Learning Filters for the 2D Wavelet Transform

Total Page:16

File Type:pdf, Size:1020Kb

Learning Filters for the 2D Wavelet Transform 2018 15th Conference on Computer and Robot Vision Learning Filters for the 2D Wavelet Transform Daniel Recoskie and Richard Mann Cheriton School of Computer Science University of Waterloo Waterloo, Canada {dprecosk, mannr}@uwaterloo.ca Abstract—We propose a new method for learning filters for the 2D discrete wavelet transform. We extend our previous work on the 1D wavelet transform in order to process images. We show that the 2D wavelet transform can be represented as a modified convolutional neural network (CNN). Doing so allows us to learn wavelet filters from data by gradient descent. Our learned wavelets are similar to traditional wavelets which are typically derived using Fourier methods. For filter comparison, we make use of a cosine measure under all filter rotations. The learned wavelets are able to capture the structure of the training data. Furthermore, we can generate images from our model in order to evaluate the filters. The main findings of this work is that wavelet functions can arise naturally from data, without the need for Fourier methods. Our model requires relatively few parameters compared to traditional CNNs, and is easily incorporated into neural network frameworks. Keywords-wavelets, convolution neural networks, filter banks I. INTRODUCTION The purpose of this work is to extend our previous 1D wavelet transform model to 2D [1]. The wavelet transform is a linear time-frequency transform that makes use of a multiscale filter bank made up of self-similar wavelet filters. We focus on orthogonal filters so that we can perfectly reconstruct the input signal from its wavelet coefficients. Generally, wavelet filters are designed using Fourier meth- ods. We propose a new method of learning wavelet filters Figure 1. Summary of results from [1]. Left column: Learned wavelet directly from data. We accomplish this by framing the (solid) and scaling (dashed) functions. Type of training data is shown above the plots. Middle column: Closest traditional wavelet (solid) and scaling wavelet transform as a variant of a convolutional neural (dashed) functions according to (17). Right column: Plots of the scaling network (CNN). Our learning method makes use of an filters from the first two columns with corresponding distance measure. autoencoder framework [2]. We impose a sparsity constraint on the learned representation in order to learn wavelets that exploit structure in the training data. traditional method of using a fixed feature representation A motivation of our previous work was to construct a such as SIFT [5] or SURF [6]. One of the most notable model that was able to learn directly from raw 1D signals, methods of learning directly from image data is the CNN such as audio. Typical models first perform a fixed feature [7], which learns a set of 2D filters that are applied in transform (e.g. the Fourier transform) instead of dealing with a cascade. Our model instead learns 1D filters that are the raw data directly [3]. More recently, there has been applied along each dimension of the image. Thus, the filters work showing impressive results on raw audio [4]. In [1] still have a 2D receptive field, but fewer parameters are we proposed a novel model based on the wavelet transform required. Furthermore, we reuse the filters in each layer of that was able to learn useful filters from 1D data. The results the network, unlike in a traditional CNN where separate are summarized in Figure 1. filters are used at each layer. We extend our 1D model in order to learn wavelet The wavelet transform has been used in neural networks filters from 2D image data. This is in contrast to the more in the past, such as in the wavelet network [8] and the 978-1-5386-6481-0/18/$31.00 ©2018 IEEE 198 DOI 10.1109/CRV.2018.00036 We call h the scaling (lowpass) filter, and g the wavelet (highpass) filter. We will use k to denote the length of the filters. The discrete wavelet transform can then be computed with the following iterative steps: +∞ aj+1[p]= h[n − 2p]aj[n] (6) n=−∞ Figure 2. Frequency view of the wavelet functions. +∞ dj+1[p]= g[n − 2p]aj[n] (7) scattering transform [9]. These models do not learn wavelet n=−∞ filters, but instead use fixed filters. The scattering transform with a0 = x (i.e. the input signal). We call aj and dj the computes coefficients similar to those of SIFT descriptors approximation and detail coefficients respectively. Note that [10]. Learning wavelet filters using neural networks has been the detail coefficients are exactly the wavelet coefficients proposed before in [11]. However, the signals considered had from (2). The discrete wavelet transform algorithm makes