View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter http://dx.doi.org/10.1090/gsm/077 Hamilton's Ricci Flow This page intentionally left blank Hamilton' s Ricc i Flo w Bennett Chow Peng Lu Lei Ni Graduate Studies in Mathematics Volum e 11 j^^ MtSJff l America n Mathematica l Societ y Wm^jz Scienc e Pres s Editorial Board David Cox Walter Craig Nikolai Ivanov Steven G. Krantz David Saltman (Chair) This edition is published by the American Mathematical Society under license from Science Press. 2000 Mathematics Subject Classification. Primary 53C44, 53C21, 58J35, 35K55. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-77 Library of Congress Cataloging-in-Publication Data Chow, Bennett. Hamilton's Ricci flow / Bennett Chow, Peng Lu, and Lei Ni. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 77) Includes bibliographical references and index. ISBN-13: 978-0-8218-4231-7 (alk. paper) ISBN-10: 0-8218-4231-5 (alk. paper) 1. Global differential geometry. 2. Ricci flow. 3. Riemannian manifolds. I. Lu, Peng, 1964- II. Ni, Lei, 1969- III. Title. QA670.C455 2006 516.3/62—dc22 2006043027 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. © 2006 by the authors. All rights reserved. Reprinted by the American Mathematical Society, 2010. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 15 14 13 12 11 10 Contents Preface xi Acknowledgments xvii A Detailed Guide for the Reader xxi Notation and Symbols xxxv Chapter 1. Riemannian Geometry 1 §1. Introduction 1 §2. Metrics, connections, curvatures and covariant differentiation 2 §3. Basic formulas and identities in Riemannian geometry 10 §4. Exterior differential calculus and Bochner formulas 14 §5. Integration and Hodge theory 20 §6. Curvature decomposition and locally conformally flat manifolds 25 §7. Moving frames and the Gauss-Bonnet formula 32 §8. Variation of arc length, energy and area 41 §9. Geodesies and the exponential map 52 §10. Second fundamental forms of geodesic spheres 58 §11. Laplacian, volume and Hessian comparison theorems 67 §12. Proof of the comparison theorems 73 §13. Manifolds with nonnegative curvature 80 §14. Lie groups and left-invariant metrics 87 §15. Notes and commentary 89 VI Contents Chapter 2. Fundamentals of the Ricci Flow Equation 95 §1. Geometric flows and geometrization 96 §2. Ricci flow and the evolution of scalar curvature 98 §3. The maximum principle for heat-type equations 100 §4. The Einstein-Hilbert functional 104 §5. Evolution of geometric quantities 108 §6. DeTurck's trick and short time existence 113 §7. Reaction-diffusion equation for the curvature tensor 119 §8. Notes and commentary 123 Chapter 3. Closed 3-manifolds with Positive Ricci Curvature 127 §1. Hamilton's 3-manifolds with positive Ricci curvature theorem 127 §2. The maximum principle for tensors 128 §3. Curvature pinching estimates 131 §4. Gradient bounds for the scalar curvature 136 §5. Curvature tends to constant 140 §6. Exponential convergence of the normalized flow 142 §7. Notes and commentary 149 Chapter 4. Ricci Solitons and Special Solutions 153 §1. Gradient Ricci solitons 154 §2. Gaussian and cylinder solitons 157 §3. Cigar steady soliton 159 §4. Rosenau solution 162 §5. An expanding soliton 164 §6. Bryant soliton 167 §7. Homogeneous solutions 169 §8. The isometry group 175 §9. Notes and commentary 176 Chapter 5. Isoperimetric Estimates and No Local Collapsing 181 §1. Sobolev and logarithmic Sobolev inequalities 181 §2. Evolution of the length of a geodesic 186 §3. Isoperimetric estimate for surfaces 188 §4. Perelman's no local collapsing theorem 190 §5. Geometric applications of no local collapsing 198 §6. 3-manifolds with positive Ricci curvature revisited 206 Contents vn §7. Isoperimetric estimate for 3-dimensional Type I solutions 208 §8. Notes and commentary 211 Chapter 6. Preparation for Singularity Analysis 213 §1. Derivative estimates and long time existence 213 §2. Proof of Shi's local first and second derivative estimates 218 §3. Cheeger-Gromov-type compactness theorem for Ricci flow 233 §4. Long time existence of solutions with bounded Ricci curvature 237 §5. The Hamilton-Ivey curvature estimate 240 §6. Strong maximum principles and metric splitting 245 §7. Rigidity of 3-manifolds with nonnegative curvature 248 §8. Notes and commentary 250 Chapter 7. High-dimensional and Noncompact Ricci Flow 253 §1. Spherical space form theorem of Huisken-Margerin-Nishikawa 254 §2. 