Download PDF 395.94 KB
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) . -
Durham E-Theses
Durham E-Theses Halogenated diazines and triazines Wood, D. E. How to cite: Wood, D. E. (1978) Halogenated diazines and triazines, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8324/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk UNIVERSITY OF Du'RKAM A THESIS entitled HALOGENATED DIAZINES AND TRIAZINES Submitted by D E. WOOD (Grey), B Sc (London) The copyright of this thesis rests with the author No quotation from it should be published without his prior written consent and information derived from it should be acknowledged A candidate for the degree of Doctor of Philosophy 19 78 sr i i > j J To my MoLhcr and FaLhcr WLLII Lh.inks for .ill LhaL Lhey have done ACKNOWLEDGEMLNTS I would like LO express my thanks Lo Professor R D Chambers i under whose guidance this research was undertaken, for considerable encouragement, advice and discussion Thanks are due to Dr R S Matthews for his expert advice with n in r. -
A Photoionization Reflectron Time‐Of‐Flight Mass Spectrometric
Articles ChemPhysChem doi.org/10.1002/cphc.202100064 A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH2) and 2H-Azirine (c-H2CCHN) Andrew M. Turner,[a, b] Sankhabrata Chandra,[a, b] Ryan C. Fortenberry,*[c] and Ralf I. Kaiser*[a, b] Ices of acetylene (C2H2) and ammonia (NH3) were irradiated with 9.80 eV, and 10.49 eV were utilized to discriminate isomers energetic electrons to simulate interstellar ices processed by based on their known ionization energies. Results indicate the galactic cosmic rays in order to investigate the formation of formation of ethynamine (HCCNH2) and 2H-azirine (c-H2CCHN) C2H3N isomers. Supported by quantum chemical calculations, in the irradiated C2H2:NH3 ices, and the energetics of their experiments detected product molecules as they sublime from formation mechanisms are discussed. These findings suggest the ices using photoionization reflectron time-of-flight mass that these two isomers can form in interstellar ices and, upon spectrometry (PI-ReTOF-MS). Isotopically-labeled ices confirmed sublimation during the hot core phase, could be detected using the C2H3N assignments while photon energies of 8.81 eV, radio astronomy. 1. Introduction acetonitrile (CH3CN; 1) and methyl isocyanide (CH3NC; 2) ‘isomer doublet’ (Figure 2) – the methyl-substituted counterparts of For the last decade, the elucidation of the fundamental reaction hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) – has pathways leading to structural isomers – molecules with the been detected toward the star-forming region SgrB2.[4,8–9] same molecular formula, but distinct connectivities of atoms – However, none of their higher energy isomers has ever been of complex organic molecules (COMs) in the interstellar identified in any astronomical environment: 2H-azirine (c- [10–14] [15–19] medium (ISM) has received considerable interest from the NCHCH2; 3), ethynamine (HCCNH2; 4), ketenimine [1–3] [20] [21] astrochemistry and physical chemistry communities. -
Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structur
Approved Minutes, Busan 2015 Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved Minutes of Division Committee Meeting in Busan, Korea, 8–9 August, 2015 1. Welcome, introductory remarks and housekeeping announcements Karl-Heinz Hellwich (KHH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee meeting for the first time. He described house rules and arrangements during the meeting. KHH also regretfully reported that it has come to his attention that since the Bangor meeting in August 2014, Prof. Derek Horton (Member, Division VIII task groups on Carbohydrate and Flavonoids nomenclature; Associate Member, IUBMB-IUPAC Joint Commission on Biochemical Nomenclature) and Dr. Libuse Goebels, Member of the former Commission on Nomenclature of Organic Chemistry) have passed away. The meeting attendees paid a tribute to their memory by a moment of silence. 2. Attendance and apologies Present: Karl-Heinz Hellwich (president, KHH) , Risto Laitinen (acting secretary, RSL), Richard Hartshorn (past-president, RMH), Michael Beckett (MAB), Alan Hutton (ATH), Gerry P. Moss (GPM), Michelle Rogers (MMR), Jiří Vohlídal (JV), Andrey Yerin (AY) Observers: Leah McEwen (part time, chair of proposed project, LME), Elisabeth Mansfield (task group chair, EM), Johan Scheers (young observer, day 1; JS), Prof. Kazuyuki Tatsumi (past- president of the union, part of day 2) Apologies: Ture Damhus (secretary, TD), Vefa Ahsen, Kirill Degtyarenko, Gernot Eller, Mohammed Abul Hashem, Phil Hodge (PH), Todd Lowary, József Nagy, Ebbe Nordlander (EN), Amélia Pilar Rauter (APR), Hinnerk Rey (HR), John Todd, Lidija Varga-Defterdarović. -