domains over the vertices of graphs. Furthermore, second use of a cascade of convolutions, each followed by down- generation wavelets were considered [12]. In this work we sampling. At each iteration, the signal is split into high and consider only first generation wavelets. low frequency components. The high frequency components II. WAVELET TRANSFORM correspond to the wavelet coefficients. The low frequency A. 1D Wavelet Transform coefficients are then used in the next iteration. The original signal can be recovered from the approxima- We will begin our discussion with the 1D wavelet trans- tion and detail coefficients using: form. The wavelet transform is a linear time-frequency trans- +∞ form that makes use of a dictionary of wavelets. Wavelets [ ]= [ − 2 ] [ ] are functions that are localized in time and frequency. In a aj p h p n aj+1 n =−∞ traditional wavelet transform, each wavelet is a shifted and n (8) +∞ dilated version of a mother wavelet, ψ. We restrict ourselves + g[p − 2n]d +1[n] to the discrete case, where our wavelets are of the form j n=−∞ 1 n ψ [n]= ψ (1) Note that the coefficients are upsampled by a factor of two j 2j 2j at each iteration by inserting zeros at even indices. for n, j ∈ Z. Let x be a 1D discrete signal of length N. The discrete wavelet transform is computed by convolving B. 2D Wavelet Transform x with the wavelet functions: The discrete wavelet transform can be extended to two N−1 dimensions by computing the convolutions along each axis [ 2j]= [ ] [ − ] Wx n, x m ψj m n . (2) separately [14]. In the 1D case, we computed two com- m=0 ponents at each iteration of the algorithm (highpass and The wavelet functions are constrained to have zero mean lowpass). In the 2D case, we will compute four components. and unit norm. For a fixed shift n, the wavelets form an Let LR and LC correspond to convolving the scaling overlapping bandpass filter bank illustrated in Figure 2. In (lowpass) filter along the rows and columns respectively. order to cover the entire frequency axis, we require the We can similarly define HR and HC for the wavelet (high- notion of a scaling function, φ. The scaling function can be pass) filter. At every iteration of the 2D wavelet transform thought of as the sum of all wavelet functions above a fixed algorithm, we compute the four components as illustrated in scale. Formally, it is defined such that its Fourier transform Figure 3: has the following property [13]: approximation: LR(LC(x)) (9) +∞ ˆ 2 ˆ 2 |ψ(sω)| detail horizontal: LR(HC(x)) (10) |φ(ω)| = ds (3) 1 s detail vertical: HR(LC(x)) (11) In order to compute the discrete wavelet transform effi- ciently, we will make use of an iterative algorithm. Let us detail diagonal: HR(HC(x)) (12) first define two filters: where x is now a 2D discrete signal. The three components 1 t h[n]= √ φ ,φ(t − n) (4) computed using at least one wavelet filter are kept as 2 2 the detail coefficients. The single approximation component computed by convolving the scaling filter along both axes is 1 t g[n]= √ ψ ,φ(t − n) (5) passed to the next iteration of the algorithm. The output of 2 2 199 LR LR lowpass LR LC HC LR HR HR HC columns LC LC HC LR lowpass HR HR HC rows LC HC highpass LR columns HC HR HR LC HC lowpass HR columns LC (a) highpass rows LR LR highpass HR LC HC HR HR - detail coefficients columns HC LC HC ffi - approximation coe cients LR LR LC HC Figure 3. One iteration of the 2D discrete wavelet transform. HR HR LC HC LR LR LC HC HR HR Figure 4. One iteration of the 2D discrete wavelet transform applied LC HC to a circular image. Not that the different coefficient components pick up different edge orientations. (b) Figure 5. (a) Wavelet coefficient matrix after three iterations of the wavelet the transform is structured as in Figure 5a. Note that after transform algorithm. (b) The wavelet coefficients are computed from the each convolution, the image is downsampled by a factor scaling coefficients of the previous iteration. of two along the direction of the convolution. Computing the 2D wavelet transform in this fashion is used in the JPEG2000 standard [15]. The three components containing the detail coefficients each correspond to a different orientation: horizontal, ver- tical, and diagonal. Each component responds to changes along its corresponding direction. Figure 4 shows one level of the wavelet transform applied to an image. Note that the three detail coefficient components highlight different edge orientations. Figure 6. Impulse responses of a typical wavelet filter. As in the 1D case, we subsample by a factor of two after each convolution. Thus, the total number of coefficients is equal to the number of pixels in our original image. Figure 5 shows how the coefficients are typically represented graphically.
