a

lot in the third part of the transfinite๐›ผ๐›ผ induction๐›พ๐›พ process.๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ

Results and Proofs

Now that we have a sense of what an ordinal is, and some fundamental notions of counting and adding on a small scale, we will explore some of the consequences of these premises. The proofs that follow, where cited, are adapted from a study of Patrick Suppeโ€™s

19 Suppes, Patrick. Axiomatic Set Theory. p 205.

Page | 17

James Clark Transfinite Ordinal Arithmetic Spring 2017

Axiomatic Set Theory and Gaisi Takeuti and Wilson Zaringโ€™s Introduction to Axiomatic Set

Theory. We will begin with a proof of right monotonicity when adding ordinals.

. : < + < +

๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ปFor any three๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ ordinals๐œท๐œท ๐œธ๐œธ โ†’, ๐œถ๐œถ and๐œท๐œท : if๐œถ๐œถ <๐œธ๐œธ , then + < + .

Proof. 20,21 This will be ๐›ผ๐›ผproven๐›ฝ๐›ฝ by๐›พ๐›พ transfinite๐›ฝ๐›ฝ ๐›พ๐›พ induction๐›ผ๐›ผ ๐›ฝ๐›ฝ on๐›ผ๐›ผ . ๐›พ๐›พ

Part 1. We will start with the base case where = 0. As 0 ๐›พ๐›พis the empty set and the smallest

ordinal, ๐›พ๐›พ

< 0 is false, and the theorem holds vacuously.

Part๐›ฝ๐›ฝ 2. Assume the hypothesis is true, and then show that < + 1 implies that

+ < + + 1. Start with the assumption that < + 1, ๐›ฝ๐›ฝand ๐›พ๐›พthen we have the

implication๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›พ๐›พ , as the stated assumption is true in either๐›ฝ๐›ฝ case๐›พ๐›พ of = or < . If = ,

then clearly ๐›ฝ๐›ฝ โ‰ค<๐›พ๐›พ + 1 = + 1. Otherwise, must be smaller than๐›ฝ๐›ฝ for๐›พ๐›พ this๐›ฝ๐›ฝ to ๐›พ๐›พbe true.๐›ฝ๐›ฝ In๐›พ๐›พ

other words,๐›ฝ๐›ฝ +๐›ฝ๐›ฝ = , for๐›พ๐›พ some ordinal ๐›ฝ๐›ฝ> 0. Then we have two๐›พ๐›พ cases: either < or

= . ๐›ฝ๐›ฝ ๐œ‚๐œ‚ ๐›พ๐›พ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐›พ๐›พ

In๐›ฝ๐›ฝ the๐›พ๐›พ case of < , per our hypothesis

๐›ฝ๐›ฝ ๐›พ๐›พ + < + .

Because any ordinal is less than its successor:๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›พ๐›พ

+ < ( + ) + 1.

By the recursive definition of Ordinal๐›ผ๐›ผ Addition๐›พ๐›พ ๐›ผ๐›ผ ( ๐›พ๐›พ+ ) + 1 = + + 1, and so we have:

+ < + <๐›ผ๐›ผ +๐›พ๐›พ + 1 ๐›ผ๐›ผ ๐›พ๐›พ

๐›ผ๐›ผ ๐›ฝ๐›ฝ +๐›ผ๐›ผ <๐›พ๐›พ +๐›ผ๐›ผ +๐›พ๐›พ1.

โ†’ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›พ๐›พ

20 Suppes, Patrick. Axiomatic Set Theory. p 207. 21 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 58.

Page | 18

James Clark Transfinite Ordinal Arithmetic Spring 2017

In the second case, we have = . Then < + 1 and + = + . Again, because any

ordinal is less than its successor:๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›พ๐›พ

+ = + < + + 1.

Part 3. We will view the case in ๐›ผ๐›ผwhich๐›ฝ๐›ฝ is๐›ผ๐›ผ a limit๐›พ๐›พ ๐›ผ๐›ผordinal,๐›พ๐›พ and assume the hypothesis holds

for all elements of such that ๐›พ๐›พ

๐›พ๐›พ ( )[ < < + < + ].

With all this in mind, will showโˆ€๐›ฟ๐›ฟ that๐›ฝ๐›ฝ the๐›ฟ๐›ฟ hypothesis๐›พ๐›พ โ†’ ๐›ผ๐›ผ holds๐›ฝ๐›ฝ ๐›ผ๐›ผ for ๐›ฟ๐›ฟ.

Per the defined relationship between , , and , certainly +๐›พ๐›พ < + . Further, it is also certainly true that + is less than or๐›ฝ๐›ฝ equal๐›ฟ๐›ฟ to ๐›พ๐›พthe supremum๐›ผ๐›ผ of๐›ฝ๐›ฝ all ๐›ผ๐›ผordinals๐›ฟ๐›ฟ of the form +

, which is equal to๐›ผ๐›ผ +๐›ฟ๐›ฟ . Thus ๐›ผ๐›ผ

๐›ฟ๐›ฟ ๐›ผ๐›ผ ๐›พ๐›พ + < + + = + .

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ โ‰ค ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›ผ๐›ผ ๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ

. : ( + ) โˆŽ

If๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป is a limit๐Ÿ๐Ÿ ๐Ÿ๐Ÿ ordinal,๐œท๐œท โˆˆ ๐‘ฒ๐‘ฒ ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐthenโ†’ ๐œถ๐œถ+ ๐œท๐œท isโˆˆ also๐‘ฒ๐‘ฒ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ a limit ordinal. In other words, if we add a limit

ordinal๐›ฝ๐›ฝ on the right of any ordinal,๐›ผ๐›ผ ๐›ฝ๐›ฝ then the result is always a limit ordinal.

Proof. 22,23 This will be proven by contradiction. We will suppose + is not a limit ordinal,

and reach our desired contradiction. Because is a limit ordinal๐›ผ๐›ผ ๐›ฝ๐›ฝand + for all

ordinals and , we can conclude: ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ โ‰ฅ ๐›ฝ๐›ฝ

๐›ผ๐›ผ ๐›ฝ๐›ฝ + 0

๐›ผ๐›ผ ๐›ฝ๐›ฝ โ‰ 

22 Suppes, Patrick. Axiomatic Set Theory. p 209. 23 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 60.

Page | 19

James Clark Transfinite Ordinal Arithmetic Spring 2017

Now because + is not a limit ordinal, per our assumption, that means it has a predecessor

such that: ๐›ผ๐›ผ ๐›ฝ๐›ฝ

๐›พ๐›พ + 1 = + .

While we have assumed that + is not๐›พ๐›พ a limit๐›ผ๐›ผ ordinal,๐›ฝ๐›ฝ we still hold to be a limit ordinal,

and so by the definition of addin๐›ผ๐›ผ g๐›ฝ๐›ฝ a limit ordinal: ๐›ฝ๐›ฝ

+ = ( + ).

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ Now because < + 1 and + 1 = + , we can say that < + , and thus:

๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ < ( + ).

๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ If + is not a limit ordinal, then there is some < , such that < + . Thus

๐›ผ๐›ผ ๐›ฝ๐›ฝ + = + 1 < ( + ๐›ฟ๐›ฟ)1+ 1๐›ฝ๐›ฝ= + + ๐›พ๐›พ1, ๐›ผ๐›ผ ๐›ฟ๐›ฟ1

which yields ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฟ๐›ฟ1 ๐›ผ๐›ผ ๐›ฟ๐›ฟ1

+ < + + 1.

Since < and is a limit ordinal, ๐›ผ๐›ผthen๐›ฝ๐›ฝ ( +๐›ผ๐›ผ1) ๐›ฟ๐›ฟ<1 . So then

๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ + 1 < ( + ) = + 1.

๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›พ๐›พ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ So ( + 1) < ( + 1), which is false, as no ordinal is less than itself. Therefore we conclude

that๐›พ๐›พ ๐›พ๐›พ

+ .

๐›ผ๐›ผ ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

โˆŽ

Page | 20

James Clark Transfinite Ordinal Arithmetic Spring 2017

Theorem 1.2: ( + ) + = + ( + )

This theorem states๐œถ๐œถ ๐œท๐œท that๐œธ๐œธ ordinal๐œถ๐œถ ๐œท๐œทaddition๐œธ๐œธ is associative, and holds true, no matter the ordinals we are adding; all three ordinals in this case can be either limit ordinals or not limit ordinals.

Proof. 24,25 This will be proven by induction on .

Part 1. Start with the base case, where = 0. It๐›พ๐›พ just needs to be shown that the hypothesis holds in this case, and so we freely substitute๐›พ๐›พ for 0, and vice versa, as such:

( + ) + = ( + ) + 0 = + = ๐›พ๐›พ + ( + 0) = + ( + ).

Part 2. We๐›ผ๐›ผ will๐›ฝ๐›ฝ then๐›พ๐›พ assume๐›ผ๐›ผ ๐›ฝ๐›ฝ our hypothesis๐›ผ๐›ผ ๐›ฝ๐›ฝ and๐›ผ๐›ผ show๐›ฝ๐›ฝ it holds๐›ผ๐›ผ for the๐›ฝ๐›ฝ successor,๐›พ๐›พ such that

( + ) + + 1 = + ( + + 1). By the recursive definition of addition of ordinals:

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ( ๐›พ๐›พ+ ) + + 1 = ( + ) + + 1.

By our assumed hypothesis we๐›ผ๐›ผ can๐›ฝ๐›ฝ further๐›พ๐›พ state:๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ๏ฟฝ

( + ) + + 1 = + ( + ) + 1.

Again, but the recursive definition๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ of๐›พ๐›พ ๏ฟฝaddition,๏ฟฝ ๐›ผ๐›ผwe can๐›ฝ๐›ฝ take๐›พ๐›พ ๏ฟฝ two more steps and find our desired result:

+ ( + ) + 1 = + ( + ) + 1 = + ( + + 1).

Thus ( + ) + ๏ฟฝ+๐›ผ๐›ผ1 =๐›ฝ๐›ฝ +๐›พ๐›พ( ๏ฟฝ+ + 1๐›ผ๐›ผ), as ๐›ฝ๐›ฝdesired.๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ

Part 3. ๐›ผ๐›ผWe ๐›ฝ๐›ฝwill deal๐›พ๐›พ with๐›ผ๐›ผ the case๐›ฝ๐›ฝ ๐›พ๐›พin which is a limit ordinal, symbolically as . We will also assume that the hypothesis holds for๐›พ๐›พ all the elements of , so that ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

( + ) + = + ( + ), < , ๐›พ๐›พ and then we will show it holds๐›ผ๐›ผ for๐›ฝ๐›ฝ . ๐›ฟ๐›ฟ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ โˆ€๐›ฟ๐›ฟ ๐›พ๐›พ

๐›พ๐›พ

24 Suppes, Patrick. Axiomatic Set Theory. p 211. 25 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 61.

Page | 21

James Clark Transfinite Ordinal Arithmetic Spring 2017

By definition of adding a limit ordinal on the right:

( + ) + = ( + ) + .

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ<๐›พ๐›พ By our hypothesis:

( + ) + = + ( + ).

๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ<๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ By Theorem 1.1 we know that if is a limit ordinal, then + is also a limit ordinal, and so

๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ + ( + ) = + .

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐œ‚๐œ‚<๐›ฝ๐›ฝ+๐›พ๐›พ It is thus given that < + , where represents all values less than + . Since < ,

and represents all ๐œ‚๐œ‚values๐›ฝ๐›ฝ less๐›พ๐›พ than ๐œ‚๐œ‚, we can also conclude that given๐›ฝ๐›ฝ any๐›พ๐›พ , there ๐›ฟ๐›ฟexists๐›พ๐›พ

some๐›ฟ๐›ฟ such that = + . Thus ๐›พ๐›พ ๐œ‚๐œ‚

๐›ฟ๐›ฟ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ + ( + ) + .

Alternatively, if we begin solely with๐›ผ๐›ผ the๐›ฝ๐›ฝ defined๐›ฟ๐›ฟ โ‰ค value๐›ผ๐›ผ ๐œ‚๐œ‚ that < + , then either < or

there must exist some such that = + . First suppose๐œ‚๐œ‚ that๐›ฝ๐›ฝ ๐›พ๐›พ < . Then certainly๐œ‚๐œ‚ ๐›ฝ๐›ฝ

+ < + per Theorem๐›ฟ๐›ฟ 1.0. Given๐œ‚๐œ‚ we๐›ฝ๐›ฝ can๐›ฟ๐›ฟ expand our conditions๐œ‚๐œ‚ to๐›ฝ๐›ฝ include equality,

and๐›ผ๐›ผ ๐œ‚๐œ‚that ๐›ผ๐›ผadding๐›ฝ๐›ฝ nothing to is still :

๐›ฝ๐›ฝ ๐›ฝ๐›ฝ + + ( + 0).

