A Nuclear Mtdna Concatemer (Mega-NUMT) Could Mimic Paternal Inheritance of Mitochondrial Genome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Concatemerization of Synthetic Oligonucleotides Assembly and Ligand Interactions
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY CONCATEMERIZATION OF SYNTHETIC OLIGONUCLEOTIDES ASSEMBLY AND LIGAND INTERACTIONS LU SUN Department of Chemical and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY GÖTEBORG, SWEDEN 2014 Concatemerization of Synthetic Oligonucleotides Assembly and Ligand Interactions LU SUN ISBN 978-91-7597-092-9 © LU SUN, 2014 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3773 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 Cover image: Two ways of forming DNA concatemers. (Top right) Self-assembly of oligonucleotides in free solution. (Down) A three-step sequential assembly of DNA concatemer layer on a planar surface and RAD51 induced DNA layer extension. Back cover photo: © Keling Bi Printed by Chalmers Reproservice Göteborg, Sweden 2014 ii Concatemerization of Synthetic Oligonucleotides Assembly and Ligand Interactions LU SUN Department of Chemical and Biological Engineering Chalmers University of Technology ABSTRACT DNA nanotechnology has become an important research field because of its advantages in high predictability and accuracy of base paring recognition. For example, the DNA concatemer, one of the simplest DNA constructs in shape, has been used to enhance signals in biosensing. In this thesis, concatemers were designed and characterized towards sequence-specific target amplifiers for single-molecule mechanical studies. The project firstly focuses on exploring how to obtain concatemers of satisfactory length by self- assembly in bulk. Concatemers formed in solution by mixing of the different components are characterized using gel electrophoresis and AFM. Experimental results demonstrate that the concatemerization yield could be increased primarily by increasing the ionic strength, and linear concatemers of expected length could be separated from mixed sizes and shapes. -
Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers
Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers Douda Bensasson,* Dmitri A. Petrov,² De-Xing Zhang,³ Daniel L. Hartl,* and Godfrey M. Hewitt§ *Department of Organismic and Evolutionary Biology, Harvard University; ²Department of Biological Sciences, Stanford University; ³Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China; and §School of Biological Sciences, University of East Anglia, Norwich, England Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are ``dead on arrival''; they are abundant in many different eukaryotes, and their mitochondrial origin simpli®es the identi®cation of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and signi®cantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma). -
Genomic Analysis of Bacteriophages SP6 and K1-5, an Estranged Subgroup of the T7 Supergroup
doi:10.1016/j.jmb.2003.11.035 J. Mol. Biol. (2004) 335, 1151–1171 Genomic Analysis of Bacteriophages SP6 and K1-5, an Estranged Subgroup of the T7 Supergroup D. Scholl1*, J. Kieleczawa2, P. Kemp3, J. Rush4, C. C. Richardson4 C. Merril1, S. Adhya5 and I. J. Molineux3,6 1Section of Biochemical We have determined the genome sequences of two closely related lytic Genetics, The National bacteriophages, SP6 and K1-5, which infect Salmonella typhimurium LT2 Institute of Mental Health and Escherichia coli serotypes K1 and K5, respectively. The genome organ- NIH, 9000 Rockville Pike ization of these phages is almost identical with the notable exception of Bethesda, MD 20895, USA the tail fiber genes that confer the different host specificities. The two phages have diverged extensively at the nucleotide level but they are still 2Wyeth/Genetics Institute more closely related to each other than either is to any other phage cur- Cambridge, MA 02140, USA rently characterized. The SP6 and K1-5 genomes contain, respectively, 3Microbiology and Molecular 43,769 bp and 44,385 bp, with 174 bp and 234 bp direct terminal repeats. Genetics, University of Texas About half of the 105 putative open reading frames in the two genomes Austin, TX 78712, USA combined show no significant similarity to database proteins with a 4 known or predicted function that is obviously beneficial for growth of a Department of Biological bacteriophage. The overall genome organization of SP6 and K1-5 is com- Chemistry and Molecular parable to that of the T7 group of phages, although the specific order of Pharmacology, Harvard genes coding for DNA metabolism functions has not been conserved. -
Ancestral Gene Acquisition As the Key to Virulence Potential in Environmental Vibrio Populations
