ALDH1A1 Contributes to PARP Inhibitor Resistance Via Enhancing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Utility of Genetic Risk Scores in Predicting the Onset of Stroke March 2021 6
DOT/FAA/AM-21/24 Office of Aerospace Medicine Washington, DC 20591 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke Diana Judith Monroy Rios, M.D1 and Scott J. Nicholson, Ph.D.2 1. KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510 Bogotá D.C. Colombia 2. FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 March 2021 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. _________________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: (www.faa.gov/go/oamtechreports) Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-21/24 4. Title and Subtitle 5. Report Date March 2021 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Diana Judith Monroy Rios M.D1, and Scott J. Nicholson, Ph.D.2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 1 KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510, Bogotá D.C. Colombia 11. Contract or Grant No. 2 FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. -
ATAP00021-Recombinant Human ALDH1A1 Protein
ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein Product Details Summary English name Recombinant Human ALDH1A1 protein Purity >90% as determined by SDS-PAGE Endotoxin level Please contact with the lab for this information. Construction A DNA sequence encoding the human ALDH1A1 (Met1-Ser501) was fused with His tag Accession # P00352 Host E.coli Species Homo sapiens (Human) Predicted Molecular Mass 52.58 kDa Formulation Supplied as solution form in PBS pH 7.5 or lyophilized from PBS pH 7.5. Shipping In general, proteins are provided as lyophilized powder/frozen liquid. They are shipped out with dry ice/blue ice unless customers require otherwise. Stability &Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8 °C for one week . Store at -20 to -80 °C for twelve months from the date of receipt. Reconstitution Reconstitute in sterile water for a stock solution.A copy of datasheet will be provided with the products, please refer to it for details. Background Background Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), also known as Aldehyde dehydrogenase 1 (ALDH1), or Retinaldehyde Dehydrogenase 1 (RALDH1), is an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. The retinaldehyde dehydrogenase (RALDH) subfamily of ALDHs, composed of ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1, regulate development by catalyzing retinoic acid biosynthesis. The ALDH1A1 protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH1A1 also belongs to the group of corneal crystallins that Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958 ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein help maintain the transparency of the cornea. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
Phase I Trial of the PARP Inhibitor Olaparib and AKT Inhibitor Capivasertib in Patients with BRCA1/2- and Non–BRCA1/2-Mutant Cancers
Published OnlineFirst June 12, 2020; DOI: 10.1158/2159-8290.CD-20-0163 RESEARCH ARTICLE Phase I Trial of the PARP Inhibitor Olaparib and AKT Inhibitor Capivasertib in Patients with BRCA1/2- and Non–BRCA1/2-Mutant Cancers Timothy A. Yap1,2, Rebecca Kristeleit3, Vasiliki Michalarea1, Stephen J. Pettitt4,5, Joline S.J. Lim1, Suzanne Carreira2, Desamparados Roda1,2, Rowan Miller3, Ruth Riisnaes2, Susana Miranda2, Ines Figueiredo2, Daniel Nava Rodrigues2, Sarah Ward1,2, Ruth Matthews1,2, Mona Parmar1,2, Alison Turner1,2, Nina Tunariu1, Neha Chopra1,4, Heidrun Gevensleben2, Nicholas C. Turner1,4, Ruth Ruddle2, Florence I. Raynaud2, Shaun Decordova2, Karen E. Swales2, Laura Finneran2, Emma Hall2, Paul Rugman6, Justin P.O. Lindemann6, Andrew Foxley6, Christopher J. Lord4,5, Udai Banerji1,2, Ruth Plummer7, Bristi Basu8, Juanita S. Lopez1,2, Yvette Drew7, and Johann S. de Bono1,2 Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst June 12, 2020; DOI: 10.1158/2159-8290.CD-20-0163 ABSTRACT Preclinical studies have demonstrated synergy between PARP and PI3K/AKT path- way inhibitors in BRCA1 and BRCA2 (BRCA1/2)–deficient andBRCA1/2 -proficient tumors. We conducted an investigator-initiated phase I trial utilizing a prospective intrapatient dose- escalation design to assess two schedules of capivasertib (AKT inhibitor) with olaparib (PARP inhibi- tor) in 64 patients with advanced solid tumors. Dose expansions enrolled germline BRCA1/2-mutant tumors, or BRCA1/2 wild-type cancers harboring somatic DNA damage response (DDR) or PI3K–AKT pathway alterations. The combination was well tolerated. Recommended phase II doses for the two schedules were: olaparib 300 mg twice a day with either capivasertib 400 mg twice a day 4 days on, 3 days off, or capivasertib 640 mg twice a day 2 days on, 5 days off. -
Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation. -
Mapping Aldehyde Dehydrogenase 1A1 Activity Using an [18F]Substrate-Based Approach Raul Pereira,[A] Thibault Gendron,[B] Chandan Sanghera,[A] Hannah E
CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online DOI: 10.1002/chem.201805473 Full Paper & Biochemistry Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18F]Substrate-Based Approach Raul Pereira,[a] Thibault Gendron,[b] Chandan Sanghera,[a] Hannah E. Greenwood,[a] Joseph Newcombe,[b, c] Patrick N. McCormick,[a] Kerstin Sander,[b] Maya Topf,[c] Erik rstad,[b] and Timothy H. Witney*[a] Abstract: Aldehyde dehydrogenases (ALDHs) catalyze the focused library of compounds evaluated, N-ethyl-6-(fluoro)- oxidation of aldehydes to carboxylic acids. Elevated ALDH N-(4-formylbenzyl)nicotinamide 4b was found to have excel- expression in human cancers is linked to metastases and lent affinity and isozyme selectivity for ALDH1A1 in vitro. poor overall survival. Despite ALDH being a poor prognostic Following 18F-fluorination, [18F]4b was taken up by colorectal factor, the non-invasive assessment of ALDH activity in vivo tumor cells and trapped through the conversion to its 18F-la- has not been possible due to a lack of sensitive and transla- beled carboxylate product under the action of ALDH. In vivo tional imaging agents. Presented in this report are the syn- positron emission tomography revealed high uptake of thesis and biological evaluation of ALDH1A1-selective chemi- [18F]4b in the lungs and liver, with radioactivity cleared cal probes composed of an aromatic aldehyde derived from through the urinary tract. Oxidation of [18F]4b, however, was N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinat- observed in vivo, which may limit the tissue penetration of ed pyridine ring either via an amide or amine linkage. -
Update on the Aldehyde Dehydrogenase Gene (ALDH) Superfamily Brian Jackson,1 Chad Brocker,1 David C
GENOME UPDATE Update on the aldehyde dehydrogenase gene (ALDH) superfamily Brian Jackson,1 Chad Brocker,1 David C. Thompson,2 William Black,1 Konstandinos Vasiliou,1 Daniel W. Nebert3 and Vasilis Vasiliou1* 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267, USA *Correspondence to: Tel: þ1 303 724 3520; Fax: þ1 303 724 7266; E-mail: [email protected] Date received (in revised form): 23rd March 2011 Abstract Members of the aldehyde dehydrogenase gene (ALDH) superfamily play an important role in the enzymic detoxifi- cation of endogenous and exogenous aldehydes and in the formation of molecules that are important in cellular processes, like retinoic acid, betaine and gamma-aminobutyric acid. ALDHs exhibit additional, non-enzymic func- tions, including the capacity to bind to some hormones and other small molecules and to diminish the effects of ultraviolet irradiation in the cornea. Mutations in ALDH genes leading to defective aldehyde metabolism are the molecular basis of several diseases, including gamma-hydroxybutyric aciduria, pyridoxine-dependent seizures, Sjo¨gren–Larsson syndrome and type II hyperprolinaemia. Interestingly, several ALDH enzymes appear to be markers for normal and cancer stem cells. The superfamily is evolutionarily ancient and is represented within Archaea, Eubacteria and Eukarya taxa. Recent improvements in DNA and protein sequencing have led to the identification of many new ALDH family members. -
A Missense Mutation in ALDH1A3 Causes Isolated Microphthalmia/Anophthalmia in Nine Individuals from an Inbred Muslim Kindred
European Journal of Human Genetics (2014) 22, 419–422 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred Adi Mory1,2, Francesc X Ruiz3, Efrat Dagan2,4, Evgenia A Yakovtseva3, Alina Kurolap1, Xavier Pare´s3, Jaume Farre´s3 and Ruth Gershoni-Baruch*,1,2 Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. European Journal of Human Genetics (2014) 22, 419–422; doi:10.1038/ejhg.2013.157; published online 24 July 2013 Keywords: ALDH1A3 gene; anophthalmia/microphthalmia; homozogosity mapping INTRODUCTION METHODS Anophthalmia and microphthalmia (A/M) are rare developmental Patients and families anomalies resulting in absent or small ocular globes, respectively. -
Prepublication PDF Version BIOCHEMICAL GENETICS OF