Because is a limit ordinal, we know๐›ผ๐›ผ that๐œ‚๐œ‚ โ‰ค ๐›ผ๐›ผ >๐›ฝ๐›ฝ 0, and so + ( + 0) < + ( + ) and

๐›พ๐›พ + ๐›พ๐›พ โ‰ฅ+๐œ”๐œ”( + ). ๐‘Ž๐‘Ž ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ

Otherwise = + , which implies๐›ผ๐›ผ that๐œ‚๐œ‚ โ‰ค+๐›ผ๐›ผ = ๐›ฝ๐›ฝ +๐›พ๐›พ( + ), and so

๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ + ๐›ผ๐›ผ ๐œ‚๐œ‚+ ( ๐›ผ๐›ผ+ ๐›ฝ๐›ฝ). ๐›ฟ๐›ฟ

So we have thus shown that + ( ๐›ผ๐›ผ+ )๐œ‚๐œ‚ โ‰ค ๐›ผ๐›ผ+ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ+ ( + ) and thus

๐›ผ๐›ผ ๐›ฝ๐›ฝ +๐›ฟ๐›ฟ โ‰ค=๐›ผ๐›ผ +๐œ‚๐œ‚( โ‰ค+๐›ผ๐›ผ ). ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ

๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ Page | 22

James Clark Transfinite Ordinal Arithmetic Spring 2017

As + = + if an only if = we can state therefore that + = + ( + ) implies

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ = + . ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ

Therefore we can conclude ๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ

+ ( + ) = +

๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๏ฟฝ ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ฟ๐›ฟ<๐›พ๐›พ ๐œ‚๐œ‚<๐›ฝ๐›ฝ+๐›พ๐›พ and

( + ) + = + ( + ).

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ

What is often given but a passing glance in texts on set theory is that ordinal additionโˆŽ

is not commutative. It seems uncommon for a textbook on the subject to address things in

depth that are not true. What I will show, though it is certainly not true in all cases, that it

does hold in some cases. It is easy to demonstrate that ordinal addition is not always

commutative by a counterexample. For example:

+ 2 > = 2 + .

However, there is at least one๐œ”๐œ” circumstance๐œ”๐œ” ๐œ”๐œ”where commutativity would hold.

Commutativity holds when we are considering adding strictly finite ordinals. We are going

to prove that addition of finite ordinals is commutative for all finite ordinals, but we will start

with a base case and first prove that 1 + = + 1, where is a finite ordinal.

Lemma 1.3: + = + , < ๐‘›๐‘› ๐‘›๐‘› ๐‘›๐‘›

Proof. This will๐Ÿ๐Ÿ be๐’๐’ proven๐’๐’ ๐Ÿ๐Ÿ byโˆ€ induction๐’๐’ ๐Ž๐Ž on . The case where = 0 is trivial, so we will start

with the base case of = 1: ๐‘›๐‘› ๐‘›๐‘›

๐‘›๐‘› 1 + = 1 + 1 = + 1.

๐‘›๐‘› ๐‘›๐‘›

Page | 23

James Clark Transfinite Ordinal Arithmetic Spring 2017

For the inductive step, we will assume the hypothesis that 1 + = + 1 and then show this leads to ( + 1) + 1 = 1 + ( + 1). First, because ordinal addition๐‘›๐‘› ๐‘›๐‘› is associative, we have ๐‘›๐‘› ๐‘›๐‘›

1 + ( + 1) = (1 + ) + 1.

By our hypothesis we then have ๐‘›๐‘› ๐‘›๐‘›

(1 + ) + 1 = ( + 1) + 1, which was what we wanted to show. ๐‘›๐‘› ๐‘›๐‘›

Theorem 1.4: Addition of Finite Ordinals is Commutative โˆŽ

+ = + , , <

As it is customary, and are๐‘š๐‘š used๐‘›๐‘› to express๐‘›๐‘› ๐‘š๐‘š finiteโˆ€๐‘š๐‘š ordinals.๐‘›๐‘› ๐œ”๐œ”

Proof. This will be๐‘š๐‘š proven๐‘›๐‘› by induction on . The base case where = 1 was just proven above in Lemma 1.3. ๐‘›๐‘› ๐‘›๐‘›

For the inductive portion, we will assume the hypothesis and show that this leads us to the conclusion that ( + 1) + = + ( + 1). Let us begin by using the known conclusion that ordinal addition๐‘š๐‘š is associative๐‘›๐‘› ๐‘›๐‘› ๐‘š๐‘š and we see that

( + 1) + = + (1 + ).

For any finite ordinal n, it is clear๐‘š๐‘š from Lemma๐‘›๐‘› 1.3๐‘š๐‘š that 1 +๐‘›๐‘› = + 1 and so we have

+ ( + 1) = ( + ) + 1๐‘›๐‘›. ๐‘›๐‘›

Then by our hypothesis we have๐‘š๐‘š ๐‘›๐‘› ๐‘š๐‘š ๐‘›๐‘›

( + ) + 1 = + ( + 1), which is what we wanted to show.๐‘›๐‘› ๐‘š๐‘š ๐‘›๐‘› ๐‘š๐‘š

โˆŽ Page | 24

James Clark Transfinite Ordinal Arithmetic Spring 2017

Commutativity of addition doesnโ€™t always work for transfinite ordinals. As such, it

isnโ€™t generally presented as a theorem. However, based on the Theorem 1.4, we can derive

further situations where commutativity holds.

Corollary 1.5: Addition of Finite Multiples of an Ordinal is Commutative

+ = + , , <

Meaning if we are adding multiples๐›ผ๐›ผ๐›ผ๐›ผ of๐›ผ๐›ผ๐›ผ๐›ผ any๐›ผ๐›ผ ordinal๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ โˆ€, then๐‘š๐‘š ๐‘›๐‘› addition๐œ”๐œ” is commutative.

Proof. By the (proven in Theorem๐›ผ๐›ผ 2.2 in the section on multiplication,

and the proof of that theorem doesnโ€™t rely on this theorem) we have the following:

+ = ( + ).

By Theorem 1.4 we know that + ๐‘Ž๐‘Ž๐‘Ž๐‘Ž= ๐‘Ž๐‘Ž๐‘Ž๐‘Ž+ and๐‘Ž๐‘Ž ๐‘š๐‘š thus๐‘›๐‘›

๐‘›๐‘› ๐‘š๐‘š( +๐‘š๐‘š ) =๐‘›๐‘› ( + ).

And then by distribution: ๐‘Ž๐‘Ž ๐‘š๐‘š ๐‘›๐‘› ๐›ผ๐›ผ ๐‘›๐‘› ๐‘š๐‘š

( + ) = + .

๐›ผ๐›ผ ๐‘›๐‘› ๐‘š๐‘š ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ

Lastly, we will discuss a situation that are important to understand for simplifyingโˆŽ some statements. Our primary conclusion will be that if we add any transfinite ordinal to any finite ordinal then ๐›ผ๐›ผ

๐‘š๐‘š + = .

Let us begin by recalling an earlier conclusion๐‘š๐‘š ๐›ผ๐›ผ that๐›ผ๐›ผ 2 + = . Remember that this sum

looks like ๐œ”๐œ” ๐œ”๐œ”

{(0,0), (1,0), (0,1), (1,1), (2,1), โ€ฆ }

which has an order type of .๏ฟฝ ๏ฟฝ This๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝhappens๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ no๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ matter๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthe๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝfinite๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ value we start with.

๐œ”๐œ”

Page | 25

James Clark Transfinite Ordinal Arithmetic Spring 2017

Theorem 1.6: + = , <

Proof. This will๐’Ž๐’Ž be proven๐Ž๐Ž ๐Ž๐Ž byโˆ€๐’Ž๐’Ž (not ๐Ž๐Žtransfinite) induction on .

We will start with the base case. The case where =๐‘š๐‘š0 0 + = is trivial and is

already covered by the recursive definition of addition. The๐‘š๐‘š caseโ†’ of =๐œ”๐œ”1 is๐œ”๐œ” more important

for our immediate purposes. To be clear, by the use of the cross product๐‘š๐‘š for finding a sum

1 + = 1 ร— {0} ร— {1} = {(0,0), (0,1), (1,1), (2,1), โ€ฆ } = .

So the base case holds๐œ”๐œ” and๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ๏ฟฝ+๏ฟฝ๏ฟฝ๏ฟฝโˆช๏ฟฝ๏ฟฝ๏ฟฝ๐œ”๐œ”=๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ.๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐œ”๐œ”

For the induction, we will๐œ”๐œ” then๐œ”๐œ” assume that + = and show it leads to the conclusion that ( + 1) + = . By Theorem 1.2 ordinal๐‘š๐‘š ๐œ”๐œ”addition๐œ”๐œ” is associative and so

๐‘š๐‘š ๐œ”๐œ” (๐œ”๐œ” + 1) + = + (1 + ).

We just showed that 1 + = , ๐‘š๐‘šand so ๐œ”๐œ” ๐‘š๐‘š ๐œ”๐œ”

๐œ”๐œ” ๐œ”๐œ” + (1 + ) = + .

Finally, by our hypothesis ๐‘š๐‘š ๐œ”๐œ” ๐‘š๐‘š ๐œ”๐œ”

+ = .

Thus have our desired result: ๐‘š๐‘š ๐œ”๐œ” ๐œ”๐œ”

( + 1) + = + = .

๐‘š๐‘š ๐œ”๐œ” ๐‘š๐‘š ๐œ”๐œ” ๐œ”๐œ”

โˆŽ

A further important result follows from Theorem 1.6. Essentially if we add any transfinite ordinal to a finite ordinal, the resulting sum is the transfinite ordinal that we added.

Page | 26

James Clark Transfinite Ordinal Arithmetic Spring 2017

Corollary 1.7: + = , < ,

Proof. Any ordinal๐’Ž๐’Ž ๐œถ๐œถ greater๐œถ๐œถ โˆ€ ๐’Ž๐’Žthan ๐Ž๐Žor equal๐œถ๐œถ โ‰ฅ ๐Ž๐Ž to can be written as = + , where can be

any ordinal. Thus ๐›ผ๐›ผ ๐œ”๐œ” ๐›ผ๐›ผ ๐œ”๐œ” ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ

+ = + ( + ).

Because ordinal addition is associative๐‘š๐‘š we๐›ผ๐›ผ know๐‘š๐‘š that๐œ”๐œ” ๐›ฝ๐›ฝ + ( + ) = ( + ) + .

From Theorem 1.6, we know that๐‘š๐‘š +๐œ”๐œ” =๐›ฝ๐›ฝ and๐‘š๐‘š thus๐œ”๐œ” ๐›ฝ๐›ฝ ( ๐‘š๐‘š+ ๐œ”๐œ”) + ๐œ”๐œ” = + = , which was what we wanted. ๐‘š๐‘š ๐œ”๐œ” ๐›ฝ๐›ฝ ๐œ”๐œ” ๐›ฝ๐›ฝ ๐›ผ๐›ผ

โˆŽ

Page | 27

James Clark Transfinite Ordinal Arithmetic Spring 2017

2. Ordinal Multiplication

Our understanding of multiplication of ordinals is very similar to our elementary notion of multiplication of whole numbers, in that is it repetitive addition. Multiplication with transfinite ordinals doesnโ€™t always behave as we might expect from our general intuition developed from years of observation of the operation with finite values. We can give a formal definition of multiplication of ordinals as such:

.

๐›ผ๐›ผ โ‹… ๐›ฝ๐›ฝ โ‰œ ๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ<๐›ฝ๐›ฝ So if we take the product of 4 3, for example, this means to add 4 three times, as such:

โ‹… 4 3 = 4 + 4 + 4.

Now per the formal definition of additionโ‹… we have

4 + 4 + 4 = 4 ร— {0} 4 ร— {1} 4 ร— {2}

= {(0,0), (1,0), (2,0), (3,0), (0,1๏ฟฝ)๏ฟฝ๏ฟฝ,๏ฟฝ(๏ฟฝ1๏ฟฝ๏ฟฝ,1๏ฟฝ๏ฟฝ)๏ฟฝ,โˆช๏ฟฝ(๏ฟฝ๏ฟฝ2๏ฟฝ,๏ฟฝ1๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(๏ฟฝ3๏ฟฝ๏ฟฝ,๏ฟฝ1โˆช๏ฟฝ)๏ฟฝ,๏ฟฝ๏ฟฝ(๏ฟฝ0๏ฟฝ,๏ฟฝ2๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(1,2), (2,2), (3,2)}.

This set is isomorphic๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ to๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ{๏ฟฝ0๏ฟฝ,๏ฟฝ1๏ฟฝ๏ฟฝ,2๏ฟฝ๏ฟฝ,๏ฟฝ3๏ฟฝ,๏ฟฝ4๏ฟฝ๏ฟฝ,5๏ฟฝ๏ฟฝ,๏ฟฝ6๏ฟฝ,๏ฟฝ7๏ฟฝ๏ฟฝ,8๏ฟฝ๏ฟฝ,9๏ฟฝ๏ฟฝ,๏ฟฝ10๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ11๏ฟฝ๏ฟฝ๏ฟฝ}๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ12๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ ๏ฟฝand๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ so๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ4๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ3๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ12๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

To demonstrate multiplication with a transfinite ordinal itโ‹… will now be shown that

2 2 . In the first case 2 means adding twice, and so is akin to + . As we saw in the๐œ”๐œ” โ‰ section๐œ”๐œ” on addition +๐œ”๐œ” > . A representation๐œ”๐œ” of this, to repeat๐œ”๐œ” from๐œ”๐œ” the section on addition, is given in Figure๐œ”๐œ” 5๐œ”๐œ”. The๐œ”๐œ” simpler notation is to represent this as 2 rather than

+ . ๐œ”๐œ”

๐œ”๐œ” ๐œ”๐œ”

Page | 28

James Clark Transfinite Ordinal Arithmetic Spring 2017

Figure 5. Visualization of 2

๐œ”๐œ”

As for 2 , well this mean to add 2 endlessly. So 2 = 2 + 2 + 2 + which is further equal to 1 + 1 +๐œ”๐œ” 1 + which is equal to . Since 2 = ๐œ”๐œ” < 2 we can concludeโ‹ฏ that 2

2. So generally speaking,โ‹ฏ commutativity๐œ”๐œ” does not๐œ”๐œ” hold๐œ”๐œ” for ๐œ”๐œ”ordinal multiplication, but๐œ”๐œ” weโ‰  will๐œ”๐œ” show later some circumstances where it does hold.

