Cambrian Triangulations and Their Tropical Realizations

Total Page:16

File Type:pdf, Size:1020Kb

Cambrian Triangulations and Their Tropical Realizations CAMBRIAN TRIANGULATIONS AND THEIR TROPICAL REALIZATIONS VINCENT PILAUD Abstract. This paper develops a Cambrian extension of the work of C. Ceballos, A. Padrol and C. Sarmiento on ν-Tamari lattices and their tropical realizations. For any signature " 2 {±}n, we consider a family of "-trees in bijection with the triangulations of the "-polygon. These "-trees " define a flag regular triangulation T of the subpolytope conv f(ei• ; ej◦ ) j 0 ≤ i• < j◦ ≤ n + 1g of the product of simplices 4f0•;:::;n•g × 4f1◦;:::;(n+1)◦g. The oriented dual graph of the triangulation T " is the Hasse diagram of the (type A) "-Cambrian lattice of N. Reading. For " any I• ⊆ f0•; : : : ; n•g and J◦ ⊆ f1◦;:::; (n + 1)◦g, we consider the restriction T of the I•;J◦ " triangulation T to the face 4I• ×4J◦ . Its dual graph is naturally interpreted as the increasing flip graph on certain ("; I•;J◦)-trees, which is shown to be a lattice generalizing in particular the ν-Tamari lattices in the Cambrian setting. Finally, we present an alternative geometric realization of T " as a polyhedral complex induced by a tropical hyperplane arrangement. I•;J◦ The Tamari lattice is a fundamental structure on Catalan objects (such as triangulations, binary trees, or Dyck paths). Introduced by D. Tamari in [Tam51], it has been extensively studied and extended in several directions, see in particular [MHPS12] and the references therein. Our objective is to explore the connection between two generalizations of the Tamari lattice: the (type A) Cambrian lattices of N. Reading [Rea06] and the ν-Tamari lattices of L.-F. Préville-Ratelle and X. Viennot [PRV17]. These two generalizations have strong algebraic roots, in connection to cluster algebras [FZ02, FZ03] and multivariate diagonal harmonics [Ber13, BPR12]. This paper heavily relies on the work of C. Ceballos, A. Padrol and C. Sarmiento on the ge- ometry of ν-Tamari lattices [CPS18]. They start from a family of non-crossing alternating trees in bijection with the triangulations of the (n + 2)-gon. These trees define a flag regular trian- : gulation T of the subpolytope U = conv f(ei• ; ej◦ ) j 0 ≤ i• < j◦ ≤ n + 1g of the product of sim- plices 4f0•;:::;n•g × 4f1◦;:::;(n+1)◦g. The dual graph of this triangulation T is the Hasse diagram of the Tamari lattice. Note that this interpretation of the Tamari lattice as the dual graph of the non-crossing triangulation is ubiquitous in the literature as discussed in [CPS18, Sect. 1.4]. For any subsets I ⊆ f0 ; : : : ; n g and J ⊆ f1 ;:::; (n + 1) g, they consider the restriction T of the • • • ◦ ◦ ◦ I•;J◦ triangulation T to the face 4 × 4 . The simplices of T correspond to certain non-crossing I• J◦ I•;J◦ alternating (I•;J◦)-trees which are in bijection with Dyck paths above a fixed path ν(I•;J◦). More- over, the dual graph of T is the flip graph on (I ;J )-trees, isomorphic to the ν(I ;J )-Tamari I•;J◦ • ◦ • ◦ poset of [PRV17]. This poset actually embeds as an interval of the classical Tamari lattice and is therefore itself a lattice. This interpretation provides three geometric realizations of the ν(I•;J◦)- Tamari lattice [CPS18, Thm. 1.1]: as the dual of the regular triangulation T , as the dual of a I•;J◦ coherent mixed subdivision of a generalized permutahedron, and as the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement. arXiv:1809.00719v1 [math.CO] 3 Sep 2018 Our objective is to extend this approach in the type A Cambrian setting. For any signa- ture " 2 {±}n, we consider a family of "-trees in bijection with the triangulations of the "-polygon. These "-trees define a flag regular triangulation T " of U whose dual graph is the Hasse diagram of the (type A) "-Cambrian lattice of N. Reading [Rea06]. In contrast to the classical Tamari case (obtained when " = −n), we are not aware that this