I. MATRIX ISOLATION of 1,1-DIAZENES II. DISTANCE, TEMPERATURE, and DYNAMIC SOLVENT EFFECTS on ELECTRON TRANSFER REACTIONS Thesis
I. MATRIX ISOLATION OF 1,1-DIAZENES II. DISTANCE, TEMPERATURE, AND DYNAMIC SOLVENT EFFECTS ON ELECTRON TRANSFER REACTIONS Thesis by James Edward Hanson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1990 (Submitted September 8, 1989) 11 © 1990 James Edward Hanson All rights Reserved ill Acknowledgements I would like to thank my advisor, Peter Dervan , for his enthusiasm and support during my studies at Caltech. I would also like to thank Professor John Hopfield for his availability when I needed assistance with the theoretical complexities of the electron transfer work. I am deeply indebted to Lutfur "Zeta" Khundkar and Joe Perry for their expert assistance and collaboration in making measurements and understanding the implications of the results. Al Sylwester was extremely helpful in my first year as I began to work on 1,1-diazenes, and Alvin Joran and Burt Leland made my transition to the electron transfer project relatively simple. I should also thank those in the Dervan group who helped me with synthetic problems, especially John Griffin and Warren Wade. I appreciated discussions with some of the electron transfer experts at Caltech: Professor Rudy Marcus, Dave Beratan, Jose Onuchic, Dave Malerba, and Tad Fox. There were many times when the men in the chemistry shops provided invaluable assistance--you guys are the best! There are many who made my stay at Caltech enjoyable--I'll remember skiing with John and Linda Griffin and Heinz Moser, basketball (and marathons!) with Dave Kaisaki, tennis with Erich Uffelmann, and late night conversations with Kevin Luebke. -
Studies on New Vasodilators, Ws-1228 a and B Ii. Structure and Synthesis
VOL. XXXV NO. 2 THE JOURNAL OF ANTIBIOTICS 157 STUDIES ON NEW VASODILATORS, WS-1228 A AND B II. STRUCTURE AND SYNTHESIS HIROKAZU TANAKA, KEIZO YOSHIDA, YOSHIKUNI ITOH and HIROSHI IMANAKA Fermentation Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan (Received for publication October 26, 1981) The structure of new hypotensive vasodilators, WS-1228 A and B, produced by Strepto- myces aureofaciens, were determined as I and 2, respectively, on the basis of their spectral and chemical evidences. WS-1228 A (1), having N-hydroxytriazene moiety, was synthesized from (E,E,E)-2,4,7- undecatrienal (4) by condensation with hydrazine hydrate followed by nitrosation. In the course of screening for new biologically active compounds, we found that Streptomyces aureofaciens produces hypotensive vasodilators designated as WS-1228 A (1) and B (2). Taxonomy, isolation and characterization of these compounds have been reported in the preceding papery. This report describes the structure elucidations of WS-1228 A (1) and B (2) and the synthesis of 1. WS-1228 A (1) WS-1228 B (2) WS-1228 A (1) was isolated as yellow needles [mp 100 - 102°C (dec.)] which showed a positive color reaction to ferric chloride reagent. Elemental analysis and mass spectrum established the molecular formula of 1 as C11H17N3O. Absorption bands at 1612 and 1580 cm-1 in its IR spectrum (Fig. 1) and at 300 nm in its UV spectrum suggested the presence of the triene oxime moiety. The PMR spectrum (Fig. Fig. 1. IR spectrum of WS-1228 A (1) (Nujol). 158 THE JOURNAL OF ANTIBIOTICS FEB. -
Ger'g .Tyson Jr
July 14, 1964 ' G. N. TYSON, JR 3,140,582 ROCKET PROPULSION METHOD USING BORON AND NITROGEN COMPOUNDS Filed April 14, 1959 Ger'g .Tyson Jr. INVENTOR. I", u .12) ATTORNEYS 3,l4,582 Patented July 14,, 1964 2 The nitrogen containing compound and the boron con 3,140,582 taining compound are reacted in such proportions that all ROCKET PROPULSION METHOD USING BORON of the nitrogen and all of the boron react to produce AND NOGEN COMPOUNDS boron nitride, the carbon is released as elemental carbon George N. Tyson, Jr., Claremont, Calif., assignor to Olin Mathieson Chemical Corporation, a corporation of and large volumes of hydrogen gas are produced. Virginia Nitrogen containing compounds which can be employed Filed Apr. 14, 1959, Ser. No. 806,396 as reactants include the saturated hydronitrogens such 20 Claims. (Cl. 60-354) as ammonia, hydrazine, triazane, tetrazane; the unsaturated hydronitrogens such as diimide, triazene, tetrazene, iso This invention relates to a method for producing large 10 tetrazene, ammonium azide, hydrazine azide, and hydra volumes of hot gases in a short period of time, which zoic acid; alkyl hydrazines such as methyl hydrazine, un large volumes of hot gases are useful for many purposes symmetrical dimethyl hydrazine, ethyl hydrazine, unsym including imparting thrust to jet propelled devices such metrical diethyl hydrazine; alkylamines including mixed al as rockets. kylamines such as methylamine, dimethylamine, trimeth Jet propelled devices are essentially of two types: those 15 ylamine, ethylamine, diethylamine, triethylarnine, methyl which depend upon an external source for a portion of ethyl amine, n-propylamine, isopropylamine, di-n-propyl the propellant, and those in which the propellant is en amine, tri-n-propylamine, methyl propyl amine, ethyl prop tirely contained within the device. -