Now addition per the previous section is cumbersome, and repetitive addition that is multiplication just makes the process even more troublesome. So, as with addition, we will provide a recursive definition of ordinal multiplication for more practical use. The following definition is adapted from Suppesโ€™ Axiomatic Set Theory.26

Recursive Definition of Ordinal Multiplication

1. 0 0 0

Multiplying๐›ผ๐›ผ โ‹… โ‰œ โ‹… ๐›ผ๐›ผ byโ‰œ zero on the left or right gives a product of zero.

2. ( + 1) +

๐›ผ๐›ผ ๐›ฝ๐›ฝ โ‰œ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

26 Suppes, Patrick. Axiomatic Set Theory. p 212.

Page | 29

James Clark Transfinite Ordinal Arithmetic Spring 2017

Multiplying an ordinal by a successor ordinal + 1 is equal to + . While this

is consistent with our sense๐›ผ๐›ผ of a distributive law,๐›ฝ๐›ฝ further proof will๐›ผ๐›ผ๐›ผ๐›ผ be๐›ผ๐›ผ given that a

distributive law exists in a more general sense.

3. If is a limit ordinal, then

๐›ฝ๐›ฝ .

๐›ผ๐›ผ โ‹… ๐›ฝ๐›ฝ โ‰œ ๏ฟฝ ๐›ผ๐›ผ โ‹… ๐›พ๐›พ ๐›พ๐›พ<๐›ฝ๐›ฝ Assuming is a limit ordinal, then multiplying by on the right is equal to the

supremum๐›ฝ๐›ฝ of all , where is every element of . ๐›ฝ๐›ฝAs was the case with the third

part of the recursive๐›ผ๐›ผ๐›ผ๐›ผ definition๐›พ๐›พ of addition, this is ๐›ฝ๐›ฝregularly used in the third part of

the transfinite induction process.

Results and Proofs

Theorem 2.0:

Multiplying any๐œถ๐œถ โ‰ ordinal,๐ŸŽ๐ŸŽ โˆง ๐œท๐œท โˆˆexcept๐‘ฒ๐‘ฒ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ โ†’ for๐œถ๐œถ๐œถ๐œถ zero,โˆˆ ๐‘ฒ๐‘ฒ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ on the right by a limit ordinal results in a limit

ordinal. The reason for the exception is that multiplying any ordinal by zero on the left or the right results in zero, by the recursive definition of multiplication, which is not a limit ordinal.

Proof. 27,28 This will be proven by contradiction. We will first assume the premise of the

hypothesis, that is not zero and that is a limit ordinal. As zero isnโ€™t a limit ordinal, we

can also conclude๐›ผ๐›ผ that is not zero. ๐›ฝ๐›ฝTherefore the product of and cannot be zero.

Symbolically: ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ

0 0.

๐›ผ๐›ผ โ‰  โˆง ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ โ†’ ๐›ผ๐›ผ๐›ผ๐›ผ โ‰ 

27 Suppes, Patrick. Axiomatic Set Theory. p 214. 28 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 64.

Page | 30

James Clark Transfinite Ordinal Arithmetic Spring 2017

As every ordinal is a limit ordinal or not, we state that or . We will assume

that is not a limit ordinal, arrive at a contradiction,๐›ผ๐›ผ and๐›ผ๐›ผ โˆˆ then๐พ๐พ๐ผ๐ผ๐ผ๐ผ conclude๐›ผ๐›ผ๐›ผ๐›ผ โˆˆ ๐พ๐พ๐ผ๐ผ that is a limit

ordinal.๐›ผ๐›ผ๐›ผ๐›ผ If is a successor ordinal, then there is some that is its predecessor,๐›ผ๐›ผ such๐›ผ๐›ผ that:

๐›ผ๐›ผ๐›ผ๐›ผ ( )[ + 1 = ]. ๐›พ๐›พ

As < + 1 and + 1 = , certainlyโˆƒ๐›พ๐›พ ๐›พ๐›พ < ๐›ผ๐›ผ.๐›ผ๐›ผ We know from the definition of

multiplication๐›พ๐›พ ๐›พ๐›พ that ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ

= .

๐›ผ๐›ผ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ Given we know that < , we can conclude that

๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ < .

๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ Per this conclusion there exists some < such that < , which further implies that

๐›ฟ๐›ฟ1+ 1๐›ฝ๐›ฝ< + 1. ๐›พ๐›พ ๐›ผ๐›ผ๐›ฟ๐›ฟ1

As we know that 0, which further๐›พ๐›พ means ๐›ผ๐›ผ๐›ฟ๐›ฟ1 1, we can state

๐›ผ๐›ผ โ‰  + 1 ๐›ผ๐›ผ โ‰ฅ + .

By the second part of the recursive definition๐›ผ๐›ผ๐›ฟ๐›ฟ1 โ‰ค of๐›ผ๐›ผ or๐›ฟ๐›ฟ1dinal๐›ผ๐›ผ multiplication, we can further state that

+ = ( + 1).

Tying the last few statements together,๐›ผ๐›ผ๐›ฟ๐›ฟ1 we๐›ผ๐›ผ can๐›ผ๐›ผ further๐›ฟ๐›ฟ1 conclude that

+ 1 < ( + 1).

If is a limit ordinal, and < , then๐›พ๐›พ + 1๐›ผ๐›ผ<๐›ฟ๐›ฟ1 . Given + 1 < ( + 1) and + 1 <

we๐›ฝ๐›ฝ conclude that + 1 < ๐›ฟ๐›ฟ1 and๐›ฝ๐›ฝ ๐›ฟ๐›ฟ1 ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฟ๐›ฟ1 ๐›ฟ๐›ฟ1 ๐›ฝ๐›ฝ

๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ + 1 < = = + 1.

๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ Page | 31

James Clark Transfinite Ordinal Arithmetic Spring 2017

As no ordinal can be a member of itself (or less than itself), we have thus reached our desired

contradiction. We conclude then that .

๐›ผ๐›ผ๐›ผ๐›ผ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

Theorem 2.1: < < โˆŽ

In other words๐œถ๐œถ โ‰  is๐ŸŽ๐ŸŽ notโˆง ๐œท๐œท zero๐œธ๐œธ andโ†” ๐œถ๐œถ๐œถ๐œถ< ๐œถ๐œถ if๐œถ๐œถ and only if < . The reason cannot be zero is simply because๐›ผ๐›ผ if it were, then ๐›ฝ๐›ฝ =๐›พ๐›พ because ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

๐›ผ๐›ผ๐›ผ๐›ผ= 0๐›ผ๐›ผ๐›ผ๐›ผ = 0 = 0 = .

Proof.29,30 This will be proven by๐›ผ๐›ผ๐›ผ๐›ผ inductionโˆ™ ๐›ฝ๐›ฝ on . โˆ™ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ

Part 1. If = 0, then our premise is false, as there๐›พ๐›พ is no < 0. Thus the theorem holds

vacuously.๐›พ๐›พ ๐›ฝ๐›ฝ

Part 2. We will assume the hypothesis and show it holds for + 1. Per the hypothesis <

and < . Per our desire to see this hold for + 1, letโ€™s start๐›พ๐›พ with the fact that ๐›ฝ๐›ฝ ๐›พ๐›พ

๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ( + 1) = ๐›พ๐›พ +

by the recursive definition of ordinal๐›ผ๐›ผ addition๐›พ๐›พ . ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

Since 0, it is clearly true that

๐›ผ๐›ผ โ‰  < + .

By transitivity of the statement ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

< < + = ( + 1)

we have our desired result: ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›พ๐›พ

< ( + 1).

๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›พ๐›พ

29 Suppes, Patrick. Axiomatic Set Theory. p 213. 30 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 63.

Page | 32

James Clark Transfinite Ordinal Arithmetic Spring 2017

Part 3. is a limit ordinal: . We will also assume the hypothesis holds for all elements of : ๐›พ๐›พ ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

๐›พ๐›พ ( )[ < < 0 < ].

Further, as < , then certainlyโˆ€๐›ฟ๐›ฟ ๐›ฝ๐›ฝ is less๐›ฟ๐›ฟ than๐›พ๐›พ โˆง ๐›ผ๐›ผ theโ‰  supremumโ†’ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ of๐›ผ๐›ผ :

๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ < = ,

๐›ผ๐›ผ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›พ๐›พ and thus < .

So we have๐›ผ๐›ผ๐›ผ๐›ผ shown๐›ผ๐›ผ๐›ผ๐›ผ 0 < < . It will now be shown that the converse is also true, symbolically that๐›ผ๐›ผ โ‰  โˆง<๐›ฝ๐›ฝ ๐›พ๐›พ โ†’ ๐›ผ๐›ผ๐›ผ๐›ผ 0 ๐›ผ๐›ผ๐›ผ๐›ผ < .

If < , then 0,๐›ผ๐›ผ for๐›ผ๐›ผ the๐›ผ๐›ผ ๐›ผ๐›ผsameโ†’ ๐›ผ๐›ผ reasonโ‰  โˆง ๐›ฝ๐›ฝas above.๐›พ๐›พ If = , then = , and vice versa.

If ๐›ผ๐›ผ๐›ผ๐›ผ< ๐›ผ๐›ผand๐›ผ๐›ผ ๐›ผ๐›ผ0,โ‰  then < . Therefore < ๐›ฝ๐›ฝ <๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ0. ๐›ผ๐›ผ๐›ผ๐›ผ

๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ผ๐›ผ โ‰  ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ โ†’ ๐›ฝ๐›ฝ ๐›พ๐›พ โˆง ๐›ผ๐›ผ โ‰ 

Theorem 2.2: ( + ) = + โˆŽ

This is our traditional๐œถ๐œถ ๐œท๐œท ๐œธ๐œธ distributive๐œถ๐œถ๐œถ๐œถ ๐œถ๐œถ ๐œถ๐œถproperty.

Proof. 31,32 This will be proven by induction on .

Part 1. For the base case, we will assume = 0. ๐›พ๐›พSimply replacing with 0 and vice versa, we get ๐›พ๐›พ ๐›พ๐›พ

( + ) = ( + 0) = ( ) = = + 0 = + 0 = + .

Part 2. We will๐›ผ๐›ผ ๐›ฝ๐›ฝ assume๐›พ๐›พ the๐›ผ๐›ผ ๐›ฝ๐›ฝ hypothesis๐›ผ๐›ผ ๐›ฝ๐›ฝand show๐›ผ๐›ผ๐›ผ๐›ผ that๐›ผ๐›ผ๐›ผ๐›ผ +๐›ผ๐›ผ(๐›ผ๐›ผ+ 1๐›ผ๐›ผ) = ๐›ผ๐›ผ๐›ผ๐›ผ +๐›ผ๐›ผ๐›ผ๐›ผ( + 1).

Per the recursive definition of addition (alternatively ๐›ผ๐›ผby๏ฟฝ๐›ฝ๐›ฝ associativity๐›พ๐›พ ๏ฟฝ of๐›ผ๐›ผ addition),๐›ผ๐›ผ ๐›ผ๐›ผ ๐›พ๐›พ we get

+ ( + 1) = ( + ) + 1 .

๐›ผ๐›ผ๏ฟฝ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ๏ฟฝ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ

31 Suppes, Patrick. Axiomatic Set Theory. p 214. 32 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 64.

Page | 33

James Clark Transfinite Ordinal Arithmetic Spring 2017

Per the hypothesis

( + ) + 1 = ( + ) + = ( + ) + .

Per associativity of addition๐›ผ๐›ผ๏ฟฝ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

( + ) + = + ( + ).

Finally, per the hypothesis ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ

+ ( + ) = + ( + 1).

Part 3. We will assume that is๐›ผ๐›ผ๐›ผ๐›ผ a limit๐›ผ๐›ผ๐›ผ๐›ผ ordinal:๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ and๐›พ๐›พ also that the hypothesis holds for all elements of such that ๐›พ๐›พ ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

๐›พ๐›พ ( + ) = + , < .

All that holding, there are two๐›ผ๐›ผ cases๐›ฝ๐›ฝ ๐›ฟ๐›ฟto consider:๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผeither โˆ€๐›ฟ๐›ฟ= 0๐›พ๐›พ or 0.

Case 1: = 0. ๐›ผ๐›ผ ๐›ผ๐›ผ โ‰ 

Then by replacing๐›ผ๐›ผ with 0 and vice versa:

๐›ผ๐›ผ( + ) = 0( + ) = 0 = 0 + 0 = 0 + 0 = + .

Case 2: ๐›ผ๐›ผ0๐›ฝ๐›ฝ. ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ

Per Theorems๐›ผ๐›ผ 1.1โ‰  and 2.0, if is a limit ordinal, then so are + and . Thus by the

recursive definitions of addition๐›พ๐›พ and multiplication ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ

( + ) =

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ+๐›พ๐›พ and

+ = + .

๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐œ‚๐œ‚<๐›ผ๐›ผ๐›ผ๐›ผ If < + then

๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ < ( )[ < = + ].

In the case where < , which๐›ฟ๐›ฟ implies๐›ฝ๐›ฝ โˆจ โˆƒ ๐œ๐œ<๐œ๐œ , by๐›พ๐›พ โˆงTheorem๐›ฟ๐›ฟ ๐›ฝ๐›ฝ 2.1๐œ๐œ

๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ Page | 34

James Clark Transfinite Ordinal Arithmetic Spring 2017

< .

In the second case where ( )[ < ๐›ผ๐›ผ๐›ผ๐›ผ =๐›ผ๐›ผ๐›ผ๐›ผ+ ], then by the present clause, the

distributive hypothesis, and withโˆƒ๐œ๐œ =๐œ๐œ ๐›พ๐›พ โˆง ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐œ๐œ

= ๐œƒ๐œƒ( +๐›ผ๐›ผ๐›ผ๐›ผ ) = + = + .

Then since < , then <๐›ผ๐›ผ๐›ผ๐›ผ and๐›ผ๐›ผ ๐›ฝ๐›ฝ <๐œ๐œ . Thus๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐œƒ๐œƒ

๐œ๐œ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐œƒ๐œƒ( +๐›ผ๐›ผ๐›ผ๐›ผ) + .

Now if < then ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ โ‰ค ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ

๐œ‚๐œ‚ ๐›ผ๐›ผ๐›ผ๐›ผ ( )[ < < ].

By Theorem 1.0 clearly โˆƒ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐›พ๐›พ โˆง ๐œ‚๐œ‚ ๐›ผ๐›ผ๐›ผ๐›ผ

+ < + .

And further, since = , and by the distributive๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ hypothesis๐›พ๐›พ

๐œ‚๐œ‚ ๐›ผ๐›ผ๐›ผ๐›ผ + < + = ( + ) and ๐›ผ๐›ผ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ

+ ( + ).

Therefore since ( + ) + ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ(๐›ผ๐›ผ +โ‰ค ๐›ผ๐›ผ),๐›ฝ๐›ฝ then๐›พ๐›พ

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ โ‰ค ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ(โ‰ค ๐›ผ๐›ผ+ ๐›ฝ๐›ฝ) =๐›พ๐›พ + .

๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ

Theorem 2.3: ( ) = ( ) โˆŽ

That is to say, ordinal๐œถ๐œถ๐œถ๐œถ ๐œธ๐œธ multiplication๐œถ๐œถ ๐œท๐œท๐œท๐œท is associative.

Proof. 33,34 This will be proven by induction on .

Part 1. For the base case, we will let = 0. By replacing๐›พ๐›พ with 0 and vice versa

๐›พ๐›พ ๐›พ๐›พ

33 Suppes, Patrick. Axiomatic Set Theory. p 215. 34 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 65.

Page | 35

James Clark Transfinite Ordinal Arithmetic Spring 2017

( ) = ( ) 0 = 0 = 0 = ( 0) = ( ).

Part 2. We will assume๐›ผ๐›ผ the๐›ผ๐›ผ ๐›พ๐›พ hypothesis๐›ผ๐›ผ๐›ผ๐›ผ โˆ™ and show๐›ผ๐›ผ โˆ™ that ๐›ผ๐›ผit holds๐›ฝ๐›ฝ โˆ™ for๐›ผ๐›ผ the๐›ฝ๐›ฝ ๐›ฝ๐›ฝsuccessor; symbolically we will show that ( )( + 1) = ( + 1) .

By the distributive property๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ๏ฟฝ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ

( )( + 1) = ( ) + .

By our hypothesis ๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ

( ) + = ( ) + .

Then by the distributive property๐›ผ๐›ผ ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ผ๐›ผ๐›ผ๐›ผ

( ) + = ( + ) = ( + 1) .

Part 3. We will thus let ๐›ผ๐›ผ a ๐›ฝ๐›ฝbe๐›ฝ๐›ฝ limit๐›ผ๐›ผ๐›ผ๐›ผ ordinal,๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ symbolically๐›ฝ๐›ฝ ๐›ผ๐›ผ๏ฟฝ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ. We will also assume the hypothesis holds for all elements๐›พ๐›พ of such that ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

( ๐›พ๐›พ) = ( ), < .

There are two cases here to consider:๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟeither๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ = 0โˆ€ or๐›ฟ๐›ฟ ๐›พ๐›พ 0.

Case 1: = 0. If = 0, then either ๐›ผ๐›ผ๐›ฝ๐›ฝ= 0 or ๐›ผ๐›ผ=๐›ผ๐›ผ 0โ‰ . Now if = 0, then clearly

๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ( ) =๐›ผ๐›ผ0 = 0๐›ฝ๐›ฝ. ๐›ผ๐›ผ๐›ผ๐›ผ

Then since = 0 or = 0, the latter of๐›ผ๐›ผ ๐›ผ๐›ผwhich๐›พ๐›พ impliesโˆ™ ๐›พ๐›พ = 0, then

๐›ผ๐›ผ ๐›ฝ๐›ฝ 0 = ( ). ๐›ฝ๐›ฝ๐›ฝ๐›ฝ

Case 2: 0. This implies that ๐‘Ž๐‘Ž0 ๐›ฝ๐›ฝand๐›ฝ๐›ฝ 0. By definition of multiplying by a limit ordinal ๐›ผ๐›ผ๐›ผ๐›ผ โ‰  ๐›ผ๐›ผ โ‰  ๐›ฝ๐›ฝ โ‰ 

( ) = ( ) .

๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ<๐›พ๐›พ Given that , per Theorem 2.0 we also have and

๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

Page | 36

James Clark Transfinite Ordinal Arithmetic Spring 2017

( ) = .

๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๐œ‚๐œ‚<๐›ฝ๐›ฝ๐›ฝ๐›ฝ Now < implies by Theorem 2.1 that < , and so

๐›ฟ๐›ฟ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ = ( ).

๏ฟฝ ๐›ผ๐›ผ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐œ‚๐œ‚<๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ<๐›ฝ๐›ฝ๐›ฝ๐›ฝ Therefore

( ) = ( ).

๐›ผ๐›ผ๐›ผ๐›ผ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ

Before we discuss the next conclusion, we will first prove that 2 = 2, which willโˆŽ

be used as the base case for Theorem 2.5. ๐‘š๐‘š ๐‘š๐‘š

Lemma 2.4: = , <

Proof. This will๐Ÿ๐Ÿ๐Ÿ๐Ÿ be ๐’Ž๐’Ž๐’Ž๐’Žprovenโˆ€๐’Ž๐’Ž by induction๐Ž๐Ž on . The three cases of = 0, = 1, and = 2

are all trivial, so let us start with a base case๐‘š๐‘š where = 3. So it will๐‘š๐‘š be shown๐‘š๐‘š that 2๐‘š๐‘š 3 =

3 2. First start with the left hand side and we have ๐‘š๐‘š โˆ™

โˆ™ 2 3 = {0,1} ร— {0,1,2}

= {(0,0), (1,0โˆ™), (0,1๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(๏ฟฝ1๏ฟฝ๏ฟฝ,๏ฟฝ1๏ฟฝ)๏ฟฝ,๏ฟฝ๏ฟฝ(๏ฟฝ0๏ฟฝ,๏ฟฝ2๏ฟฝ๏ฟฝ)๏ฟฝ, (1,2)} = 6.

Now it will be shown that 3๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ6๏ฟฝ ๏ฟฝas๏ฟฝ๏ฟฝ๏ฟฝ well:๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

โˆ™ 3 2 = {0,1,2} ร— {0,1}

= {(0,0), (1,0โˆ™), (2,0๏ฟฝ๏ฟฝ)๏ฟฝ,๏ฟฝ(๏ฟฝ0๏ฟฝ๏ฟฝ,๏ฟฝ1๏ฟฝ)๏ฟฝ,๏ฟฝ๏ฟฝ(๏ฟฝ1๏ฟฝ,๏ฟฝ1๏ฟฝ๏ฟฝ)๏ฟฝ, (2,1)} = 6.

Now for the induction, we๏ฟฝ ๏ฟฝwill๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝassume๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthat๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ2๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ=๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ๏ฟฝ ๏ฟฝand๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝshow๏ฟฝ๏ฟฝ this leads to 2( + 1) =

( + 1) 2. Letโ€™s start with the fact that ๐‘š๐‘š ๐‘š๐‘š ๐‘š๐‘š

๐‘š๐‘š โˆ™ ( + 1) 2 = ( + 1) + ( + 1).

As the addition of finite ordinals๐‘š๐‘š is bothโˆ™ associative๐‘š๐‘š and๐‘š๐‘š commutative we have then

Page | 37

James Clark Transfinite Ordinal Arithmetic Spring 2017

+ + 1 + 1 = 2 + 2.

Lastly, by the distributive property,๐‘š๐‘š we๐‘š๐‘š have our desired๐‘š๐‘š conclusion:

2( + 1) = ( + 1) 2.

๐‘š๐‘š ๐‘š๐‘š โˆ™

Theorem 2.5: Multiplication of Finite Ordinals is Commutative โˆŽ

= , , < .

Similar to the commutativity๐‘š๐‘š โˆ™ ๐‘›๐‘› of ๐‘›๐‘›addition,โˆ™ ๐‘š๐‘š thisโˆ€๐‘š๐‘š fact๐‘›๐‘› doesnโ€™t๐œ”๐œ” seem to get any attention.

Again, theorems stated for ordinal arithmetic are generally reserved for results that apply to

all ordinals. While there is no corollary like that for Theorem 1.4, and we wonโ€™t use this

theorem to prove anything, it is offered here for consideration to see that sometimes

theorems that donโ€™t hold for absolutely all ordinals do hold under some strict circumstances.

Itโ€™s intuitively obvious, but difficult to prove the general case. It is easy to show this holds in

any specific example like 3 5 = 15 = 5 3. Here is a proof of the general case.

Proof. We will prove this byโˆ™ induction onโˆ™ . As = 1 and = 1 are trivial cases, we will

argue first the case where = 2. By the previous๐‘›๐‘› ๐‘›๐‘›proof, for any๐‘›๐‘› finite value of :

๐‘›๐‘› 2 = 2 . ๐‘š๐‘š

For the inductive step, we will assume๐‘š๐‘š โˆ™ that โˆ™ ๐‘š๐‘š = and show that ( + 1) =

( + 1) . We still start with ๐‘š๐‘š โˆ™ ๐‘›๐‘› ๐‘›๐‘› โˆ™ ๐‘š๐‘š ๐‘š๐‘š ๐‘›๐‘›

๐‘›๐‘› ๐‘š๐‘š ( + 1)( ) = ( + 1)(1 + 1 + + 1 ).

Using the distributive property๐‘›๐‘› we๐‘š๐‘š have ๐‘›๐‘›then 1 2 โ‹ฏ ๐‘š๐‘š

( + 1)(1 ) + ( + 1)(1 ) + + ( + 1)(1 )

๐‘›๐‘› = ( +1 1) +๐‘›๐‘› ( + 1)2 + โ‹ฏ+ ( ๐‘›๐‘›+ 1) ๐‘š๐‘š

= ( ๐‘›๐‘›+ 1 )1+ ( ๐‘›๐‘› + 1 2) + โ‹ฏ + (๐‘›๐‘› + 1๐‘š๐‘š ).

๐‘›๐‘›1 1 ๐‘›๐‘›2 2 โ‹ฏ ๐‘›๐‘›๐‘š๐‘š ๐‘š๐‘š Page | 38

James Clark Transfinite Ordinal Arithmetic Spring 2017

Because the addition of finite ordinals is both associative and commutative, we have then

+ + + + 1 + 1 + + 1

๐‘›๐‘›1 ๐‘›๐‘›2 โ‹ฏ =๐‘›๐‘›๐‘š๐‘š +1 2 โ‹ฏ ๐‘š๐‘š

= ๐‘›๐‘›๐‘›๐‘› + ๐‘š๐‘š.

Finally by the distributive property, we have๐‘š๐‘š ๐‘š๐‘šour ๐‘š๐‘šdesired result

( + 1) = ( + 1).

๐‘›๐‘› ๐‘š๐‘š ๐‘š๐‘š ๐‘›๐‘›

Something that is useful in working out basic arithmetical operations is theโˆŽ knowledge of what happens when we multiply finite values by transfinite values. We will start with the base case of all these: what happens what we multiply by , the smallest transfinite ordinal. ๐œ”๐œ”

Theorem 2.6: = , [ < < ]

In other words,๐’Ž๐’Ž ifโˆ™ ๐Ž๐Žwe multiply๐Ž๐Ž โˆ€๐’Ž๐’Ž any๐ŸŽ๐ŸŽ finite๐’Ž๐’Ž ๐Ž๐Žordinal 0 by , the resulting product is equal to . The reason the finite ordinal must not be๐‘š๐‘š 0,โ‰  is because๐œ”๐œ” 0 = 0.

๐œ”๐œ” ๐‘š๐‘š โˆ™ ๐œ”๐œ”

Proof. This will be proven constructively. We will start with a concrete example. For starters, the case where = 1 is trivial, and is covered by the recursive definition of ordinal multiplication. So to cover๐‘š๐‘š a non-trivial case, let = 2. Using the Cartesian product symbolism we have ๐‘š๐‘š

2 = {0,1} ร— {0,1,2, โ€ฆ } = {(0,0), (1,0), (0,1), (1,1), (0,2), (1,2), โ€ฆ } = .