triangulation of U was considered earlier in the literature and the proof of its regularity is a little more subtle in the Cambrian case. For any I ⊆ f0 ; : : : ; n g and J ⊆ f1 ;:::; (n + 1) g, we then consider the restriction T " of the • • • ◦ ◦ ◦ I•;J◦ " triangulation T to the face 4I• × 4J◦ . Its simplices correspond to certain ("; I•;J◦)-trees and its dual graph is the increasing flip graph on these ("; I•;J◦)-trees. Our main combinatorial result is that this increasing flip graph is still an interval of the "-Cambrian lattice in general. The proof is however more involved than in the classical case (" = −n) since this interval does not anymore correspond to a descent class in general. Finally, we mimic the method of [CPS18, Sect. 5] to obtain an alternative geometric realization of T " as a polyhedral complex induced by a tropical I•;J◦ hyperplane arrangement. Partially supported by the French ANR grants SC3A (15 CE40 0004 01) and CAPPS (17 CE40 0018). 1 2 VINCENT PILAUD 1. ("; I•;J◦)-trees and the ("; I•;J◦)-complex This section defines two polygons and certain families of trees associated to a signature " 2 {±}n. 1.1. Two "-polygons. We consider three decorated copies of the natural numbers: the squares N, the blacks N• and the whites N◦. For n 2 N, we use the standard notation [n] := f1; : : : ; ng and : : : define [[n] = f0; : : : ; ng, [n]] = f1; : : : ; n + 1g and [[n]] = f0; : : : ; n+1g. We write [n], [n•], [n◦] and so on for the decorated versions of these intervals. Fix a signature " 2 {±}n. We consider two convex polygons associated to the signature " as follows: • a (n+2)-gon P" with square vertices labeled by [[n ]] from left to right and where vertex i is above the segment (0; (n + 1)) if "i = + and below it if "i = −. • a (2n + 2)-gon P" with black or white vertices, obtained from P" by replacing the square •−◦ vertex 0 (resp. (n+1)) by the black vertex 0• (resp. white vertex (n+1)◦), and splitting each other square vertex i into a pair of white and black vertices i◦ and i• (such that the " vertices of P•−◦ are alternatively colored black and white). The black (resp. white) vertices " of P•−◦ are labeled by [[n•] (resp. [n◦]]) from left to right. Examples of these polygons are represented in Figure1 for the signature " = −++−+−−+. 3 5 3 5◦5 2 2 2• 3◦ • • ◦ 8 8 ◦8• 0 9 0• 9◦ 1 1◦ 1• 7 7◦7• 4 6 4◦4• 6◦6• The polygons P" (left) and P" (right) for the signature " = −++−+−−+. Figure 1. •−◦ 1.2. ("; I•;J◦)-trees. All throughout the paper, we consider I• ⊆ [[n•] and J◦ ⊆ [n◦]] and we always assume that min(I ) < min(J ) and max(I ) < max(J ). Consider the graph G" with • ◦ • ◦ I•;J◦ vertices I• [ J◦ and edges f(i•; j◦) j i• 2 I•; j◦ 2 J◦; i• < j◦g. Note that this graph is geometric: " " its vertices are considered as vertices of P•−◦ and its edges are considered as straight edges in P•−◦. A subgraph of G" is non-crossing if no two of its edges cross in their interior. I•;J◦ Proposition 1. Any maximal non-crossing subgraph of G" is a spanning tree of G" . I•;J◦ I•;J◦ Proof. The proof works by induction on jI•j + jJ◦j. The result is immediate when jI•j = jJ◦j = 1. Assume now for instance that jI•j > 1 (the case jI•j = 1 and jJ◦j > 1 is similar). Let i• := max(I•) and j◦ := min fj◦ 2 J◦ j i• < j◦ and "i = "jg [ fmax(J◦)g . Note that our choice of j◦ ensures that (i ; j ) is a boundary edge of conv(I [ J ). Moreover, any edge of G" incident to i is of • ◦ • ◦ I•;J◦ • the form (i ; j0 ) for i < j0 while any edge of G" incident to j is of the form (i0 ; j ) for i0 ≤ i • ◦ • ◦ I•;J◦ ◦ • ◦ • • (by maximality of i ). Therefore, all edges of G" f(i ; j )g incident to i cross all edges • I•;J◦ r • ◦ • of G" f(i ; j )g incident to j . Consider now a maximal non-crossing subgraph t of G" . I•;J◦ r • ◦ ◦ I•;J◦ Then t contains the edge (i•; j◦) (since t is maximal) and either i• or j◦ is a leaf in t (since t is 0 non-crossing). Assume for example that i• is a leaf and let I• := I• r fi•g. Then t r