4-manifolds with positive curvature operator 259 §3. Manifolds with nonnegative curvature operator 263 §4. The maximum principle on noncompact manifolds 272 §5. Complete solutions of the Ricci flow on noncompact manifolds 279 §6. Notes and commentary 286 Chapter 8. Singularity Analysis 291 §1. Singularity dilations and types 292 §2. Point picking and types of singularity models 297 §3. Geometric invariants of ancient solutions 307 §4. Dimension reduction 316 §5. Notes and commentary 326 Chapter 9. Ancient Solutions 327 §1. Classification of ancient solutions on surfaces 328 §2. Properties of ancient solutions that relate to their type 338 §3. Geometry at infinity of gradient Ricci solitons 353 §4. Injectivity radius of steady gradient Ricci solitons 364 §5. Towards a classification of 3-dimensional ancient solutions 368 §6. Classification of 3-dimensional shrinking Ricci solitons 375 §7. Summary and open problems 388 Chapter 10. Differential Harnack Estimates 391 viii Contents §1. Harnack estimates for the heat and Laplace equations 392 §2. Harnack estimate on surfaces with \ > 0 397 §3. Linear trace and interpolated Harnack estimates on surfaces 401 §4. Hamilton's matrix Harnack estimate for the Ricci flow 405 §5. Proof of the matrix Harnack estimate 410 §6. Harnack and pinching estimates for linearized Ricci flow 415 §7. Notes and commentary 420 Chapter 11. Space-time Geometry 425 §1. Space-time solution to the Ricci flow for degenerate metrics 426 §2. Space-time curvature is the matrix Harnack quadratic 433 §3. Potentially infinite metrics and potentially infinite dimensions 434 §4. Renormalizing the space-time length yields the ^-length 452 §5. Space-time DeTurck's trick and fixing the measure 453 §6. Notes and commentary 456 Appendix A. Geometric Analysis Related to Ricci Flow 461 §1. Compendium of inequalities 461 §2. Comparison theory for the heat kernel 463 §3. Green's function 465 §4. The Liouville theorem revisited 466 §5. Eigenvalues and eigenfunctions of the Laplacian 467 §6. The determinant of the Laplacian 476 §7. Parametrix for the heat equation 485 §8. Monotonicity for harmonic functions and maps 492 §9. Bieberbach theorem 494 §10. Notes and commentary 500 Appendix B. Analytic Techniques for Geometric Flows 503 §1. Riemannian surfaces 503 §2. Kazdan-Warner-type identities and solitons 516 §3. Andrews' Poincare-type inequality 517 §4. The Yamabe flow and Aleksandrov reflection 520 §5. The cross curvature flow 528 §6. Time derivative of the sup function 531 §7. Notes and commentary 532 Appendix S. Solutions to Selected Exercises 535 Contents IX Bibliography 573 Index 603 This page intentionally left blank Preface About the book. Ricci flow is a geometric and analytic evolution equa• tion which we believe is related to physical reality. One of the underlying principles of science is unity. In Ricci flow we see the unity of geometry and analysis. It is also expected to exhibit unity with low-dimensional topology. In this book we emphasize the more geometric and analytic aspects of Ricci flow rather than the topological aspects. We also attempt to convey some of the relations and formal similarities between Ricci flow and other geometric flows such as mean curvature flow. The interaction of techniques and ideas between Ricci flow and other geometric flows is a two-way street. So we hope the reader with a more general interest in geometric flows will benefit from the usefulness of applying ideas originating in Ricci flow to the study of other geometric flows. We have not aimed at completeness, even in the realm of the limited material that we cover. A more extensive coverage of the subject of Ricci flow is planned in the book by Dan Knopf and one of the authors [163] and its multi-authored sequel [153]. At places we follow the informal style of lecture notes and have at• tempted to cover some of the basic material in a relatively direct and effi• cient way. At the same time we take the opportunity to expose the reader to techniques, some of which lie outside of the subject of Ricci flow per se, which he or she may find useful in pursuing research in Ricci flow. So, metaphorically speaking, this book is a hybrid between rushing to work in the morning on a cold and blistery winter day and a casual stroll through the park on a warm and sunny midsummer afternoon. As much as possible, we have attempted to construct the book so that the chapters, and in some cases, individual sections, are relatively independent. In this way we hope XI Xll Preface that the book may be used as both an introduction and as a reference.