The ISME Journal (2018) 12:2954–2966 https://doi.org/10.1038/s41396-018-0245-3 ARTICLE Ancestral gene acquisition as the key to virulence potential in environmental Vibrio populations 1,2 1,2 1,2 1,2 2 1,3 Maxime Bruto ● Yannick Labreuche ● Adèle James ● Damien Piel ● Sabine Chenivesse ● Bruno Petton ● 4 1,2 Martin F. Polz ● Frédérique Le Roux Received: 4 March 2018 / Revised: 30 June 2018 / Accepted: 6 July 2018 / Published online: 2 August 2018 © The Author(s) 2018. This article is published with open access Abstract Diseases of marine animals caused by bacteria of the genus Vibrio are on the rise worldwide. Understanding the eco- evolutionary dynamics of these infectious agents is important for predicting and managing these diseases. Yet, compared to Vibrio infecting humans, knowledge of their role as animal pathogens is scarce. Here we ask how widespread is virulence among ecologically differentiated Vibrio populations, and what is the nature and frequency of virulence genes within these populations? We use a combination of population genomics and molecular genetics to assay hundreds of Vibrio strains for their virulence in the oyster Crassostrea gigas, a unique animal model that allows high-throughput infection assays. We 1234567890();,: 1234567890();,: show that within the diverse Splendidus clade, virulence represents an ancestral trait but has been lost from several populations. Two loci are necessary for virulence, the first being widely distributed across the Splendidus clade and consisting of an exported conserved protein (R5.7). The second is a MARTX toxin cluster, which only occurs within V. splendidus and is for the first time associated with virulence in marine invertebrates. -
Numts in Sequenced Eukaryotic Genomes
NUMTs in Sequenced Eukaryotic Genomes Erik Richly and Dario Leister Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called nuclear mitochondrial DNA (NUMT). Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size. Copy number ranges from none or few copies in Anopheles, Caenorhabditis, Plasmodium, Drosophila, and Fugu to more than 500 in human, rice, and Arabidopsis. The average size is between 62 (baker’s yeast) and 647 bps (Neurospora), respectively. A correlation between the abundance of NUMTs and the size of the nuclear or the mitochondrial genomes, or of the nuclear gene density, is not evident. Other factors, such as the number and/or stability of mitochondria in the germline, or species-specific mechanisms controlling accumulation/loss of nuclear DNA, might be responsible for the interspecific diversity in NUMT accumulation. Key words: duplication, gene transfer, genome evolution, mito- chondria, NUMT, pseudogene. In eukaryotes, nuclear DNA exists that is homologous they range from less than ten in Fugu, Drosophila, to mitochondrial DNA (mtDNA). These sequences, which Plasmodium, and Caenorhabditis to more than 500 in originate from the invasion of nuclear DNA by mtDNA, human, rice, and Arabidopsis. Between 10 and 100 NUMTs are designated nuclear mtDNA (NUMT) (Lopez et al. are present in rat, Ciona, Neurospora, and in the yeast 1994). NUMTs exhibit different degrees of homology to species. No NUMTs at all have been detected in Anopheles. their mitochondrial counterparts; are variable in size; For N. crassa only a preliminary estimate is possible evenly distributed within and among chromosomes, and, because sequence information of its mtDNA is still in cases, are highly rearranged and/or fragmented (Zhang incomplete; nevertheless, between 11 (threshold ,10250) and Hewitt 1996; Ricchetti, Fairhead, and Dujon 1999; and 22 (1024) NUMTs exist in this fungal species (fig. -
Numts) in Fig Wasp Genomes
insects Article Tracking the Distribution and Burst of Nuclear Mitochondrial DNA Sequences (NUMTs) in Fig Wasp Genomes 1, 1, 2 1,2, 1, Jian-Xia Wang y, Jing Liu y, Yun-Heng Miao , Da-Wei Huang * and Jin-Hua Xiao * 1 Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; [email protected] (J.-X.W.); [email protected] (J.L.) 2 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] * Correspondence: [email protected] (D.-W.H.); [email protected] (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.) These authors contributed equally to this work. y Received: 4 September 2020; Accepted: 6 October 2020; Published: 7 October 2020 Simple Summary: Nuclear mitochondrial DNA sequences (NUMTs), which result from the insertion of exogenous mtDNA into the nuclear genome, are widely distributed in eukaryotes. However, how NUMTs are inserted into the nuclear genome and their post-insertion fates remain a mystery. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, which will be helpful to study the biological issues of NUMTs. We here select 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results show that the distributions of NUMTs are species- or lineage-specific. Furthermore, genomic environmental factors such as genome size, the damage-prone regions, and the mode of TE dynamics can determine the insertion and post-insertion fate of NUMTs. -
Mitochondrial Sequences Or Numts –