f(i•; j◦)g is a " maximal non-crossing subgraph of G 0 (the maximality is ensured from the fact that (i•; j◦) is I•;J◦ " a boundary edge of conv(I• [ J◦)). By induction, t f(i•; j◦)g is thus a spanning tree of G 0 , r I•;J◦ so that t is a spanning tree of G" . I•;J◦ In accordance to Proposition1, we define a ("; I•;J◦)-forest to be a non-crossing subgraph of G" , and a ("; I ;J )-tree to be a maximal ("; I ;J )-forest. Note that a ("; I ;J )-tree I•;J◦ • ◦ • ◦ • ◦ has jI•j + jJ◦j − 1 edges. Examples can be found in Figure2. CAMBRIAN TRIANGULATIONS AND THEIR TROPICAL REALIZATIONS 3 3◦3• 5◦5• 3◦3• 5◦5• 2◦ 2◦ 8• 8• 0• 9◦ 0• 9◦ 1◦ 1◦ 1• 1• 4• 6◦6• 4• 6◦6• Figure 2. A ("; I•;J◦)-forest (left) and a ("; I•;J◦)-tree (right) for " = −++−+−−+, I• = [[8•] r f2•; 7•g and J◦ = [8◦]] r f4◦; 7◦; 8◦g. 1.3. The ("; I ;J )-complex. We call ("; I ;J )-complex C" the clique complex of the graph • ◦ • ◦ I•;J◦ of non-crossing edges of G" .
Recommended publications
  • Rainbow Cycles in Flip Graphs
    Rainbow cycles in flip graphs Stefan Felsner, Linda Kleist, Torsten Mütze, Leon Sering Institut für Mathematik TU Berlin, 10623 Berlin, Germany {felsner,kleist,muetze,sering}@math.tu-berlin.de Abstract. The flip graph of triangulations has as vertices all triangulations of a convex n-gon, and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane trees on an arbitrary set of n points, and the flip graph of non-crossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of non-geometric objects: the flip graph of permutations of f1; 2; : : : ; ng and the flip graph of k-element subsets of f1; 2; : : : ; ng. In each of the five settings, we prove the existence and non- existence of rainbow cycles for different values of r, n and k. 1. Introduction Flip graphs are fundamental structures associated with families of geometric objects such as triangulations, plane spanning trees, non-crossing matchings, partitions or dissections. A classical T example is the flip graph of triangulations. The vertices of this graph Gn are the triangulations of a convex n-gon, and two triangulations are adjacent whenever they differ by exactly one edge.
    [Show full text]
  • Bistellar and Edge Flip Graphs Triangulations in the Plane Geometry and Connectivity
    Bistellar and Edge Flip Graphs of Triangulations in the Plane | Geometry and Connectivity Emo Welzl, ETH Z¨urich,Switzerland with Uli Wagner, IST Austria FUB-TAU Workshop, Tel Aviv, Israel Sep 23, 2019 1 2 3 4 5 6 Flip graph of triangulations of 7 T [e] T T [f] f e T [e] T (bold edges are flippable) T [f] 8 9 We are interested in the connectivity of the flip graph. and its structure and \geometry", in general. 10 We are interested in the connectivity of the flip graph. and its structure and \geometry", in general. 11 Connectedness { [Lawson, 1972] In 1972 Charles Lawson proved connectedness of the flip graph (by exhibiting edge-flips towards a reference triangulation). This allows local improvement algorithms (often heuristics) to- wards a \desired" triangulation (min-weight triangulation, avoid- ing small angles, Delaunay triangulation). The diameter is known to be O(n2). Here: What is the edge- or vertex-connectivity flip graphs? What can we say about (sub-)structures in flip graphs? 12 Connectedness { [Lawson, 1972] In 1972 Charles Lawson proved connectedness of the flip graph (by exhibiting edge-flips towards a reference triangulation). This allows local improvement algorithms (often heuristics) to- wards a \desired" triangulation (min-weight triangulation, avoid- ing small angles, Delaunay triangulation). The diameter is known to be O(n2). Here: What is the edge- or vertex-connectivity flip graphs? What can we say about (sub-)structures in flip graphs? 13 Connectedness { A Bit of a Struggle [Lawson, 1972]: \The theorem in x5 [i.e. of the connectivity of the flip graph] was considered by Lawson and Weingarten in 1965, but the proof we had in mind at that time was somewhat obscure.