Per โˆ™the๐œ”๐œ” nature๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝof๏ฟฝ๏ฟฝ ๏ฟฝordinal๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝmultiplication,๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝand๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝby๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthe๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝdefinition๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝof๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝthe๏ฟฝ๏ฟฝ๏ฟฝ multiplicative๐œ”๐œ” identity

1 = 1 + 1 + 1 + = .

โˆ™ ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” Page | 39

James Clark Transfinite Ordinal Arithmetic Spring 2017

The same way we find that for any finite ordinal , not zero,

= + ๐‘š๐‘š+ + .

Given is finite, we know that ๐‘š๐‘š โˆ™ ๐œ”๐œ” ๐‘š๐‘š ๐‘š๐‘š ๐‘š๐‘š โ‹ฏ

๐‘š๐‘š = 1 + 1 + 1 + + 1 .

Therefore ๐‘š๐‘š 1 2 3 โ‹ฏ ๐‘š๐‘š

= (1 + 1 + 1 + + 1 ) + (1 + 1 + 1 + + 1 ) + .

Since ordinal๐‘š๐‘š additionโˆ™ ๐œ”๐œ” is1 associat2 3ive byโ‹ฏ Theorem๐‘š๐‘š 1.2,1 we2 can3 dropโ‹ฏ the ๐‘š๐‘šparenthesisโ‹ฏ and we

have

= 1 + 1 + 1 + = ,

which is what we wanted to show.๐‘š๐‘š โˆ™ ๐œ”๐œ” โ‹ฏ ๐œ”๐œ”

Corollary 2.7: = , [ < < ], โˆŽ

In other words๐’Ž๐’Ž if โˆ™we๐œถ๐œถ multiply๐œถ๐œถ โˆ€๐’Ž๐’Ž any๐ŸŽ๐ŸŽ finite๐’Ž๐’Ž value๐Ž๐Ž โˆ€ by๐œถ๐œถ โˆˆany๐‘ฒ๐‘ฒ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ limit ordinal , the resulting product is

. Again, canโ€™t be zero, or the theorem doesnโ€™t hold. ๐›ผ๐›ผ

Proof๐›ผ๐›ผ . Any๐‘š๐‘š limit ordinal can be expressed by the form = , so long as 0. So we

have ๐›ผ๐›ผ ๐›ผ๐›ผ ๐œ”๐œ” โˆ™ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ โ‰ 

= ( ).

Because ordinal multiplication is associative๐‘š๐‘š โˆ™ ๐›ผ๐›ผ we๐‘š๐‘š have๐œ”๐œ”๐œ”๐œ”

( ) = ( ) .

And finally, per Theorem 2.6 we know๐‘š๐‘š ๐œ”๐œ”๐œ”๐œ”= and๐‘š๐‘š๐‘š๐‘š so๐›ฝ๐›ฝ

( ๐‘š๐‘š๐‘š๐‘š) =๐œ”๐œ” = .

And thus we have = , as desired.๐‘š๐‘š๐‘š๐‘š ๐›ฝ๐›ฝ ๐œ”๐œ”๐œ”๐œ” ๐›ผ๐›ผ

๐‘š๐‘š โˆ™ ๐›ผ๐›ผ ๐›ผ๐›ผ

โˆŽ Page | 40

James Clark Transfinite Ordinal Arithmetic Spring 2017

3. Ordinal Exponentiation

In the same way our understanding of multiplication is built up as repetitive addition,

ordinal exponentiation will be formally defined as repetitive multiplication. Again, as was

the case with the first two operations, while some things will behave similarly to our

common notion of exponentiation, since we are dealing with numbers not addressed by our

common notions of arithmetic, all such things will have to be proven.

Let us start with the more detailed definition of ordinal exponentiation, given as such

. ๐›ฝ๐›ฝ ๐›ผ๐›ผ โ‰œ ๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ<๐›ฝ๐›ฝ Per this definition, we see that, for example

4 = 4 = 4 4 4 3 ๏ฟฝ 0 โ‹… 1 โ‹… 2 ๐›พ๐›พ<3 = (4 + 4 + 4 + 4) 4

= (16) 4 = 16 + 16 + 16 +โˆ™ 16 = 64.

This gets more interesting whenโˆ™ we incorporate a transfinite ordinal. Let us look at the nature of . Squaring any ordinal simply means to multiply that ordinal twice, thus 2 = . Since๐œ”๐œ” multiplying an ordinal by means to multiply it endlessly, we have further 2 that๐œ”๐œ” ๐œ”๐œ” โˆ™ ๐œ”๐œ” ๐œ”๐œ”

= = + + + . 2 This statement can be further visualize๐œ”๐œ” ๐œ”๐œ” โˆ™d๐œ”๐œ” by Figure๐œ”๐œ” ๐œ”๐œ” 6. ๐œ”๐œ” โ‹ฏ

Page | 41

James Clark Transfinite Ordinal Arithmetic Spring 2017

Figure 6. Visualization of 2 ๐œ”๐œ”

We can also take a value such as and further multiply it. Figure 7 is a 2 representation of 8. Any further attempt๐œ”๐œ” to carry this out to infinity will result in a 2 virtually unintelligible๐œ”๐œ” โˆ™ image, due to a loss of fidelity.

Figure 7. Visualization of Multiples of 2 ๐œ”๐œ”

As a single sum or a single product is already a messy bit of work, this is clearly going

to get even worse when we try to compose this further based upon the standard of the

Cartesian product. We will therefore carry this process no further, only to say that again we

must multiply these in the order that they are written from left to right. We will then move

Page | 42

James Clark Transfinite Ordinal Arithmetic Spring 2017 forward with the more practical recursive definition of ordinal exponentiation, adapted from

Suppes.35

Recursive Definition of Ordinal Exponentiation

1. 1. 0 ๐›ผ๐›ผThisโ‰œ holds true for any ordinal , including zero. If zero is the exponent, the resulting

power is always 1. ๐›ผ๐›ผ

2. ๐›ฝ๐›ฝ+1 ๐›ฝ๐›ฝ If๐›ผ๐›ผ we takeโ‰œ ๐›ผ๐›ผ anyโ‹… ๐›ผ๐›ผ ordinal and raise it to a successor ordinal + 1, then the result is the

same as . ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ 3. If is a limit๐›ผ๐›ผ โ‹… ๐›ผ๐›ผordinal and > 0

๐›ฝ๐›ฝ ๐›ผ๐›ผ . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ โ‰œ ๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ<๐›ฝ๐›ฝ As with the recursive definitions of the first two arithmetical operations, this will be

used regularly in the third part of the transfinite induction process. If = 0 while

is a limit ordinal, then = 0 = 0. ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ Results and Proofs ๐›ผ๐›ผ

Theorem 3.0: > ๐œท๐œท ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ ๐‘ฐ๐‘ฐ๐‘ฐ๐‘ฐ For any ordinal๐œถ๐œถ >๐Ÿ๐Ÿ 1โˆง and๐œท๐œท โˆˆ any๐‘ฒ๐‘ฒ limitโ†’ ๐œถ๐œถ ordinalโˆˆ ๐‘ฒ๐‘ฒ , is also a limit ordinal. ๐›ฝ๐›ฝ Proof. 36 This will๐›ผ๐›ผ be proven by contradiction.๐›ฝ๐›ฝ ๐›ผ๐›ผ Given that > 1 and , then also

๐ผ๐ผ๐ผ๐ผ > 1. This also further implies that 0. As is the case with๐›ผ๐›ผ any ordinal,๐›ฝ๐›ฝ โˆˆ ๐พ๐พ and ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐ผ๐ผ๐ผ๐ผ is๐›ผ๐›ผ of the class of limit ordinals, or it is ๐›ผ๐›ผnotโ‰  a limit ordinal and . We will๐›ผ๐›ผ assumeโˆˆ ๐พ๐พ the ๐›ฝ๐›ฝ ๐›ผ๐›ผ โˆˆ ๐พ๐พ๐ผ๐ผ

35 Suppes, Patrick. Axiomatic Set Theory. p 215. 36 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 69.

Page | 43

James Clark Transfinite Ordinal Arithmetic Spring 2017

latter case, that is not a limit ordinal, which further implies that has an immediate ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ predecessor such๐›ผ๐›ผ that + 1 = . ๐›ผ๐›ผ ๐›ฝ๐›ฝ Per the recursive๐›ฟ๐›ฟ definition๐›ฟ๐›ฟ of ordinal๐›ผ๐›ผ exponentiation, given 0 and

๐›ผ๐›ผ โ‰  ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ<๐›ฝ๐›ฝ Given < + 1 and + 1 = , we derive that < . So then there exists some < ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ such that๐›ฟ๐›ฟ ๐›ฟ๐›ฟ< . Since๐›ฟ๐›ฟ > 1,๐›ผ๐›ผ and also because ๐›ฟ๐›ฟ+ 1๐›ผ๐›ผ= , ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ผ๐›ผ ๐›ผ๐›ผ + 1 <๐›ฟ๐›ฟ . ๐›ผ๐›ผ ๐›พ๐›พ ๐›พ๐›พ+1 But since is a limit ordinal, < implies๐›ฟ๐›ฟ โ‰ค ๐›ผ๐›ผ+ 1 <๐›ผ๐›ผ and so

๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ + 1 <๐›พ๐›พ = ๐›ฝ๐›ฝ+ 1, ๐›ฝ๐›ฝ Which is our desired contradiction. ๐›ฟ๐›ฟ Therefore๐›ผ๐›ผ ๐›ฟ๐›ฟis a limit ordinal. ๐›ฝ๐›ฝ ๐›ผ๐›ผ

Theorem 3.1: = โˆŽ ๐œท๐œท ๐œธ๐œธ ๐œท๐œท+๐œธ๐œธ In other words,๐œถ๐œถ when๐œถ๐œถ we๐œถ๐œถ multiply exponential expression with the same base, we simply add

the exponents. This is consistent with our general intuition about how exponents behave.

However, we cannot assume that our intuition about finite numbers translates to good

behavior of our transfinite ordinal numbers.

Proof. 37 This will be proven by our transfinite induction on .

Part 1. For the base case, we will let = 0. Then by simple substitution๐›พ๐›พ of and 0

= ๐›พ๐›พ = 1 = = = . ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ 0 ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ+0 ๐›ฝ๐›ฝ+๐›พ๐›พ Part 2. We will assume๐›ผ๐›ผ the๐›ผ๐›ผ hypothesis๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผandโˆ™ show๐›ผ๐›ผ it leads๐›ผ๐›ผ to๐›ผ๐›ผ = . By the ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ+๐›พ๐›พ+1 recursive definition of ordinal exponentiation ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

37 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 69.

Page | 44

James Clark Transfinite Ordinal Arithmetic Spring 2017

= . ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ ๐›พ๐›พ By our hypothesis ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

= . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ Once again by the definition of ordinal๐›ผ๐›ผ exponentiation๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ we have our desired result

= . ๐›ฝ๐›ฝ+๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ+1 Part 3. We will now let be a limit ordinal๐›ผ๐›ผ ๐›ผ๐›ผand ๐›ผ๐›ผassume the hypothesis holds for all elements

of : ๐›พ๐›พ

๐›พ๐›พ = < . ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ+๐›ฟ๐›ฟ We will now consider three cases where๐›ผ๐›ผ ๐›ผ๐›ผ =๐›ผ๐›ผ 0, anotherโˆ€๐›ฟ๐›ฟ ๐›พ๐›พ where = 1, and finally the case in

which > 1. First, if = 0, then = 0 ๐›ผ๐›ผand = 0, and thus๐›ผ๐›ผ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ = 0๐›ผ๐›ผ = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ If = 1, then by substitution ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

๐›ผ๐›ผ = 1 1 = 1 = 1 = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ If > 1, then by Theorem 3.0๐›ผ๐›ผ and๐›ผ๐›ผ our givenโˆ™ assumption that๐›ผ๐›ผ is a limit ordinal, is also a ๐›พ๐›พ limit๐›ผ๐›ผ ordinal. So by our definition of multiplying by a limit ordinal๐›พ๐›พ ๐›ผ๐›ผ

= . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ผ๐›ผ ๏ฟฝ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฟ๐›ฟ Because < there exists some < such ๐›ฟ๐›ฟthat<๐›ผ๐›ผ < . By our hypothesis < implies ๐›พ๐›พ ๐œ๐œ ๐›ฟ๐›ฟ ๐›ผ๐›ผ ๐œ๐œ ๐›พ๐›พ = ๐›ฟ๐›ฟ . ๐›ผ๐›ผ ๐œ๐œ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐œ๐œ ๐›ฝ๐›ฝ+๐œ๐œ By Theorem 1.0 ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

+ < + .