bioRxiv preprint doi: https://doi.org/10.1101/739805; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Mitochondrial sequences or Numts – 2 By-catch differs between sequencing 3 methods 4 Running title: Numts in long-read data 5 Authors: 6 Hannes Becher1,2 & Richard A Nichols1 7 1 Queen Mary University of London, School of Biological and Chemical Sciences 8 2 Present address: University of Edinburgh, Institute of Evolutionary Biology 9 10 Abstract 11 Nuclear inserts derived from mitochondrial DNA (Numts) encode valuable information. 12 Being mostly non-functional, and accumulating mutations more slowly than mitochondrial 13 sequence, they act like molecular fossils – they preserve information on the ancestral 14 sequences of the mitochondrial DNA. In addition, changes to the Numt sequence since their 15 insertion into the nuclear genome carry information about the nuclear phylogeny. These 16 attributes cannot be reliably exploited if Numt sequence is confused with the mitochondrial 17 genome (mtDNA). The analysis of mtDNA would be similarly compromised by any confusion, 18 for example producing misleading results in DNA barcoding that used mtDNA sequence. 1 bioRxiv preprint doi: https://doi.org/10.1101/739805; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Bacteriophage T4 Lysis and Lysis Inhibition
BACTERIOPHAGE T4 LYSIS AND LYSIS INHIBITION: MOLECULAR BASIS OF AN ANCIENT STORY A Dissertation by TRAM ANH THI TRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2007 Major subject: Biochemistry BACTERIOPHAGE T4 LYSIS AND LYSIS INHIBITION: MOLECULAR BASIS OF AN ANCIENT STORY A Dissertation by TRAM ANH THI TRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Ryland F. Young Committee Members, Deborah Siegele Paul Fitzpatrick Michael Polymenis Head of Department, Gregory D. Reinhart May 2007 Major subject: Biochemistry iii ABSTRACT Bacteriophage T4 Lysis and Lysis Inhibition: Molecular Basis of an Ancient Story. (May 2007) Tram Anh Thi Tran, B.S., Stephen F. Austin State University; M.S., Stephen F. Austin State University Chair of Advisory Committee: Dr. Ryland F. Young T4 requires two proteins: holin, T (lesion formation and lysis timing) and endolysin, E (cell wall degradation) to lyse the host at the end of its life cycle. E is a cytoplasmic protein that sequestered away from its substrate, but the inner membrane lesion formed by T allows E to gain access to the cell wall. T4 exhibits lysis inhibition (LIN), a phenomenon in which a second T4 infection occurs ≤ 3 min after primary infection results a delay in lysis. Mutations that abolish LIN mapped to several genes but only rV encoding the holin, T, and rI, encoding the antiholin, RI, are required for LIN in all hosts which support T4 replication. -
Genome-Wide Polymorphism and Signatures of Selection in the Symbiotic Sea Anemone Aiptasia Emily S
Bellis et al. BMC Genomics (2016) 17:160 DOI 10.1186/s12864-016-2488-6 RESEARCHARTICLE Open Access Genome-wide polymorphism and signatures of selection in the symbiotic sea anemone Aiptasia Emily S. Bellis, Dana K. Howe and Dee R. Denver* Abstract Background: Coral reef ecosystems are declining in response to global climate change and anthropogenic impacts. Yet patterns of standing genetic variation within cnidarian species, a major determinant of adaptive potential, are virtually unknown at genome-scale resolution. We explore patterns of genome-wide polymorphism and identify candidate loci under selection in the sea anemone Aiptasia, an important laboratory model system for studying the symbiosis between corals and dinoflagellate algae of the genus Symbiodinium. Results: Low coverage genome sequencing revealed large genetic distances among globally widespread lineages, novel candidate targets of selection, and considerably higher heterozygosity than previously reported for Aiptasia. More than 670,000 single nucleotide polymorphisms were identified among 10 Aiptasia individuals including two pairs of genetic clones. Evolutionary relationships based on genome-wide polymorphism supported the current paradigm of a genetically distinct population from the US South Atlantic that harbors diverse Symbiodinium clades. However, anemones from the US South Atlantic demonstrated a striking lack of shared derived polymorphism. Heterozygosity was an important feature shaping nucleotide diversity patterns: at any given SNP site, more than a third of individuals genotyped were heterozygotes, and heterozygosity within individual genomes ranged from 0.37–0.58 %. Analysis of nonsynonymous and synonymous sites suggested that highly heterozygous regions are evolving under relaxed purifying selection compared to the rest of the Aiptasia genome. -
DNA Concatemers MICHAEL D