    [Show full text]
  • Reconfiguration Problems
    Reconfiguration problems by Zuzana Masárová June, 2020 A thesis presented to the Graduate School of the Institute of Science and Technology Austria, Klosterneuburg, Austria in partial fulfillment of the requirements for the degree of Doctor of Philosophy The thesis of Zuzana Masárová, titled Reconfiguration Problems, is approved by: Supervisor: Uli Wagner, IST Austria, Klosterneuburg, Austria Signature: Co-supervisor: Herbert Edelsbrunner, IST Austria, Klosterneuburg, Austria Signature: Committee Member: Anna Lubiw, University of Waterloo, Waterloo, Canada Signature: Committee Member: Krzysztof Pietrzak, IST Austria, Klosterneuburg, Austria Signature: Defense Chair: Edouard Hannezo, IST Austria, Klosterneuburg, Austria Signature: signed page is on file c by Zuzana Masárová, June, 2020 Some Rights Reserved. CC BY-SA 4.0 The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-ShareAlike 4.0 International. Under this license, you may copy and redistribute the material in any medium or format for both commercial and non-commercial purposes. You may also create and distribute modified versions of the work. This on the condition that: you credit the author and share any derivative works under the same license. IST Austria Thesis, ISSN: 2663-337X ISBN: 978-3-99078-005-3 I hereby declare that this thesis is my own work and that it does not contain other peo- ple’s work without this being so stated; this thesis does not contain my previous work without this being stated, and the bibliography contains all the literature that I used in writing the dissertation. I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee, and that this thesis has not been submitted for a higher de- gree to any other university or institution.
    [Show full text]
  • Geometric Bistellar Flips
    Geometric bistellar flips: the setting, the context and a construction Francisco Santos ∗ Abstract. We give a self-contained introduction to the theory of secondary polytopes and geometric bistellar flips in triangulations of polytopes and point sets, as well as a review of some of the known results and connections to algebraic geometry, topological combinatorics, and other areas. As a new result, we announce the construction of a point set in general position with a disconnected space of triangulations. This shows, for the first time, that the poset of strict polyhedral subdivisions of a point set is not always connected. Mathematics Subject Classification (2000). Primary 52B11; Secondary 52B20. Keywords. Triangulation, point configuration, bistellar flip, polyhedral subdivision, discon- nected flip-graph. Introduction Geometric bistellar flips are “elementary moves”, that is, minimal changes, between triangulations of a point set in affine space Rd . In their present form they were in- troduced around 1990 by Gel’fand, Kapranov and Zelevinskii during their study of discriminants and resultants for sparse polynomials [28], [29]. Not surprisingly, then, these bistellar flips have several connections to algebraic geometry. For example, the author’s previous constructions of point sets with a disconnected graph of trian- gulations in dimensions five and six [64], [67] imply that certain algebraic schemes considered in the literature [4], [13], [33], [57], including the so-called toric Hilbert scheme, are sometimes not connected. Triangulations of point sets play also an obvious role in applied areas such as com- putational geometry or computer aided geometric design, where a region of the plane or 3-space is triangulated in order to approximate a surface, answer proximity or vis- ibility questions, etc.
    [Show full text]
  • Rainbow Cycles in Flip Graphs
    Rainbow Cycles in Flip Graphs Stefan Felsner Institut für Mathematik, TU Berlin, Germany [email protected] Linda Kleist Institut für Mathematik, TU Berlin, Germany [email protected] Torsten Mütze Institut für Mathematik, TU Berlin, Germany [email protected] Leon Sering Institut für Mathematik, TU Berlin, Germany [email protected] Abstract The flip graph of triangulations has as vertices all triangulations of a convex n-gon, and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane spanning trees on an arbitrary set of n points, and the flip graph of non-crossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of non- geometric objects: the flip graph of permutations of {1, 2, . , n} and the flip graph of k-element subsets of {1, 2, . , n}. In each of the five settings, we prove the existence and non-existence of rainbow cycles for different values of r, n and k. 2012 ACM Subject Classification Mathematics of computing → Combinatorics, Mathematics of computing → Permutations and combinations, Mathematics of computing → Graph theory, Theory of computation → Randomness, geometry and discrete structures Keywords and phrases flip graph, cycle, rainbow, Gray code, triangulation, spanning tree, matching, permutation, subset, combination Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.38 Related Version A full version of this paper is available at https://arxiv.org/abs/1712.07421 Acknowledgements We thank Manfred Scheucher for his quick assistance in running computer experiments that helped us to find rainbow cycles in small flip graphs.