Now < implies . Per๐›ฝ๐›ฝ our๐œ๐œ hypothesis๐›ฝ๐›ฝ ๐›พ๐›พ = . This leads to ๐œ๐œ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐œ๐œ ๐›ฝ๐›ฝ ๐œ๐œ ๐›ฝ๐›ฝ+๐œ๐œ ๐›ฝ๐›ฝ , ๐›ฟ๐›ฟwhich๐›ผ๐›ผ leads us to๐›ผ๐›ผ ๐›ฟ๐›ฟ โ‰ค ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ฟ๐›ฟ โ‰ค ๐›ฝ๐›ฝ+๐œ๐œ ๐›ผ๐›ผ Page | 45

James Clark Transfinite Ordinal Arithmetic Spring 2017

. ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ Next, given is a limit ordinal, by Theorem๐›ผ๐›ผ ๐›ผ๐›ผ 1.1โ‰ค ๐›ผ๐›ผ+ is also a limit ordinal. Then by definition

of exponentiation๐›พ๐›พ by a limit ordinal ๐›ฝ๐›ฝ ๐›พ๐›พ

= . ๐›ฝ๐›ฝ+๐›พ๐›พ ๐œ‚๐œ‚ ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐œ‚๐œ‚<๐›ฝ๐›ฝ+๐›พ๐›พ If < + then either or > , the latter of which implies the existence of some

such๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐œ‚๐œ‚ โ‰ค ๐›ฝ๐›ฝ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ that๐œ๐œ

= + . In the first case, if then 1, and because > 1 we also know that ๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐œ‚๐œ‚ >๐›ฝ๐›ฝ1. Otherwise๐œ๐œ if = + ๐œ‚๐œ‚ thenโ‰ค ๐›ฝ๐›ฝ < ๐›ผ๐›ผ. Soโ‰ค by๐›ผ๐›ผ ourโˆ™ hypothesis ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ ๐œ๐œ ๐œ๐œ ๐›พ๐›พ = . ๐›ฝ๐›ฝ+๐œ๐œ ๐›ฝ๐›ฝ ๐œ๐œ Further = = and < ๐›ผ๐›ผ. Therefore๐›ผ๐›ผ ๐›ผ๐›ผ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ+๐œ๐œ ๐›ฝ๐›ฝ ๐œ๐œ ๐œ๐œ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ+๐›พ๐›พ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

Theorem 3.2: < > < โˆŽ ๐œถ๐œถ ๐œท๐œท In other words,๐œถ๐œถ exponentiation๐œท๐œท โˆง ๐œธ๐œธ ๐Ÿ๐Ÿ โ†’ preserves๐œธ๐œธ ๐œธ๐œธ order.

Proof. 38 This will be proven by induction on .

Part 1. The base case is that is the immediate๐›ฝ๐›ฝ successor of , such that = + 1. Now since ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ

> 1 we have

๐›พ๐›พ < . ๐›ผ๐›ผ ๐›ผ๐›ผ By Theorem 3.1 we have ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ

= . ๐›ผ๐›ผ ๐›ผ๐›ผ+1 ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ

38 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 67.

Page | 46

James Clark Transfinite Ordinal Arithmetic Spring 2017

Finally, since = + 1 we have

๐›ฝ๐›ฝ ๐›ผ๐›ผ = . ๐›ผ๐›ผ+1 ๐›ฝ๐›ฝ Thus < . ๐›พ๐›พ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ Part 2๐›พ๐›พ. Assume๐›พ๐›พ the hypothesis and show that < + 1 yields < . If < + 1 then ๐›ผ๐›ผ ๐›ฝ๐›ฝ+1 . Thus ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›พ๐›พ ๐›ผ๐›ผ ๐›ฝ๐›ฝ

๐›ผ๐›ผ โ‰ค ๐›ฝ๐›ฝ . ๐›ผ๐›ผ ๐›ฝ๐›ฝ Further, as > 1 we have < = ๐›พ๐›พ . โ‰ค Thus๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ+1 ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ < . ๐›ผ๐›ผ ๐›ฝ๐›ฝ+1 Part 3. Let be a limit ordinal. By definition๐›พ๐›พ of๐›พ๐›พ exponentiation by a limit ordinal

๐›ฝ๐›ฝ = . ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›พ๐›พ ๏ฟฝ ๐›พ๐›พ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ Since , if < , then + 1 < . So

๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ < = . ๐›ผ๐›ผ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ ๐›พ๐›พ ๐›พ๐›พ ๐›ฟ๐›ฟ<๐›ฝ๐›ฝ

Theorem 3.3: = โˆŽ ๐œท๐œท ๐œธ๐œธ ๐œท๐œท๐œท๐œท In other words,๏ฟฝ๐œถ๐œถ if ๏ฟฝtake ๐œถ๐œถthe power of and exponentiate it by , the result is the same as ๐›ฝ๐›ฝ exponentiating by the product of ๐›ผ๐›ผ. This aligns with our ordina๐›พ๐›พ ry sense of exponents.

Proof. 39 This will๐›ผ๐›ผ be proven by induction๐›ฝ๐›ฝ๐›ฝ๐›ฝ on .

Part 1. The base case is where = 0. By simple๐›พ๐›พ substitution between and 0:

๐›พ๐›พ = = 1 = = = . ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ 0 0 ๐›ฝ๐›ฝโˆ™0 ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ Part 2. Assume the hypothesis and show that = ( ). ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ 39 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 70.

Page | 47

James Clark Transfinite Ordinal Arithmetic Spring 2017

By the recursive definition of ordinal exponentiation

= . ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ By our hypothesis = and๏ฟฝ so๐›ผ๐›ผ ๏ฟฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ By Theorem 3.1 we have then ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

= . ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ+๐›ฝ๐›ฝ Finally, using the distributive property๐›ผ๐›ผ we๐›ผ๐›ผ have๐›ผ๐›ผ

= ( ). ๐›ฝ๐›ฝ๐›ฝ๐›ฝ+๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›พ๐›พ+1 Part 3. Let be a limit ordinal and let ๐›ผ๐›ผthe hypothesis๐›ผ๐›ผ hold for all elements of such that

๐›พ๐›พ = < . ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ We will then do this by two cases: either๏ฟฝ๐›ผ๐›ผ ๏ฟฝ =๐›ผ๐›ผ 0 orโˆ€ ๐›ฟ๐›ฟ ๐›พ๐›พ0.

In the first case, where = 0, by simple substitution๐›ฝ๐›ฝ ๐›ฝ๐›ฝ โ‰ we find the desired equality as such:

๐›ฝ๐›ฝ = ( ) = 1 = 1 = = = . ๐›ฝ๐›ฝ ๐›พ๐›พ 0 ๐›พ๐›พ ๐›พ๐›พ 0 0โˆ™๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ In the second case, where๏ฟฝ๐›ผ๐›ผ ๏ฟฝ 0, we๐›ผ๐›ผ must consider ๐›ผ๐›ผtwo subcases:๐›ผ๐›ผ ๐›ผ๐›ผ either = 0 or 0. In

the first case, where = 0๐›ฝ๐›ฝ thenโ‰  by substitution we have ๐›ผ๐›ผ ๐›ผ๐›ผ โ‰ 

๐›ผ๐›ผ = 0 = 0 = 0 = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ In the case where 0, then๏ฟฝ ๐›ผ๐›ผalso๏ฟฝ we ๏ฟฝhave๏ฟฝ 0. As is๐›ผ๐›ผ a limit ordinal, by the recursive ๐›ฝ๐›ฝ definition of ordinal๐›ผ๐›ผ โ‰ exponentiation we have๐›ผ๐›ผ โ‰  ๐›พ๐›พ

= . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๏ฟฝ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ฟ๐›ฟ<๐›พ๐›พ Given < , we have by our hypothesis

๐›ฟ๐›ฟ ๐›พ๐›พ = . ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ Page | 48

James Clark Transfinite Ordinal Arithmetic Spring 2017

Also, given < , by Theorem 2.1 we have

๐›ฟ๐›ฟ ๐›พ๐›พ <

and ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ

. ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ As , by Theorem 2.0 we have๏ฟฝ ๐›ผ๐›ผalso๏ฟฝ โ‰ค ๐›ผ๐›ผ , and by the definition of ordinal

exponentiation๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

= ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐œ‚๐œ‚ ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐œ‚๐œ‚<๐›ฝ๐›ฝ๐›ฝ๐›ฝ Given < there exists some < such that < . By Theorem 3.2 we have < ๐œ‚๐œ‚ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ and so๐œ‚๐œ‚ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›พ๐›พ ๐œ‚๐œ‚ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ผ๐›ผ ๐›ผ๐›ผ

. ๐œ‚๐œ‚ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ Therefore = . ๐›ผ๐›ผ โ‰ค ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ

Theorem 3.4: < โˆŽ ๐œธ๐œธ ๐œธ๐œธ Proof.40 This will๐œถ๐œถ be๐œท๐œท provenโ†’ ๐œถ๐œถ โ‰ค by๐œท๐œท transfinite induction on .

Part 1. For the base case, we will let = 0, and we will see๐›พ๐›พ that = by substitution: ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ= = 1 = = . ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›พ๐›พ 0 0 ๐›พ๐›พ Part 2. We will assume the hypothesis๐›ผ๐›ผ ๐›ผ๐›ผ and show๐›ฝ๐›ฝ that๐›ฝ๐›ฝ < . By the recursive ๐›พ๐›พ+1 ๐›พ๐›พ+1 definition of ordinal exponentiation we have ๐›ผ๐›ผ ๐›ฝ๐›ฝ

= . ๐›พ๐›พ+1 ๐›พ๐›พ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ

40 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. p 68.

Page | 49

James Clark Transfinite Ordinal Arithmetic Spring 2017

By the hypothesis, monotonicity of multiplication, and the recursive definition of ordinal

exponentiation we have

= < = . ๐›พ๐›พ+1 ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ ๐›พ๐›พ+1 Part 3. We will assume is a๐›ผ๐›ผ limit ordinal,๐›ผ๐›ผ ๐›ผ๐›ผ โ‰ค and๐›ฝ๐›ฝ ๐›ผ๐›ผ then๐›ฝ๐›ฝ show๐›ฝ๐›ฝ ๐›ฝ๐›ฝthe hypothesis still holds. Firstly,

by definition of having a๐›พ๐›พ limit ordinal as an exponent we have

= . ๐›พ๐›พ ๐›ฟ๐›ฟ ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›พ๐›พ We know that , and therefore ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐›ผ๐›ผ โ‰ค ๐›ฝ๐›ฝ . ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๏ฟฝ ๐›ผ๐›ผ โ‰ค ๏ฟฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ<๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ By recursive definition of ordinal exponentiation

= . ๐›ฟ๐›ฟ ๐›พ๐›พ ๏ฟฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ<๐›พ๐›พ Thus we have our desired result

. ๐›พ๐›พ ๐›พ๐›พ ๐›ผ๐›ผ โ‰ค ๐›ฝ๐›ฝ

Theorem 3.5 โˆŽ

If > 0 and 0 < < then a recursive definition of the statement is as ๐›ฝ๐›ฝ ๐›พ๐›พ ๐ผ๐ผ๐ผ๐ผ follows๐›ผ๐›ผ โˆˆ ๐พ๐พ โˆง ๐›ฝ๐›ฝ ๐‘š๐‘š ๐œ”๐œ” ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ

1. = 1, when = 0 ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›พ๐›พ 2. = , when and 0 ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ ๐›พ๐›พ โ‰  3. = , when . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ ๐›พ๐›พ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ

Page | 50

James Clark Transfinite Ordinal Arithmetic Spring 2017

Proof. 41 This will be proven by induction on . Further, each portion of the transfinite

induction proves each corresponding portion of ๐›พ๐›พthe recursive definition of the theorem.

Part 1. The case where = 0 is trivial. By simple substitution we have

๐›พ๐›พ = = 1. ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ 0 ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ Part 2. Assume the hypothesis and show then that = ( ) . ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ ๐›พ๐›พ+1 If we consider the base case for the successor ordinals๏ฟฝ๐›ผ๐›ผ as๐‘š๐‘š ๏ฟฝ = 1, then๐›ผ๐›ผ we ๐‘š๐‘šhave by substitution

= = = ๐›พ๐›พ = , ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ 1 ๐›ฝ๐›ฝ ๐›ฝ๐›ฝโˆ™1 ๐›ฝ๐›ฝ๐›ฝ๐›ฝ and we see the definition๏ฟฝ๐›ผ๐›ผ holds.๐‘š๐‘š๏ฟฝ Let๏ฟฝ๐›ผ๐›ผ us๐‘š๐‘š then๏ฟฝ consider๐›ผ๐›ผ ๐‘š๐‘š ๐›ผ๐›ผ the ๐‘š๐‘šgeneral๐›ผ๐›ผ successor๐‘š๐‘š ordinal. By our recursive definition of ordinal exponentiation we have

= . ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ By our hypothesis we have ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š

= . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ As and 0, we have also๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š. By ๐›ผ๐›ผCorollary๐‘š๐‘š โˆ™ ๐›ผ๐›ผ 2.๐‘š๐‘š7, since is a finite ordinal we ๐›ฝ๐›ฝ have๐›ผ๐›ผ โˆˆalso๐พ๐พ๐ผ๐ผ๐ผ๐ผ that ๐›ฝ๐›ฝ โ‰  ๐›ผ๐›ผ โˆˆ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ ๐‘š๐‘š

= , ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ and so ๐‘š๐‘š โˆ™ ๐›ผ๐›ผ ๐›ผ๐›ผ

= . ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ By Theorem 3.1 we have ๐›ผ๐›ผ ๐‘š๐‘š โˆ™ ๐›ผ๐›ผ ๐‘š๐‘š ๐›ผ๐›ผ ๐›ผ๐›ผ ๐‘š๐‘š

= . ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ+๐›ฝ๐›ฝ Finally, by the distributive property๐›ผ๐›ผ we ๐›ผ๐›ผhave๐‘š๐‘š ๐›ผ๐›ผ ๐‘š๐‘š

= ( ) . ๐›ฝ๐›ฝ๐›ฝ๐›ฝ+๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›พ๐›พ+1 ๐›ผ๐›ผ ๐‘š๐‘š ๐›ผ๐›ผ ๐‘š๐‘š 41 Takeuti, Gaisi. Introduction to Axiomatic Set Theory. pp 71-72.