Recommended publications
  • Logistic Regression Trained with Different Loss Functions Discussion
    Logistic Regression Trained with Different Loss Functions Discussion CS6140 1 Notations We restrict our discussions to the binary case. 1 g(z) = 1 + e−z @g(z) g0(z) = = g(z)(1 − g(z)) @z 1 1 h (x) = g(wx) = = w −wx − P wdxd 1 + e 1 + e d P (y = 1jx; w) = hw(x) P (y = 0jx; w) = 1 − hw(x) 2 Maximum Likelihood Estimation 2.1 Goal Maximize likelihood: L(w) = p(yjX; w) m Y = p(yijxi; w) i=1 m Y yi 1−yi = (hw(xi)) (1 − hw(xi)) i=1 1 Or equivalently, maximize the log likelihood: l(w) = log L(w) m X = yi log h(xi) + (1 − yi) log(1 − h(xi)) i=1 2.2 Stochastic Gradient Descent Update Rule @ 1 1 @ j l(w) = (y − (1 − y) ) j g(wxi) @w g(wxi) 1 − g(wxi) @w 1 1 @ = (y − (1 − y) )g(wxi)(1 − g(wxi)) j wxi g(wxi) 1 − g(wxi) @w j = (y(1 − g(wxi)) − (1 − y)g(wxi))xi j = (y − hw(xi))xi j j j w := w + λ(yi − hw(xi)))xi 3 Least Squared Error Estimation 3.1 Goal Minimize sum of squared error: m 1 X L(w) = (y − h (x ))2 2 i w i i=1 3.2 Stochastic Gradient Descent Update Rule @ @h (x ) L(w) = −(y − h (x )) w i @wj i w i @wj j = −(yi − hw(xi))hw(xi)(1 − hw(xi))xi j j j w := w + λ(yi − hw(xi))hw(xi)(1 − hw(xi))xi 4 Comparison 4.1 Update Rule For maximum likelihood logistic regression: j j j w := w + λ(yi − hw(xi)))xi 2 For least squared error logistic regression: j j j w := w + λ(yi − hw(xi))hw(xi)(1 − hw(xi))xi Let f1(h) = (y − h); y 2 f0; 1g; h 2 (0; 1) f2(h) = (y − h)h(1 − h); y 2 f0; 1g; h 2 (0; 1) When y = 1, the plots of f1(h) and f2(h) are shown in figure 1.
    [Show full text]
  • Regularized Regression Under Quadratic Loss, Logistic Loss, Sigmoidal Loss, and Hinge Loss
    Regularized Regression under Quadratic Loss, Logistic Loss, Sigmoidal Loss, and Hinge Loss Here we considerthe problem of learning binary classiers. We assume a set X of possible inputs and we are interested in classifying inputs into one of two classes. For example we might be interesting in predicting whether a given persion is going to vote democratic or republican. We assume a function Φ which assigns a feature vector to each element of x — we assume that for x ∈ X we have d Φ(x) ∈ R . For 1 ≤ i ≤ d we let Φi(x) be the ith coordinate value of Φ(x). For example, for a person x we might have that Φ(x) is a vector specifying income, age, gender, years of education, and other properties. Discrete properties can be represented by binary valued fetures (indicator functions). For example, for each state of the United states we can have a component Φi(x) which is 1 if x lives in that state and 0 otherwise. We assume that we have training data consisting of labeled inputs where, for convenience, we assume that the labels are all either −1 or 1. S = hx1, yyi,..., hxT , yT i xt ∈ X yt ∈ {−1, 1} Our objective is to use the training data to construct a predictor f(x) which predicts y from x. Here we will be interested in predictors of the following form where β ∈ Rd is a parameter vector to be learned from the training data. fβ(x) = sign(β · Φ(x)) (1) We are then interested in learning a parameter vector β from the training data.