    [Show full text]
  • Diameters and Geodesic Properties of Generalizations of the Associahedron Cesar Ceballos, Thibault Manneville, Vincent Pilaud, Lionel Pournin
    Diameters and geodesic properties of generalizations of the associahedron Cesar Ceballos, Thibault Manneville, Vincent Pilaud, Lionel Pournin To cite this version: Cesar Ceballos, Thibault Manneville, Vincent Pilaud, Lionel Pournin. Diameters and geodesic proper- ties of generalizations of the associahedron. 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Jul 2015, Daejeon, South Korea. pp.345-356. hal-01337812 HAL Id: hal-01337812 https://hal.archives-ouvertes.fr/hal-01337812 Submitted on 27 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License FPSAC 2015, Daejeon, South Korea DMTCS proc. FPSAC’15, 2015, 345–356 Diameters and geodesic properties of generalizations of the associahedron C. Ceballos1,∗ T. Manneville2,z V. Pilaud3,x and L. Pournin4{ 1Department of Mathematics and Statistics, York University, Toronto 2Laboratoire d’Informatique de l’Ecole´ Polytechnique, Palaiseau, France 3CNRS & Laboratoire d’Informatique de l’Ecole´ Polytechnique, Palaiseau, France 4Laboratoire d’Informatique de Paris-Nord, Universite´ Paris 13, Villetaneuse, France Abstract. The n-dimensional associahedron is a polytope whose vertices correspond to triangulations of a convex (n + 3)-gon and whose edges are flips between them.
    [Show full text]
  • On Flips in Planar Matchings Pdfauthor=Marcel Milich, Torsten
    ON FLIPS IN PLANAR MATCHINGS MARCEL MILICH, TORSTEN MÜTZE, AND MARTIN PERGEL Abstract. In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, and the flip is called centered if the quadrilateral contains the center of the unit circle. The graph Gn has those matchings as vertices, and an edge between any two matchings that differ in a flip, and it is known to have many interesting properties. In this paper we focus on the spanning subgraph Hn of Gn obtained by taking all edges that correspond to centered flips, omitting edges that correspond to non-centered flips. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles in Gn, and they resolve several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering. 1. Introduction Flip graphs are a powerful tool to study different classes of basic combinatorial objects, such as binary strings, permutations, partitions, triangulations, matchings, spanning trees etc.
    [Show full text]
  • Geometry © 2007 Springer Science+Business Media, Inc
    Discrete Comput Geom 37:517–543 (2007) Discrete & Computational DOI: 10.1007/s00454-007-1319-6 Geometry © 2007 Springer Science+Business Media, Inc. Realizations of the Associahedron and Cyclohedron∗ Christophe Hohlweg1 and Carsten E. M. C. Lange2 1The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1 chohlweg@fields.utoronto.ca 2Fachbereich f¨ur Mathematik und Informatik, Freie Universit¨at Berlin, Arnimallee 3, D-14195 Berlin, Germany [email protected] Abstract. We describe many different realizations with integer coordinates for the associ- ahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott–Taubes polytope) and compare them with the permutahedron of type A and B, respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn as the only input data and which specializes to a procedure presented by J.-L. Loday for a certain orientation of An. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices of these types. 1. Introduction The associahedron Asso(An−1) was discovered by Stasheff in 1963 [27], and is of great importance in algebraic topology. It is a simple (n − 1)-dimensional convex polytope whose 1-skeleton is isomorphic to the undirected Hasse diagram of the Tamari lattice on the set Tn+2 of triangulations of an (n+2)-gon (see for instance [16]) and therefore a fun- damental example of a secondary polytope as described in [13]. Numerous realizations of the associahedron have been given, see [6], [17], and the references therein.
    [Show full text]
  • Flipping Geometric Triangulations on Hyperbolic Surfaces Vincent Despré, Jean-Marc Schlenker, Monique Teillaud
    Flipping Geometric Triangulations on Hyperbolic Surfaces Vincent Despré, Jean-Marc Schlenker, Monique Teillaud To cite this version: Vincent Despré, Jean-Marc Schlenker, Monique Teillaud. Flipping Geometric Triangulations on Hy- perbolic Surfaces. SoCG 2020 - 36th International Symposium on Computational Geometry, 2020, Zurich, Switzerland. 10.4230/LIPIcs.SoCG.2020.35. hal-02886493 HAL Id: hal-02886493 https://hal.inria.fr/hal-02886493 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Flipping Geometric Triangulations on Hyperbolic Surfaces Vincent Despré Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] Jean-Marc Schlenker Department of Mathematics, University of Luxembourg, Luxembourg http://math.uni.lu/schlenker/ [email protected] Monique Teillaud Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France https://members.loria.fr/Monique.Teillaud/ [email protected] Abstract We consider geometric triangulations of surfaces, i.e., triangulations whose edges can be realized by disjoint geodesic segments. We prove that the flip graph of geometric triangulations with fixed vertices of a flat torus or a closed hyperbolic surface is connected. We give upper bounds on the number of edge flips that are necessary to transform any geometric triangulation on such a surface into a Delaunay triangulation.