Page | 51

James Clark Transfinite Ordinal Arithmetic Spring 2017

Part 3. Let be a limit ordinal and assume the hypothesis holds for all elements of as such:

๐›พ๐›พ = , < . ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ Per theorem 3.4, we have ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š โˆ€๐›ฟ๐›ฟ ๐›พ๐›พ

. ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ By definition of using a limit ordinal as๏ฟฝ๐›ผ๐›ผ an๏ฟฝ exponentโ‰ค ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š ๏ฟฝwe have

= . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๏ฟฝ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ฟ๐›ฟ<๐›พ๐›พ Per our hypothesis = . In the union set of these two, we lose strict equality as ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ the two are only necessarily๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ equal๐‘Ž๐‘Ž ๐‘š๐‘šwhen = 1:

๐‘š๐‘š . ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ โ‰ค ๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š ๐›ฟ๐›ฟ<๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ As < , we have also that < , per Theorem 2.1. Further, by the distributive ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ property๐‘š๐‘š ๐›ผ๐›ผ (Theorem 2.2) and by๐›ผ๐›ผ the๐‘š๐‘š definition๐›ผ๐›ผ ๐›ผ๐›ผ of ordinal exponentiation we also know that

= = ( ). Therefore we also have < ( ). Taking the union set ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ+๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ+1 ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ+1 of๐›ผ๐›ผ both๐›ผ๐›ผ of ๐›ผ๐›ผthese for ๐›ผ๐›ผall < , we lose strict inequality๐›ผ๐›ผ and๐‘š๐‘š have๐›ผ๐›ผ thus

๐›ฟ๐›ฟ ๐›พ๐›พ ( ). ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ+1 ๏ฟฝ ๐›ผ๐›ผ ๐‘š๐‘š โ‰ค ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ Since is a limit ordinal, if < then also + 1 < we have

๐›พ๐›พ ๐›ฟ๐›ฟ ๐›พ๐›พ ๐›ฟ๐›ฟ ๐›พ๐›พ ( ) = . ๐›ฝ๐›ฝ ๐›ฟ๐›ฟ+1 ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›พ๐›พ ๐›ฟ๐›ฟ<๐›พ๐›พ Then by the definition of ordinal exponentiation we have

= . ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ฟ๐›ฟ<๐›พ๐›พ Thus

Page | 52

James Clark Transfinite Ordinal Arithmetic Spring 2017

. ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ Combined with the previous conclusion๏ฟฝ๐›ผ๐›ผ of๐‘š๐‘š ๏ฟฝ โ‰ค ๐›ผ๐›ผ we have ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ โ‰ค ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š.๏ฟฝ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ Since by Theorem 3.3 we have ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ= โ‰ค ๏ฟฝ๐›ผ๐›ผ, we๐‘š๐‘š finally๏ฟฝ โ‰ค ๐›ผ๐›ผ conclude that ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๏ฟฝ ๐›ผ๐›ผ = . ๐›ฝ๐›ฝ ๐›พ๐›พ ๐›ฝ๐›ฝ๐›ฝ๐›ฝ ๏ฟฝ๐›ผ๐›ผ ๐‘š๐‘š๏ฟฝ ๐›ผ๐›ผ

For example, it can be shown that ( 2) = . This is by no means a trivial solution,โˆŽ ๐œ”๐œ” ๐œ”๐œ” nor directly intuitive without the given proof.๐œ”๐œ” We๐œ”๐œ” see that ( 2) = 2 2 2 โ€ฆ, and by ๐œ”๐œ” the of multiplication is also equal to๐œ”๐œ” 2 ๐œ”๐œ”2 โˆ™ ๐œ”๐œ”2 โˆ™ ๐œ”๐œ”โ€ฆ It is not immediately clear whether this product would end with a 2 or end๐œ”๐œ” โˆ™ with๐œ”๐œ” โˆ™ an๐œ”๐œ” โˆ™ , ๐œ”๐œ”but in actuality

there is no โ€œlastโ€ term. So without this proven Theorem 3.5, we might be๐œ”๐œ” stuck forever in

wondering if ( 2) = , as is stated will be the actual result, or if ( 2) = 2. Per ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” Theorem 3.5, we๐œ”๐œ” thus have๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

( 2) = ( 2) = 2 = ๐œ”๐œ” ๐œ”๐œ” ๐›ผ๐›ผ ๐›ผ๐›ผ ๐›ผ๐›ผ+1 ๐œ”๐œ” ๐œ”๐œ” โ‰ค ๐œ”๐œ” ๏ฟฝ ๐œ”๐œ” ๏ฟฝ ๐œ”๐œ” โ‰ค ๏ฟฝ ๐œ”๐œ” ๐œ”๐œ” and by the same sort of sandwich,๐›ผ๐›ผ we<๐œ”๐œ” have ( 2๐›ผ๐›ผ)<๐œ”๐œ”= . ๐›ผ๐›ผ<๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” We will conclude this section on ordinal๐œ”๐œ” exponentiation๐œ”๐œ” with an important result that

simplifies many statements in the arithmetical tables at the end of the paper. This is similar

in form to that of Theorems 1.6 and 2.6. There is not, however, a more generalized form of

this theorem, as there was with Corollaries 1.7 and 2.7.

Page | 53

James Clark Transfinite Ordinal Arithmetic Spring 2017

Theorem 3.6: = , [ < < ] ๐Ž๐Ž If we raise any๐’Ž๐’Ž finite๐Ž๐Ž ordinalโˆ€๐’Ž๐’Ž ๐Ÿ๐Ÿ greater๐’Ž๐’Ž than๐Ž๐Ž 1 to the exponent of , the resulting power is

always . As for any exponent on 1 or 0 produces 1 or 0, respectively,๐œ”๐œ” those bases donโ€™t hold for this ๐œ”๐œ”theorem.

Proof. This will be proven constructively. Let us first start by looking at the meaning of our

premise:

= . ๐œ”๐œ” Now let us look at a of progressively๐‘š๐‘š ๐‘š๐‘š higherโˆ™ ๐‘š๐‘š โˆ™ ๐‘š๐‘š exponents,โˆ™ โ‹ฏ starting with 1 (note that the

ellipses in the following statements do not imply counting infinitely, as each of the following

expressions representing , where < , is finite. For starters ๐‘›๐‘› ๐‘š๐‘š =๐‘›๐‘›(1 ๐œ”๐œ”+ 1 + + 1 ). 1 Now if we progress to , this just๐‘š๐‘š means1 to multiply2 โ‹ฏ the๐‘š๐‘š term to itself: 2 1 =๐‘š๐‘š = (1 + 1 + + 1 ) (1 ๐‘š๐‘š+ 1 + + 1 ). 2 By the distributive๐‘š๐‘š property,๐‘š๐‘š โˆ™ ๐‘š๐‘š we then1 have2 โ‹ฏ ๐‘š๐‘š โˆ™ 1 2 โ‹ฏ ๐‘š๐‘š

(1 + 1 + + 1 )(1 ) + (1 + 1 + + 1 )(1 ) + + (1 + 1 + + 1 )(1 ).

By our1 recursive2 โ‹ฏ definition๐‘š๐‘š 1 of ordinal1 multiplication2 โ‹ฏ ๐‘š๐‘š we2 knowโ‹ฏ that1 21 =โ‹ฏ for ๐‘š๐‘šany ordinal๐‘š๐‘š

, and so then we have ๐›ผ๐›ผ โˆ™ ๐›ผ๐›ผ

๐›ผ๐›ผ (1 + 1 + + 1 ) + (1 + 1 + + 1 ) + + (1 + 1 + + 1 ) .

Which means1 the2 numberโ‹ฏ of๐‘š๐‘š times1 we1 counted2 โ‹ฏ to ๐‘š๐‘š was2 โ‹ฏ. In a 1form 2of convenientlyโ‹ฏ ๐‘š๐‘š ๐‘š๐‘š shorter

length, we could further write this as ๐‘š๐‘š ๐‘š๐‘š

1 + 1 + + 1 .

2 1 2 As one last concrete example, letโ€™s progress to โ‹ฏ : ๐‘š๐‘š 3 = = (1 + 1 + +๐‘š๐‘š1 ) (1 + 1 + + 1 ).

3 2 2 ๐‘š๐‘š ๐‘š๐‘š โˆ™ ๐‘š๐‘š 1 2 โ‹ฏ ๐‘š๐‘š โˆ™ 1 2 โ‹ฏ ๐‘š๐‘š Page | 54

James Clark Transfinite Ordinal Arithmetic Spring 2017

By the same rationale as above, we have then

(1 + 1 + + 1 )(1 ) + (1 + 1 + + 1 )(1 ) + + (1 + 1 + + 1 )(1 )

2 2 2 1 = (12 +โ‹ฏ1 + ๐‘š๐‘š + 11 ) +1(1 +2 1 โ‹ฏ+ +๐‘š๐‘š1 )2 + โ‹ฏ+ (1 1+ 1 2+ โ‹ฏ+ 1 ๐‘š๐‘š ) ๐‘š๐‘š

2 2 2 1 2 โ‹ฏ ๐‘š๐‘š 1 =1 1 +2 1 โ‹ฏ+ +๐‘š๐‘š1 2 . โ‹ฏ 1 2 โ‹ฏ ๐‘š๐‘š ๐‘š๐‘š

3 With each successive case, we are simply1 adding2 โ‹ฏ a finit๐‘š๐‘š e number to the previous amount, a finite sequence of ones. Therefore the union set

= = 1 + 1 + 1 + = . ๐œ”๐œ” ๐‘›๐‘› ๐‘š๐‘š ๏ฟฝ ๐‘š๐‘š โ‹ฏ ๐œ”๐œ” ๐‘›๐‘›<๐œ”๐œ” โˆŽ

Page | 55

James Clark Transfinite Ordinal Arithmetic Spring 2017

4. Conclusion

The study of ordinals exists as a foundation for the study of cardinal numbers. As

Keith Devlin puts it, โ€œthe cardinality of , denoted by | |, is the least ordinal for which there exists a : .โ€ He goes on๐‘‹๐‘‹ further to prov๐‘‹๐‘‹e that every cardinal ๐›ผ๐›ผnumber is a limit ordinal. What follows๐‘“๐‘“ ๐›ผ๐›ผ โ†” here๐‘‹๐‘‹ is an adaptation of said proof, by way of demonstrating that any successor ordinal, which by its nature is not a limit ordinal, can be put in a one-to-one relationship with a smaller ordinal, and therefore is not a cardinal.42

Theorem 4.0: Every Transfinite Cardinal is a Limit Ordinal

Proof. 43 Let be a transfinite ordinal, so . It will then be shown that + 1 is not a cardinal. Define๐›ผ๐›ผ a recursive mapping : ๐›ผ๐›ผ โ‰ฅ+๐œ”๐œ”1 as such: ๐›ผ๐›ผ

1. (0) = ๐‘“๐‘“ ๐›ผ๐›ผ โ†’ ๐›ผ๐›ผ

2. ๐‘“๐‘“( + 1๐›ผ๐›ผ) = , for <

3. ๐‘“๐‘“(๐‘›๐‘›) = , if ๐‘›๐‘› ๐‘›๐‘›< ๐œ”๐œ”.

Per this๐‘“๐‘“ recursive๐›ฝ๐›ฝ ๐›ฝ๐›ฝ formula,๐œ”๐œ” โ‰ค ๐›ฝ๐›ฝ we๐›ผ๐›ผ see that f is a bijection. Therefore + 1 is not a cardinal.

๐›ผ๐›ผ

For example, let = , and then show + 1 = + 1 is not a cardinal. Recall the set of โˆŽ elements of =๐›ผ๐›ผ{0,1,๐œ”๐œ”2, โ€ฆ } and + 1 =๐›ผ๐›ผ{0,1,2, โ€ฆ๐œ”๐œ”, }. The mapping for : + 1 would be layed out๐œ”๐œ” as follows. ๐œ”๐œ” ๐œ”๐œ” ๐‘“๐‘“ ๐›ผ๐›ผ โ†’ ๐›ผ๐›ผ

0 1 2 3 โ€ฆ

( )๐‘ฅ๐‘ฅ โˆˆ ๐œ”๐œ”+ 1 0 1 2 โ€ฆ

๐‘“๐‘“ ๐‘ฅ๐‘ฅ โˆˆ ๐œ”๐œ” ๐œ”๐œ”

42 Devlin, Keith. The Joy of Sets. p 76. 43 Ibid, p 76.

Page | 56

James Clark Transfinite Ordinal Arithmetic Spring 2017

We can see that the two ordinals have the same cardinality and thus we have a bijection.

As another example let = 2 + 3, then + 1 = 2 + 4. The mapping for f would

then be laid out per the following๐›ผ๐›ผ table,๐œ”๐œ” from which๐›ผ๐›ผ we once๐œ”๐œ” again see the resulting bijection.