    [Show full text]
  • The Central Limit Theorem in Differential Privacy
    Privacy Loss Classes: The Central Limit Theorem in Differential Privacy David M. Sommer Sebastian Meiser Esfandiar Mohammadi ETH Zurich UCL ETH Zurich [email protected] [email protected] [email protected] August 12, 2020 Abstract Quantifying the privacy loss of a privacy-preserving mechanism on potentially sensitive data is a complex and well-researched topic; the de-facto standard for privacy measures are "-differential privacy (DP) and its versatile relaxation (, δ)-approximate differential privacy (ADP). Recently, novel variants of (A)DP focused on giving tighter privacy bounds under continual observation. In this paper we unify many previous works via the privacy loss distribution (PLD) of a mechanism. We show that for non-adaptive mechanisms, the privacy loss under sequential composition undergoes a convolution and will converge to a Gauss distribution (the central limit theorem for DP). We derive several relevant insights: we can now characterize mechanisms by their privacy loss class, i.e., by the Gauss distribution to which their PLD converges, which allows us to give novel ADP bounds for mechanisms based on their privacy loss class; we derive exact analytical guarantees for the approximate randomized response mechanism and an exact analytical and closed formula for the Gauss mechanism, that, given ", calculates δ, s.t., the mechanism is ("; δ)-ADP (not an over- approximating bound). 1 Contents 1 Introduction 4 1.1 Contribution . .4 2 Overview 6 2.1 Worst-case distributions . .6 2.2 The privacy loss distribution . .6 3 Related Work 7 4 Privacy Loss Space 7 4.1 Privacy Loss Variables / Distributions .
    [Show full text]
  • Bayesian Classifiers Under a Mixture Loss Function
    Hunting for Significance: Bayesian Classifiers under a Mixture Loss Function Igar Fuki, Lawrence Brown, Xu Han, Linda Zhao February 13, 2014 Abstract Detecting significance in a high-dimensional sparse data structure has received a large amount of attention in modern statistics. In the current paper, we introduce a compound decision rule to simultaneously classify signals from noise. This procedure is a Bayes rule subject to a mixture loss function. The loss function minimizes the number of false discoveries while controlling the false non discoveries by incorporating the signal strength information. Based on our criterion, strong signals will be penalized more heavily for non discovery than weak signals. In constructing this classification rule, we assume a mixture prior for the parameter which adapts to the unknown spar- sity. This Bayes rule can be viewed as thresholding the \local fdr" (Efron 2007) by adaptive thresholds. Both parametric and nonparametric methods will be discussed. The nonparametric procedure adapts to the unknown data structure well and out- performs the parametric one. Performance of the procedure is illustrated by various simulation studies and a real data application. Keywords: High dimensional sparse inference, Bayes classification rule, Nonparametric esti- mation, False discoveries, False nondiscoveries 1 2 1 Introduction Consider a normal mean model: Zi = βi + i; i = 1; ··· ; p (1) n T where fZigi=1 are independent random variables, the random errors (1; ··· ; p) follow 2 T a multivariate normal distribution Np(0; σ Ip), and β = (β1; ··· ; βp) is a p-dimensional unknown vector. For simplicity, in model (1), we assume σ2 is known. Without loss of generality, let σ2 = 1.