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 153-157, January 1994 Biochemistry Deletion of the E4 region of the genome produces adenovirus DNA concatemers MICHAEL D. WEIDEN AND HAROLD S. GINSBERG* Departments of Medicine and Microbiology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 Contributed by Harold S. Ginsberg, September 20, 1993 ABSTRACT Two mutants containing large deletions in the by replication-induced recombination (11). The last 45 bp of E4 region of the adenovirus genome H5dl366 (91.9-98.3 map the genome contain the necessary sequence information for units) and H2dl808 (93.0-97.1 map units) were used to inves- replication, and any deletion of the terminal cytosine abol- tigate the role of E4 genes in adenovirus DNA synthesis. ishes DNA synthesis (12, 13). Infection of KB human epidermoid carcinoma cells with either Other viral gene products may be involved in viral DNA mutant resulted in production of large concatemers of viral synthesis, and other mechanisms not yet elucidated may be DNA. Only monomer viral genome forms were produced, required for completion of viral DNA replication. Some however, when mutants infected W162 cells, a monkey kidney phenomena not accounted for in the current model include cell line transformed with and expressing the E4 genes. Dif- the following: circular, supercoiled, and multimeric viral fusible E4 gene products, therefore, complement the E4 mutant DNA molecules, which were identified in electron micro- phenotype. The viral DNA concatemers produced in d1366- and scopic studies (14); the pL 5'-to-3' exonuclease required in d1808-infected KB cells did not have any specific orientation of the in vitro model (9) produces defective strands that need monomer joining: the junctions consisted of head-to-head, additional processing for maturation; a large proportion of head-to-tail, and tall-to-tail joints. -
Phylogenetics and Mitogenome Organisation in Black Corals (Anthozoa: Hexacorallia: Antipatharia): an Order-Wide Survey Inferred from Complete Mitochondrial Genomes
ORIGINAL RESEARCH published: 23 June 2020 doi: 10.3389/fmars.2020.00440 Phylogenetics and Mitogenome Organisation in Black Corals (Anthozoa: Hexacorallia: Antipatharia): An Order-Wide Survey Inferred From Complete Mitochondrial Genomes Nick J. Barrett 1,2,3*, Raissa I. Hogan 4, A. Louise Allcock 4, Tina Molodtsova 5, 1 6 1 Edited by: Kevin Hopkins , Andrew J. Wheeler and Chris Yesson Luisa Fernanda Dueñas, 1 Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom, 2 Imperial College London, National University of London, United Kingdom, 3 Natural History Museum, London, United Kingdom, 4 School of Natural Sciences and Ryan Colombia, Colombia Institute, National University of Ireland, Galway, Ireland, 5 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Reviewed by: Moscow, Russia, 6 School of Biological, Earth and Environmental Sciences/iCRAG/MaREI/ERI, University College Cork, Cork, Mercer Robert Brugler, Ireland New York City College of Technology (CUNY), United States Jaret Bilewitch, Black corals (Anthozoa: Antipatharia) are an ecologically and culturally important The University of group of deep-sea cnidarians. However, as the majority of species inhabit depths Queensland, Australia >50 m, they are relatively understudied. The inaccessibility of well-preserved tissue for *Correspondence: Nick J. Barrett species of interest has limited the scope of molecular analysis, and as a result only [email protected] a small number of antipatharian mitochondrial genomes have been published. Using next generation sequencing, 18 complete and five partial antipatharian mitochondrial Specialty section: genomes were assembled, increasing the number of complete mitochondrial genomes This article was submitted to Deep-Sea Environments and Ecology, to 22. -
Experimental Detection of Mitochondrial DNA Insertions in Nuclear Genome of Chicken Embryos Developed from X-Ray Irradiated Eggs Serazhutdin A
Abdullaev and Gaziev. J Genet Genome Res 2014, 1:2 Journal of ISSN: 2378-3648 Genetics and Genome Research Research Article: Open Access Experimental Detection of Mitochondrial DNA Insertions in Nuclear Genome of Chicken Embryos Developed from X-Ray Irradiated Eggs Serazhutdin A. Abdullaev* and Azhub I. Gaziev Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation *Corresponding author: Serazhutdin A. Abdullaev, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation, Tel: +007-4967-739364; E-mail: [email protected] chromosomes, persist in the genome as “fossil molecular elements” Abstract and form a “library” of mtDNA fragments that have migrated into the The transfer of mitochondrial DNA (mtDNA) into the nuclear nuclear genome, thus providing a highly significant information on genome is a dynamic process, resulting in the formation of the history of genome evolution [2,4-6]. Numt-insertions can be not nuclear mitochondrial (numt) pseudogenes or numt-insertions. Experimental determination of de novo numt-insertions is limited only considered as neutral polymorphic sites but are often associated by the extensive homology of mtDNA in the nuclear DNA (nDNA) with carcinogenesis, aging and genetic diseases in humans [7-12]. of eukaryotes. Since chicken nDNA contains only 13 numt- The incorporation of mtDNA fragments into the nuclear genome pseudogenes, we tried to follow experimentally the induction of numt-insertions de novo in the nDNA of chicken (Gallus gallus) requires their escape from mitochondria. This may occur due to embryos developed from eggs subjected to X-ray irradiation.