2 + 3 0 1 2 3 โ€ฆ + 1 + 2 โ€ฆ 2 2 + 1 2 + 2

(๐‘ฅ๐‘ฅ โˆˆ) ๐œ”๐œ” 3 + 4 2 + 3 0 1 2 โ€ฆ ๐œ”๐œ” ๐œ”๐œ” + 1 ๐œ”๐œ” + 2 โ€ฆ ๐œ”๐œ”2 ๐œ”๐œ”2 + 1 ๐œ”๐œ”2 + 2

๐‘“๐‘“ ๐‘ฅ๐‘ฅ โˆˆ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

The converse is not true; not every limit ordinal is a cardinal. To show this, let us

show that the limit ordinal 2 can be put in a one-to-one relationship with . Recall that

2 = + = {0,1,2, โ€ฆ , , ๐œ”๐œ” + 1, + 2, โ€ฆ }. The following table shows a ๐œ”๐œ”mapping that

๐œ”๐œ”demonstrates๐œ”๐œ” ๐œ”๐œ” a bijection.๐œ”๐œ” Essentially,๐œ”๐œ” ๐œ”๐œ” the second half of 2 is zipped up in alternating terms

with the first half. ๐œ”๐œ”

0 1 2 3 4 5 6 7 8 โ€ฆ

(๐‘ฅ๐‘ฅ)โˆˆ ๐œ”๐œ” 2 0 + 1 1 + 2 2 + 3 3 + 4 โ€ฆ

๐‘“๐‘“ ๐‘ฅ๐‘ฅ โˆˆ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

In fact, while it wonโ€™t be shown here, all arithmetical operations on , with or without

finite values, are said to have cardinality of , is the cardinality of the๐œ”๐œ” set of all natural numbers. Since is the smallest ordinal withโ„ต which0 said ordinals can be put into a one-to- one relationship,๐œ”๐œ” per the given definition of cardinality above we can conclude that = .

Because of this equality, is often denoted . The supremum of all arithmetical operationโ„ต0 ๐œ”๐œ”

of all ordinals that have a๐œ”๐œ” cardinality of is๐œ”๐œ” called0 , and = . If Cantorโ€™s

Hypothesis is true, then is the cardinalityโ„ต0 of the real๐œ”๐œ”1 numbers.๐œ”๐œ”1 โ„ต1

โ„ต1

Page | 57

James Clark Transfinite Ordinal Arithmetic Spring 2017

What has been presented here is enough to build up a sense of arithmetical operations of ordinal numbers. In conclusion, here is a series of tables that outline many results of the three arithmetical operations discussed here, limited to ordinal values less than

for brevity. Much of the journey of this research has been motivated by the completion of๐œ”๐œ”1 these tables of results. They have been a critical part of the work at the beginning, middle, and the end result of this paper.

Page | 58

James Clark Transfinite Ordinal Arithmetic Spring 2017

Table of Ordinal Addition

+ ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’ ๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž ๐Ž๐Ž โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž ๐Ž๐Ž 0 1 2 2 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐ŸŽ๐ŸŽ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 1 2 3 2 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 3 4 2 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 3 4 + 1 + 2 ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” 2 2 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 3 4 5 + 1 + 2 ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ” 3 3 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 3 4 5 6 + 1 + 2 ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 +21 +22 +2 +2 2 +2 3 ๐Ÿ๐Ÿ 2 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” โ‹ฏ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 +31 +32 +3 +3 2 +3 3 +3 ๐Ÿ‘๐Ÿ‘ 3 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 ๐Ž๐Ž ๐œ”๐œ” โ‹ฏ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 +41 +42 +4 +4 2 +4 3 +4 +4 ๐Ÿ’๐Ÿ’ 4 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” โ‹ฏ โ‹ฏ 2 3 ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 +๐œ”๐œ”1 +๐œ”๐œ”2 +๐œ”๐œ” +๐œ”๐œ” 2 +๐œ”๐œ” 3 +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” 4 ๐Ž๐Ž ๐œ”๐œ” โ‹ฏ โ‹ฏ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 +๐œ”๐œ”12 +๐œ”๐œ”22 +๐œ”๐œ”2 +๐œ”๐œ”22 +๐œ”๐œ”23 +๐œ”๐œ”2 +๐œ”๐œ”2 +๐œ”๐œ”2 +๐œ”๐œ”2 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” 4 ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” โ‹ฏ โ‹ฏ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 +๐œ”๐œ”13 +๐œ”๐œ”23 +๐œ”๐œ”3 +๐œ”๐œ”32 +๐œ”๐œ”33 +๐œ”๐œ”3 +๐œ”๐œ”3 +3๐œ”๐œ” +๐œ”๐œ”3 +๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”3 ๐œ”๐œ” โ‹ฏ โ‹ฏ 2 3 4 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” +๐œ”๐œ”1 +๐œ”๐œ”2 +๐œ”๐œ” +๐œ”๐œ” 2 +๐œ”๐œ” 3 +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ โ‹ฏ 2 3 4 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 +๐œ”๐œ”1 +๐œ”๐œ”2 +๐œ”๐œ” +๐œ”๐œ” 2 +๐œ”๐œ” 3 +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ โ‹ฏ 2 3 4 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 +๐œ”๐œ”1 +๐œ”๐œ”2 +๐œ”๐œ” +๐œ”๐œ” 2 +๐œ”๐œ” 3 +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” +๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ โ‹ฏ 2 3 4 โ‹ฏ ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

Page | 59

James Clark Transfinite Ordinal Arithmetic Spring 2017

Table of Ordinal Multiplication

๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’ ๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž ๐Ž๐Ž โ‹ฏ ๐Ž๐Ž ๐Ž๐Ž ๐Ž๐Ž โˆ™ 0 0 0 0 0 0 0 0 0 0 0 0 ๐ŸŽ๐ŸŽ โ‹ฏ โ‹ฏ โ‹ฏ 0 1 2 2 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 3 4 2 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 0 2 2 3 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 4 2 3 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 3 6 2 3 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 0 2 2 3 ๐Ÿ๐Ÿ 2 2 3 3 3 4 5 6 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ÿ‘๐Ÿ‘ 3 3 4 4 4 5 6 7 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ÿ’๐Ÿ’ 4 4 5 5 5 6 7 8 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 0 2 2 3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”+1 ๐œ”๐œ”+1 ๐œ”๐œ”+1 ๐œ”๐œ”+2 ๐œ”๐œ”+3 ๐œ”๐œ”+4 ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ”4 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 ๐œ”๐œ”2 2๐œ”๐œ”+1 ๐œ”๐œ”2+1 ๐œ”๐œ”2+1 ๐œ”๐œ”2+2 ๐œ”๐œ”2+3 ๐œ”๐œ”2+4 ๐œ”๐œ”3 ๐œ”๐œ”4 ๐œ”๐œ”5 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 ๐œ”๐œ”3 3๐œ”๐œ”+1 ๐œ”๐œ”3+1 ๐œ”๐œ”3+1 ๐œ”๐œ”3+2 ๐œ”๐œ”3+3 ๐œ”๐œ”3+4 ๐œ”๐œ”4 ๐œ”๐œ”5 ๐œ”๐œ”6 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 0 2 2 3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +2 ๐œ”๐œ” +3 ๐œ”๐œ” +4 ๐œ”๐œ” +๐œ”๐œ” ๐œ”๐œ” +๐œ”๐œ”2 ๐œ”๐œ” +๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +2 ๐œ”๐œ” +3 ๐œ”๐œ” +4 ๐œ”๐œ” +๐œ”๐œ” ๐œ”๐œ” +๐œ”๐œ”2 ๐œ”๐œ” +๐œ”๐œ”3 โ‹ฏ โ‹ฏ โ‹ฏ ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 0 2 2 3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +1 ๐œ”๐œ” +2 ๐œ”๐œ” +3 ๐œ”๐œ” +4 ๐œ”๐œ” +๐œ”๐œ” ๐œ”๐œ” +๐œ”๐œ”2 ๐œ”๐œ” +๐œ”๐œ”3 โ‹ฏ โ‹ฏ โ‹ฏ ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

Page | 60

James Clark Transfinite Ordinal Arithmetic Spring 2017

Table of Ordinal Exponentiation

^ ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’ ๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž 1๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ0 ๐Ÿ๐Ÿ0 โ‹ฏ ๐Ž๐Ž0 ๐Ž๐Ž0๐Ž๐Ž ๐Ž๐Ž๐Ž๐Ž0 โ‹ฏ ๐Ž๐Ž0 ๐Ž๐Ž0 ๐Ž๐Ž0 โ‹ฏ ๐Ž๐Ž0 ๐Ž๐Ž0 ๐Ž๐Ž0

๐ŸŽ๐ŸŽ 1 1 1 โ‹ฏ 1 1 1 โ‹ฏ 1 1 1 โ‹ฏ 1 1 1

๐Ÿ๐Ÿ 1 2 4 โ‹ฏ 2 3 โ‹ฏ โ‹ฏ 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ 1โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 2 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ”2 ๐œ”๐œ” 2 โ‹ฏ ๐œ”๐œ” 2 ๐œ”๐œ” 2 ๐œ”๐œ” 2 โ‹ฏ ๐œ”๐œ” 2 ๐œ”๐œ” 2 ๐œ”๐œ” 2 โ‹ฏ ๐œ”๐œ” 2 ๐œ”๐œ” 2 ๐œ”๐œ” 2 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 2 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž๐Ž๐Ž 1 ๐œ”๐œ”3 ๐œ”๐œ” 3 โ‹ฏ ๐œ”๐œ” 3 ๐œ”๐œ” 3 ๐œ”๐œ” 3 โ‹ฏ ๐œ”๐œ” 3 ๐œ”๐œ” 3 ๐œ”๐œ” 3 โ‹ฏ ๐œ”๐œ” 3 ๐œ”๐œ” 3 ๐œ”๐œ” 3 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 2 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ 1โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ๐Ÿ 2 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ‘๐Ÿ‘ 3 6 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 3 4 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ÿ’๐Ÿ’ 4 8 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ 1โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 ๐œ”๐œ”4 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” 2 2 2 3 4 5 ๐œ”๐œ” ๐œ”๐œ”2 ๐œ”๐œ”3 ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 ๐œ”๐œ”6 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

โ‹ฎ 1โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”+1 ๐œ”๐œ”+1 ๐œ”๐œ”+1 ๐œ”๐œ”+2 ๐œ”๐œ”+3 ๐œ”๐œ”+4 ๐œ”๐œ”2 ๐œ”๐œ”3 ๐œ”๐œ”4 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”2 ๐œ”๐œ”2 ๐œ”๐œ”2+1 ๐œ”๐œ”2+1 ๐œ”๐œ”2+1 ๐œ”๐œ”2+2 ๐œ”๐œ”2+3 ๐œ”๐œ”2+4 ๐œ”๐œ”3 ๐œ”๐œ”4 ๐œ”๐œ”5 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž 1 ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž๐Ž๐Ž ๐œ”๐œ”3 ๐œ”๐œ”3 ๐œ”๐œ”3+1 ๐œ”๐œ”3+1 ๐œ”๐œ”3+1 ๐œ”๐œ”3+2 ๐œ”๐œ”3+3 ๐œ”๐œ”3+4 ๐œ”๐œ”4 ๐œ”๐œ”5 ๐œ”๐œ”6 ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” ๐œ”๐œ” 2 ๐œ”๐œ” 3 ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” ๐Ž๐Ž ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ” โ‹ฏ ๐œ”๐œ” ๐œ”๐œ” ๐œ”๐œ”

Page | 61

James Clark Transfinite Ordinal Arithmetic Spring 2017

References

Balzano, Bernard. Paradoxes of the Infinite. Translation by Dr. . (1950). Routledge and Kegan Paul. London. 2014. Frantiลกek Pล™รญhonskรฝ Benacerraf, Paul. "Tasks, Super-Tasks, and the Modern Eleatics." The Journal of Philosophy 59, no. 24 (1962): 765-84. doi:10.2307/2023500.

Bruno, Giordano. On the Infinite, the Universe, & the Worlds. (1584). Translation and Introduction by Scott Gosnell. Huginn, Munnin, & Co. 2014.

Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. Translation and Introduction by Philip E. B. Jourdain. (1915). Dover Publications, Inc. New York. 1955.

Devlin, Keith. The Joy of Sets. (1979). Second edition. Springer. New York. 1993.

Iamblichus. The Theology of Arithmetic. Translation by Robin Waterfield. Phanes Press. Grand Rapids. 1988.

Plutarch. Isis and Osiris. As quoted in Ten Gifts of the Demiurge, by Emilie Kutash. Bristol Classical Press. London. 2011.

Proclus. A Commentary on the First Book of Euclidโ€™s Elements. Translation and Introduction by Glenn R. Morrow. (1970). Princeton University Press. New Jersey. 1992.

Robinson, Abraham. Non-standard Analysis. Rev. Edition (1974). Princeton University Press. New Jersey. 1996.

Suppes, Patrick. Axiomatic Set Theory. (1960). Dover Publications, Inc. New York. 1972.

Takeuti, Gaisi. Wilson M. Zaring. Introduction to Axiomatic Set Theory. (1971). Second edition. Spring-Verlag. New York. 1982.

von Neumann, John. โ€œOn the Introduction of Transfinite Numbers.โ€ (1923). English translation by Jean van Heijenoort. From Frege to Gรถdel: A Source Book in . Harvard University Press. Cambridge, Massachusetts. 1967.

Page | 62