    [Show full text]
  • Cambrian Triangulations and Their Tropical Realizations
    CAMBRIAN TRIANGULATIONS AND THEIR TROPICAL REALIZATIONS VINCENT PILAUD Abstract. This paper develops a Cambrian extension of the work of C. Ceballos, A. Padrol and C. Sarmiento on ν-Tamari lattices and their tropical realizations. For any signature " 2 {±}n, we consider a family of "-trees in bijection with the triangulations of the "-polygon. These "-trees " define a flag regular triangulation T of the subpolytope conv f(ei• ; ej◦ ) j 0 ≤ i• < j◦ ≤ n + 1g of the product of simplices 4f0•;:::;n•g × 4f1◦;:::;(n+1)◦g. The oriented dual graph of the triangulation T " is the Hasse diagram of the (type A) "-Cambrian lattice of N. Reading. For " any I• ⊆ f0•; : : : ; n•g and J◦ ⊆ f1◦;:::; (n + 1)◦g, we consider the restriction T of the I•;J◦ " triangulation T to the face 4I• ×4J◦ . Its dual graph is naturally interpreted as the increasing flip graph on certain ("; I•;J◦)-trees, which is shown to be a lattice generalizing in particular the ν-Tamari lattices in the Cambrian setting. Finally, we present an alternative geometric realization of T " as a polyhedral complex induced by a tropical hyperplane arrangement. I•;J◦ 1. Introduction The Tamari lattice is a fundamental structure on Catalan objects such as triangulations of a convex polygon, binary trees, or Dyck paths. It is defined as the transitive closure of the graph of slope increasing flips on triangulations, of right rotations on binary trees, or of subpath translations on Dyck paths. Introduced by D. Tamari in [Tam51], it has been largely studied and extended in several directions, see [MHPS12] and the references therein for surveys on its various connections.
    [Show full text]
  • A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations
    Discrete & Computational Geometry https://doi.org/10.1007/s00454-018-0035-8 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations Anna Lubiw1 · Zuzana Masárová2 · Uli Wagner2 Received: 23 September 2017 / Revised: 31 August 2018 / Accepted: 5 September 2018 © The Author(s) 2018 Abstract Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadri- lateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f , ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjec- ture.
    [Show full text]
  • Oriented Flip Graphs of Polygonal Subdivisions and Noncrossing Tree Partitions
    ORIENTED FLIP GRAPHS OF POLYGONAL SUBDIVISIONS AND NONCROSSING TREE PARTITIONS ALEXANDER GARVER AND THOMAS MCCONVILLE Abstract. Given a tree embedded in a disk, we introduce a simplicial complex of noncrossing geodesics supported by the tree, which we call the noncrossing complex. The facets of the noncrossing complex have the structure of an oriented flip graph. Special cases of these oriented flip graphs include the Tamari lattice, type A Cambrian lattices, Stokes posets of quadrangulations, and oriented exchange graphs of quivers mutation-equivalent to a type A Dynkin quiver. We prove that the oriented flip graph is a polygonal, congruence-uniform lattice. To do so, we express the oriented flip graph as a lattice quotient of a lattice of biclosed sets. The facets of the noncrossing complex have an alternate ordering known as the shard intersection order. We prove that this shard intersection order is isomorphic to a lattice of noncrossing tree partitions, which general- izes the classical lattice of noncrossing set partitions. The oriented flip graph inherits a cyclic action from its congruence-uniform structure. On noncrossing tree partitions, this cyclic action generalizes the classical Kreweras complementation on noncrossing set partitions. Contents 1. Introduction 1 1.1. Organization 2 2. Preliminaries 3 2.1. Lattices 3 2.2. Congruence-uniform lattices 4 3. The noncrossing complex 7 4. Sublattice and quotient lattice description of the oriented flip graph 12 4.1. Biclosed collections of segments 12 4.2. A lattice congruence on biclosed sets 14 4.3. Map from biclosed sets to the oriented flip graph 15 5. Noncrossing tree partitions 19 5.1.
    [Show full text]