    [Show full text]
  • A Unified Bias-Variance Decomposition for Zero-One And
    A Unified Bias-Variance Decomposition for Zero-One and Squared Loss Pedro Domingos Department of Computer Science and Engineering University of Washington Seattle, Washington 98195, U.S.A. [email protected] http://www.cs.washington.edu/homes/pedrod Abstract of a bias-variance decomposition of error: while allowing a more intensive search for a single model is liable to increase The bias-variance decomposition is a very useful and variance, averaging multiple models will often (though not widely-used tool for understanding machine-learning always) reduce it. As a result of these developments, the algorithms. It was originally developed for squared loss. In recent years, several authors have proposed bias-variance decomposition of error has become a corner- decompositions for zero-one loss, but each has signif- stone of our understanding of inductive learning. icant shortcomings. In particular, all of these decompo- sitions have only an intuitive relationship to the original Although machine-learning research has been mainly squared-loss one. In this paper, we define bias and vari- concerned with classification problems, using zero-one loss ance for an arbitrary loss function, and show that the as the main evaluation criterion, the bias-variance insight resulting decomposition specializes to the standard one was borrowed from the field of regression, where squared- for the squared-loss case, and to a close relative of Kong loss is the main criterion. As a result, several authors have and Dietterich’s (1995) one for the zero-one case. The proposed bias-variance decompositions related to zero-one same decomposition also applies to variable misclassi- loss (Kong & Dietterich, 1995; Breiman, 1996b; Kohavi & fication costs.
    [Show full text]
  • Are Loss Functions All the Same?
    Are Loss Functions All the Same? L. Rosasco∗ E. De Vito† A. Caponnetto‡ M. Piana§ A. Verri¶ September 30, 2003 Abstract In this paper we investigate the impact of choosing different loss func- tions from the viewpoint of statistical learning theory. We introduce a convexity assumption - which is met by all loss functions commonly used in the literature, and study how the bound on the estimation error changes with the loss. We also derive a general result on the minimizer of the ex- pected risk for a convex loss function in the case of classification. The main outcome of our analysis is that, for classification, the hinge loss appears to be the loss of choice. Other things being equal, the hinge loss leads to a convergence rate practically indistinguishable from the logistic loss rate and much better than the square loss rate. Furthermore, if the hypothesis space is sufficiently rich, the bounds obtained for the hinge loss are not loosened by the thresholding stage. 1 Introduction A main problem of statistical learning theory is finding necessary and sufficient condi- tions for the consistency of the Empirical Risk Minimization principle. Traditionally, the role played by the loss is marginal and the choice of which loss to use for which ∗INFM - DISI, Universit`adi Genova, Via Dodecaneso 35, 16146 Genova (I) †Dipartimento di Matematica, Universit`adi Modena, Via Campi 213/B, 41100 Modena (I), and INFN, Sezione di Genova ‡DISI, Universit`adi Genova, Via Dodecaneso 35, 16146 Genova (I) §INFM - DIMA, Universit`adi Genova, Via Dodecaneso 35, 16146 Genova (I) ¶INFM - DISI, Universit`adi Genova, Via Dodecaneso 35, 16146 Genova (I) 1 problem is usually regarded as a computational issue (Vapnik, 1995; Vapnik, 1998; Alon et al., 1993; Cristianini and Shawe Taylor, 2000).
    [Show full text]
  • Bayes Estimator Recap - Example
    Recap Bayes Risk Consistency Summary Recap Bayes Risk Consistency Summary . Last Lecture . Biostatistics 602 - Statistical Inference Lecture 16 • What is a Bayes Estimator? Evaluation of Bayes Estimator • Is a Bayes Estimator the best unbiased estimator? . • Compared to other estimators, what are advantages of Bayes Estimator? Hyun Min Kang • What is conjugate family? • What are the conjugate families of Binomial, Poisson, and Normal distribution? March 14th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 1 / 28 Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 2 / 28 Recap Bayes Risk Consistency Summary Recap Bayes Risk Consistency Summary . Recap - Bayes Estimator Recap - Example • θ : parameter • π(θ) : prior distribution i.i.d. • X1, , Xn Bernoulli(p) • X θ fX(x θ) : sampling distribution ··· ∼ | ∼ | • π(p) Beta(α, β) • Posterior distribution of θ x ∼ | • α Prior guess : pˆ = α+β . Joint fX(x θ)π(θ) π(θ x) = = | • Posterior distribution : π(p x) Beta( xi + α, n xi + β) | Marginal m(x) | ∼ − • Bayes estimator ∑ ∑ m(x) = f(x θ)π(θ)dθ (Bayes’ rule) | α + x x n α α + β ∫ pˆ = i = i + α + β + n n α + β + n α + β α + β + n • Bayes Estimator of θ is ∑ ∑ E(θ x) = θπ(θ x)dθ | θ Ω | ∫ ∈ Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 3 / 28 Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 4 / 28 Recap Bayes Risk Consistency Summary Recap Bayes Risk Consistency Summary . Loss Function Optimality Loss Function Let L(θ, θˆ) be a function of θ and θˆ.