Hydroxylamine-O -Sulfonic Acid — a Versatile Synthetic Reagent
Hydroxylamine-O -sulfonic acid — a versatile synthetic reagent Raymond G. Wallacef School of Chemistry Brunei University Uxbridge, Middlesex UBS 3PH Great Britain imidazoli nones and related derivatives are time to these various modes of reaction. discussed in the review. Many of these The uses of HOSA as a reagent are organiz preparations can be carried out in high ed below according to the different syn yield, thetic transformations that it can bring about. Hydroxylamine-Osulfonic acid, NHj-OSOjH (abbreviated to HOSA in Probably by far the most well known this article) has become in recent years and explored reactions of HOSA are commercially available. Although much animation reactions, illustrating elec fruitful chemistry has been carried out us trophilic attack by HOSA, with amination ing HOSA, to this author's knowledge, on nitrogen being the most important, there has been no systematic review in although a significant number of English* of its use as a synthetic reagent. It animations on both carbon and sulfur have is a chemically interesting compound been reported, Amination on phosphorus because of the ability of the nitrogen center also occurs. to act in the role of both nucleophile and AMINATION electrophile, dependent on circumstances, Synopsis (a) At a nitrogen atom and thus it has proved to be a reagent of Hydroxylamine-0-sulfonic acid (0 Preparation of mono- and di- great synthetic versatility. (HOSA) has only recently become widely substituted hydrazines and trisubstituied commercially available despite the fact that H,N-Nu hydrazinium salts it has proved to be a valuable synthetic reagent in preparative organic chemistry. -
Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wellesley College Wellesley College Wellesley College Digital Scholarship and Archive Faculty Research and Scholarship 6-27-2018 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin Pierce van Mulbregt Jeniffer Perea Muhammad Kasule Jean Huang See next page for additional authors Follow this and additional works at: https://repository.wellesley.edu/scholarship Version: Post-print Recommended Citation E. Mullikin, P. van Mulbregt, J. Perea, M. Kasule, J. Huang, C. Buffo, J. Campbell, L. Gates, H. M. Cumberbatch, Z. Peeler, H. Schneider, J. Lukens, S. T. Bao, R. Tano-Menka, S. Baniya, K. Cui, M. Thompson, A. Hay, L. Widdup, A. Caldwell-Overdier, J. Huang, M. C. Boyer, M. Rajappan, G. Echebiri and C. R. Arumainayagam, ACS Earth and Space Chemistry, 2018, DOI: 10.1021/ acsearthspacechem.8b00027. This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact [email protected]. Authors Ella Mullikin, Pierce van Mulbregt, Jeniffer Perea, Muhammad Kasule, Jean Huang, Christina Buffo, Jyoti Campbell, Leslie Gates, Helen M. Cumberbatch, Zoe Peeler, Hope Schneider, Julia Lukens, Si Tong Bao, Rhoda Tano-Menka, Subha Baniya, Kendra Cui, Mayla Thompson, Aury Hay, Lily Widdup, Anna Caldwell- Overier, Justine Huang, Michael C. Boyer, Mahesh Rajappan, Geraldine Echebiri, and Christopher R. Arumainayagam This article is available at Wellesley College Digital Scholarship and Archive: https://repository.wellesley.edu/scholarship/183 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin,1 Pierce van Mulbregt,2 Jeniffer Perea,1 Muhammad Kasule,3 Jean Huang,1 Christina Buffo,1 Jyoti Campbell,1 Leslie Gates,1 Helen M. -
Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation
Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Murray, Alexander T. and Yogesh Surendranath. “Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation.” ACS Catalysis 7, 5 (April 2017): 3307–3312 © 2017 American Chemical Society As Published http://dx.doi.org/10.1021/acscatal.7b00395 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/115122 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reversing The Native Aerobic Oxidation Reactivity Of Graphitic Car- bon: Heterogeneous Metal-Free Alkene Hydrogenation Alexander T. Murray and Yogesh Surendranath* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. KEYWORDS Hydrogenation, Carbon Black, Carbocatalysis, Diimide, Alkene ABSTRACT: Commercially available carbon blacks serve as effective metal-free catalysts for the selective hydrogenation of car- bon-carbon multiple bonds under aerobic conditions using hydrazine as the terminal reductant. The reaction, which proceeds through a putative diimide intermediate, displays high tolerance to a variety of functional groups, including those sensitive to nu- cleophilic displacement by hydrazine, aerobic oxidation, or hydrazine-mediated reduction. Hydrazine chemisorbs strongly to the carbon surface, attenuating its native oxidative reactivity and allowing for selective hydrogenation. The catalytic sequence estab- lished here effectively umpolungs the reactivity of carbon, thereby enabling the use of this low cost material in selective reduction catalysis. -
Bis(N-Heterocyclic Carbene)Carbazolide Pincer Complexes of S- and P-Block Metals and Related Studies
AUSTRALIA Bis(N-Heterocyclic Carbene)Carbazolide Pincer Complexes of s- and p-Block Metals and Related Studies A thesis in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Chemistry) by Kai N. Buys Supervisor: Assoc. Prof. Marcus L. Cole School of Chemistry The University of New South Wales Sydney, Australia April 2017 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: BUYS First name: KAI Other name/s: NICHOLAS Abbreviation for degree as given in the University calendar: PhD School: CHEMISTRY Faculty: SCIENCE Title: Bis(N Heterocyclic Carbene)Carbazolide Pincer Complexes of s- and p-Block Metals and Related Studies Abstract 350 words maximum: This work presents synthetic investigations into main group organometallic chemistry, placing particular emphasis on the study of bis-N-heterocyclic carbene (NHC) carbazolide coordination environments. Complexes of high and low oxidation state metals from the s- and p-blocks were targeted and these comprise the content of the experimental chapters two through five. Chapter one serves as a general introduction to rationalise the intent of this work. Herein focus is drawn to the nascent field of organometallic main group chemistry in the form of a discussion of its history using pertinent recent examples from the literature. Chapter two details the synthesis of an emerging class of versatile bis(NHC)carbazolide pincer ligands; bimcaR, and their complexation to s-block metals. The development of a new zwitterionic bis(imidazolium)carbazolide proligand is discussed, as well as the structural metrics of new lithium and magnesium bimcaR derivatives. Specifically, a new iodomagnesium complex is probed for its synthetic utility as a ligand-transfer agent and catalytic precursor in conjunction with attempts to access a reduced Mg(I) derivative. -
Nitroxyl (Hno) and Carbonylnitrenes
INVESTIGATION OF REACTIVE INTERMEDIATES: NITROXYL (HNO) AND CARBONYLNITRENES by Tyler A. Chavez A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February 2016 © 2016 Tyler A. Chavez All rights reserved Abstract Membrane inlet mass spectrometry (MIMS) is a well-established method used to detect gases dissolved in solution through the use of a semipermeable hydrophobic membrane that allows the dissolved gases, but not the liquid phase, to enter a mass spectrometer. Interest in the unique biological activity of azanone (nitroxyl, HNO) has highlighted the need for new sensitive and direct detection methods. Recently, MIMS has been shown to be a viable method for HNO detection with nanomolar sensitivity under physiologically relevant conditions (Chapter 2). In addition, this technique has been used to explore potential biological pathways to HNO production (Chapter 3). Nitrenes are reactive intermediates containing neutral, monovalent nitrogen atoms. In contrast to alky- and arylnitrenes, carbonylnitrenes are typically ground state singlets. In joint synthesis, anion photoelectron spectroscopic, and computational work we studied the three nitrenes, benzoylnitrene, acetylnitrene, and trifluoroacetylnitrene, with the purpose of determining the singlet-triplet splitting (ΔEST = ES – ET) in each case (Chapter 7). Further, triplet ethoxycarbonylnitrene and triplet t-butyloxycarbonylnitrene have been observed following photolysis of sulfilimine precursors by time-resolved infrared (TRIR) spectroscopy (Chapter 6). The observed growth kinetics of nitrene products suggest a contribution from both the triplet and singlet nitrene, with the contribution from the singlet becoming more prevalent in polar solvents. Advisor: Professor John P. Toscano Readers: Professor Kenneth D.