Biochemical Genetics of Opossum Aldehyde Dehydrogenase 3: Evidence for Three ALDH3A-Like Genes and an ALDH3B- Like Gene Author Holmes, Roger S Published 2010 Journal Title Biochemical Genetics DOI https://doi.org/10.1007/s10528-009-9318-3 Copyright Statement © 2010 Springer Netherlands. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com Downloaded from http://hdl.handle.net/10072/30852 Griffith Research Online https://research-repository.griffith.edu.au Published in Biochemical Genetics 48: 287-303 (2010) Prepublication PDF Version BIOCHEMICAL GENETICS OF OPOSSUM ALDEHYDE DEHYDROGENASE 3. Evidence for three ALDH3A-like genes and an ALDH3B-like gene Roger S Holmes School of Biomolecular and Physical Sciences, Griffith University, Nathan 4111 Brisbane Queensland Australia Email: [email protected] ABSTRACT Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2; as well as an ALDH3B-like gene, which showed similar intron-exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1 by Liu and coworkers (1997). Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel. -
Acquire a High Level of Retinoic Acid− Producing Capacity in Response to Vitamin D 3 This Information Is Current As of September 28, 2021
Human CD1c+ Myeloid Dendritic Cells Acquire a High Level of Retinoic Acid− Producing Capacity in Response to Vitamin D 3 This information is current as of September 28, 2021. Takayuki Sato, Toshio Kitawaki, Haruyuki Fujita, Makoto Iwata, Tomonori Iyoda, Kayo Inaba, Toshiaki Ohteki, Suguru Hasegawa, Kenji Kawada, Yoshiharu Sakai, Hiroki Ikeuchi, Hiroshi Nakase, Akira Niwa, Akifumi Takaori-Kondo and Norimitsu Kadowaki Downloaded from J Immunol 2013; 191:3152-3160; Prepublished online 21 August 2013; doi: 10.4049/jimmunol.1203517 http://www.jimmunol.org/content/191/6/3152 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/08/21/jimmunol.120351 Material 7.DC1 References This article cites 41 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/191/6/3152.full#ref-list-1 by guest on September 28, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. -
Comparative Studies of Vertebrate Aldehyde Dehydrogenase 3: Sequences, Structures, Phylogeny and Evolution
Comparative studies of vertebrate aldehyde dehydrogenase 3: Sequences, structures, phylogeny and evolution. Evidence for a mammalian origin for the ALDH3A1 gene Author Holmes, Roger S, Hempel, John Published 2011 Journal Title Chemico-Biological Interactions DOI https://doi.org/10.1016/j.cbi.2011.01.014 Copyright Statement © 2011 Elsevier Ireland Ltd.. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/42603 Griffith Research Online https://research-repository.griffith.edu.au Comparative studies of vertebrate aldehyde dehydrogenase 3: Sequences, structures, phylogeny and evolution. Evidence for a mammalian origin for the ALDH3A1 gene Roger S Holmes*¹ and John Hempel² ¹School of Biomolecular and Physical Sciences, Griffith University, Nathan 4111 Brisbane Queensland Australia Email: [email protected] *Corresponding Author: Tel: +61-7-33482834 ²Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA USA ABSTRACT Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conserved, including -
ALDH2 Antibody (Center)
BioVision 05/14 For research use only ALDH2 Antibody (Center) ALTERNATE NAMES: ALDH2; ALDM; Aldehyde dehydrogenase, mitochondrial; ALDH class 2; ALDH-E2; ALDHI. CATALOG #: 6748-100 AMOUNT: 100 µl HOST/ISOTYPE: Rabbit IgG Western blot analysis in A549 cell lysates and mouse liver and lung and rat liver IMMUNOGEN: This ALDH2 antibody is generated from rabbits immunized with tissue lysates (35 µg/lane). a KLH conjugated synthetic peptide between 318-347 amino acids from the Central region of human ALDH2. PURIFICATION: This antibody is purified through a protein A column, followed by peptide affinity purification. MOLECULAR WEIGHT: ~56.38 kDa FORM: Liquid FORMULATION: Supplied in PBS with 0.09% (W/V) sodium azide. SPECIES REACTIVITY: Human. Predicted cross reactivity with mouse and rat samples. STORAGE CONDITIONS: Maintain refrigerated at 2-8°C for up to 6 months. For long term storage, store at -20°C in small aliquots to prevent freeze-thaw cycles. Formalin-fixed and paraffin-embedded human hepatocarcinoma reacted with ALDH2 antibody, DESCRIPTION: ALDH2 (Aldehyde dehydrogenase 2 family) belongs to the aldehyde which was peroxidase-conjugated to the dehydrogenase family which catalyze the chemical transformation from acetaldehyde to secondary antibody, followed by DAB staining. acetic acid and is the second enzyme of the major oxidative pathway of alcohol metabolism. Aldehyde dehydrogenases (ALDHs) mediate NADP+-dependent oxidation of aldehydes into acids during detoxification of alcohol-derived acetaldehyde; lipid peroxidation; and metabolism of corticosteroids, biogenic amines and neurotransmitters. ALDH1A1, also designated retinal dehydrogenase 1 (RalDH1 or RALDH1); aldehyde dehydrogenase family 1 member A1; aldehyde dehydrogenase cytosolic; ALDHII; ALDH-E1 or ALDH E1, is a retinal dehydrogenase that participates in the biosynthesis of retinoic acid (RA).