    [Show full text]
  • 1 Basic Concepts 2 Loss Function and Risk
    STAT 598Y Statistical Learning Theory Instructor: Jian Zhang Lecture 1: Introduction to Supervised Learning In this lecture we formulate the basic (supervised) learning problem and introduce several key concepts including loss function, risk and error decomposition. 1 Basic Concepts We use X and Y to denote the input space and the output space, where typically we have X = Rp. A joint probability distribution on X×Y is denoted as PX,Y . Let (X, Y ) be a pair of random variables distributed according to PX,Y . We also use PX and PY |X to denote the marginal distribution of X and the conditional distribution of Y given X. Let Dn = {(x1,y1),...,(xn,yn)} be an i.i.d. random sample from PX,Y . The goal of supervised learning is to find a mapping h : X"→ Y based on Dn so that h(X) is a good approximation of Y . When Y = R the learning problem is often called regression and when Y = {0, 1} or {−1, 1} it is often called (binary) classification. The dataset Dn is often called the training set (or training data), and it is important since the distribution PX,Y is usually unknown. A learning algorithm is a procedure A which takes the training set Dn and produces a predictor hˆ = A(Dn) as the output. Typically the learning algorithm will search over a space of functions H, which we call the hypothesis space. 2 Loss Function and Risk A loss function is a mapping ! : Y×Y"→ R+ (sometimes R×R "→ R+). For example, in binary classification the 0/1 loss function !(y, p)=I(y %= p) is often used and in regression the squared error loss function !(y, p) = (y − p)2 is often used.
    [Show full text]
  • Maximum Likelihood Linear Regression
    Linear Regression via Maximization of the Likelihood Ryan P. Adams COS 324 – Elements of Machine Learning Princeton University In least squares regression, we presented the common viewpoint that our approach to supervised learning be framed in terms of a loss function that scores our predictions relative to the ground truth as determined by the training data. That is, we introduced the idea of a function ℓ yˆ, y that ( ) is bigger when our machine learning model produces an estimate yˆ that is worse relative to y. The loss function is a critical piece for turning the model-fitting problem into an optimization problem. In the case of least-squares regression, we used a squared loss: ℓ yˆ, y = yˆ y 2 . (1) ( ) ( − ) In this note we’ll discuss a probabilistic view on constructing optimization problems that fit parameters to data by turning our loss function into a likelihood. Maximizing the Likelihood An alternative view on fitting a model is to think about a probabilistic procedure that might’ve given rise to the data. This probabilistic procedure would have parameters and then we can take the approach of trying to identify which parameters would assign the highest probability to the data that was observed. When we talk about probabilistic procedures that generate data given some parameters or covariates, we are really talking about conditional probability distributions. Let’s step away from regression for a minute and just talk about how we might think about a probabilistic procedure that generates data from a Gaussian distribution with a known variance but an unknown mean.
    [Show full text]
  • Lectures on Statistics
    Lectures on Statistics William G. Faris December 1, 2003 ii Contents 1 Expectation 1 1.1 Random variables and expectation . 1 1.2 The sample mean . 3 1.3 The sample variance . 4 1.4 The central limit theorem . 5 1.5 Joint distributions of random variables . 6 1.6 Problems . 7 2 Probability 9 2.1 Events and probability . 9 2.2 The sample proportion . 10 2.3 The central limit theorem . 11 2.4 Problems . 13 3 Estimation 15 3.1 Estimating means . 15 3.2 Two population means . 17 3.3 Estimating population proportions . 17 3.4 Two population proportions . 18 3.5 Supplement: Confidence intervals . 18 3.6 Problems . 19 4 Hypothesis testing 21 4.1 Null and alternative hypothesis . 21 4.2 Hypothesis on a mean . 21 4.3 Two means . 23 4.4 Hypothesis on a proportion . 23 4.5 Two proportions . 24 4.6 Independence . 24 4.7 Power . 25 4.8 Loss . 29 4.9 Supplement: P-values . 31 4.10 Problems . 33 iii iv CONTENTS 5 Order statistics 35 5.1 Sample median and population median . 35 5.2 Comparison of sample mean and sample median . 37 5.3 The Kolmogorov-Smirnov statistic . 38 5.4 Other goodness of fit statistics . 39 5.5 Comparison with a fitted distribution . 40 5.6 Supplement: Uniform order statistics . 41 5.7 Problems . 42 6 The bootstrap 43 6.1 Bootstrap samples . 43 6.2 The ideal bootstrap estimator . 44 6.3 The Monte Carlo bootstrap estimator . 44 6.4 Supplement: Sampling from a finite population .
    [Show full text]
  • Lecture 5: Logistic Regression 1 MLE Derivation
    CSCI 5525 Machine Learning Fall 2019 Lecture 5: Logistic Regression Feb 10 2020 Lecturer: Steven Wu Scribe: Steven Wu Last lecture, we give several convex surrogate loss functions to replace the zero-one loss func- tion, which is NP-hard to optimize. Now let us look into one of the examples, logistic loss: given d parameter w and example (xi; yi) 2 R × {±1g, the logistic loss of w on example (xi; yi) is defined as | ln (1 + exp(−yiw xi)) This loss function is used in logistic regression. We will introduce the statistical model behind logistic regression, and show that the ERM problem for logistic regression is the same as the relevant maximum likelihood estimation (MLE) problem. 1 MLE Derivation For this derivation it is more convenient to have Y = f0; 1g. Note that for any label yi 2 f0; 1g, we also have the “signed” version of the label 2yi − 1 2 {−1; 1g. Recall that in general su- pervised learning setting, the learner receive examples (x1; y1);:::; (xn; yn) drawn iid from some distribution P over labeled examples. We will make the following parametric assumption on P : | yi j xi ∼ Bern(σ(w xi)) where Bern denotes the Bernoulli distribution, and σ is the logistic function defined as follows 1 exp(z) σ(z) = = 1 + exp(−z) 1 + exp(z) See Figure 1 for a visualization of the logistic function. In general, the logistic function is a useful function to convert real values into probabilities (in the range of (0; 1)). If w|x increases, then σ(w|x) also increases, and so does the probability of Y = 1.
    [Show full text]
  • Lecture 2: Estimating the Empirical Risk with Samples CS4787 — Principles of Large-Scale Machine Learning Systems
    Lecture 2: Estimating the empirical risk with samples CS4787 — Principles of Large-Scale Machine Learning Systems Review: The empirical risk. Suppose we have a dataset D = f(x1; y1); (x2; y2);:::; (xn; yn)g, where xi 2 X is an example and yi 2 Y is a label. Let h : X!Y be a hypothesized model (mapping from examples to labels) we are trying to evaluate. Let L : Y × Y ! R be a loss function which measures how different two labels are The empirical risk is n 1 X R(h) = L(h(x ); y ): n i i i=1 Most notions of error or accuracy in machine learning can be captured with an empirical risk. A simple example: measure the error rate on the dataset with the 0-1 Loss Function L(^y; y) = 0 if y^ = y and 1 if y^ 6= y: Other examples of empirical risk? We need to compute the empirical risk a lot during training, both during validation (and hyperparameter optimiza- tion) and testing, so it’s nice if we can do it fast. Question: how does computing the empirical risk scale? Three things affect the cost of computation. • The number of training examples n. The cost will certainly be proportional to n. • The cost to compute the loss function L. • The cost to evaluate the hypothesis h. Question: what if n is very large? Must we spend a large amount of time computing the empirical risk? Answer: We can approximate the empirical risk using subsampling. Idea: let Z be a random variable that takes on the value L(h(xi); yi) with probability 1=n for each i 2 f1; : : : ; ng.
    [Show full text]