Recommended publications
  • Sobolev Inequalities, Heat Kernels Under Ricci Flow, and The
    i \bookQiCRC-FM" | 2010/5/28 | 9:46 | page 2 | i i i Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture i i i i i \bookQiCRC-FM" | 2010/5/28 | 9:46 | page 3 | i i i i i i i i \bookQiCRC-FM" | 2010/5/28 | 9:46 | page 4 | i i i Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture Qi S. Zhang i i i i CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140515 International Standard Book Number-13: 978-1-4398-3460-2 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • The Ricci Flow: Techniques and Applications Part IV: Long-Time Solutions and Related Topics
    Mathematical Surveys and Monographs Volume 206 The Ricci Flow: Techniques and Applications Part IV: Long-Time Solutions and Related Topics Bennett Chow Sun-Chin Chu David Glickenstein Christine Guenther James Isenberg Tom Ivey Dan Knopf Peng Lu Feng Luo Lei Ni American Mathematical Society The Ricci Flow: Techniques and Applications Part IV: Long-Time Solutions and Related Topics http://dx.doi.org/10.1090/surv/206 Mathematical Surveys and Monographs Volume 206 The Ricci Flow: Techniques and Applications Part IV: Long-Time Solutions and Related Topics Bennett Chow Sun-Chin Chu David Glickenstein Christine Guenther James Isenberg Tom Ivey Dan Knopf Peng Lu Feng Luo Lei Ni American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Robert Guralnick Benjamin Sudakov Michael A. Singer, Chair Constantin Teleman MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 53C44, 53C21, 53C43, 58J35, 35K59, 35K05, 57Mxx, 57M50. For additional information and updates on this book, visit www.ams.org/bookpages/surv-206 Library of Congress Cataloging-in-Publication Data Chow, Bennett. The Ricci flow : techniques and applications / Bennett Chow... [et al.]. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 135) Includes bibliographical references and indexes. ISBN-13: 978-0-8218-3946-1 (pt. 1) ISBN-10: 0-8218-3946-2 (pt. 1) 1. Global differential geometry. 2. Ricci flow. 3. Riemannian manifolds. I. Title. QA670.R53 2007 516.362—dc22 2007275659 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research.
    [Show full text]
  • Curriculum Vitae Fernando Codá Marques January 16Th, 2019
    Curriculum Vitae Fernando Cod´aMarques January 16th, 2019 Personal information Name: Fernando Cod´aMarques Date of birth: October 8th of 1979 Nationality: Brazilian Address Princeton University Fine Hall, Washington Road Princeton NJ 08544-1000 USA Phone: (609) 258-1769 Fax: (609) 258-1367 Education 2000-2003 Ph.D. in Mathematics Cornell University, C. U., Ithaca/NY USA Thesis Advisor : Jos´eF. Escobar Title : Existence and compactness theorems on conformal deformations of metrics Scholarship from : Conselho Nacional de Desenvolvimento Cient´ıficoe Tecnol´ogico(CNPq) 1998-1999 Mathematics M.S. IMPA, Rio de Janeiro/RJ Brazil Scholarship from : Conselho Nacional de Desenvolvimento Cient´ıficoe Tecnol´ogico(CNPq) 1996-1999 Mathematics B.S. UFAL - Universidade Federal de Alagoas Macei´o,Alagoas - Brazil Employment history 2003-2007 Assistant Professor, IMPA 2007-2010 Associate Professor, IMPA 2010-2014 Professor, IMPA 2014- Professor, Princeton University Visiting Positions 2018 Distinguished Visitor Professor, IAS, Princeton - Special Program 2018-2019: \Variational Methods in Geometry" 2017 Dean's Distinguished Visiting Professor, Fields Institute, Toronto, Canada 2013-2014 Ecole´ Polytechnique, Ecole´ Normale Sup´erieureand Universit´eParis-Est Marne la Vall´ee,Paris, France 2012 Institut Henri Poincar´e,Paris, France (1 month) 2011 Stanford University, USA (2 months) 2011 Institut Fourier, Grenoble, France (1 month) 2010 Stanford University, USA (3 months) 2009 Stanford University, USA (1 month) 2008 Member of the Institute for Advanced
    [Show full text]
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • Proper Affine Actions and Geodesic Flows of Hyperbolic Surfaces
    ANNALS OF MATHEMATICS Proper affine actions and geodesic flows of hyperbolic surfaces By William M. Goldman, Franc¸ois Labourie, and Gregory Margulis SECOND SERIES, VOL. 170, NO. 3 November, 2009 anmaah Annals of Mathematics, 170 (2009), 1051–1083 Proper affine actions and geodesic flows of hyperbolic surfaces By WILLIAM M. GOLDMAN, FRANÇOIS LABOURIE, and GREGORY MARGULIS Abstract 2 Let 0 O.2; 1/ be a Schottky group, and let † H =0 be the corresponding D hyperbolic surface. Let Ꮿ.†/ denote the space of unit length geodesic currents 1 on †. The cohomology group H .0; V/ parametrizes equivalence classes of affine deformations u of 0 acting on an irreducible representation V of O.2; 1/. We 1 define a continuous biaffine map ‰ Ꮿ.†/ H .0; V/ R which is linear on 1 W ! the vector space H .0; V/. An affine deformation u acts properly if and only if ‰.; Œu/ 0 for all Ꮿ.†/. Consequently the set of proper affine actions ¤ 2 whose linear part is a Schottky group identifies with a bundle of open convex cones 1 in H .0; V/ over the Fricke-Teichmüller space of †. Introduction 1. Hyperbolic geometry 2. Affine geometry 3. Flat bundles associated to affine deformations 4. Sections and subbundles 5. Proper -actions and proper R-actions 6. Labourie’s diffusion of Margulis’s invariant 7. Nonproper deformations 8. Proper deformations References Goldman gratefully acknowledges partial support from National Science Foundation grants DMS- 0103889, DMS-0405605, DMS-070781, the Mathematical Sciences Research Institute and the Oswald Veblen Fund at the Insitute for Advanced Study, and a Semester Research Award from the General Research Board of the University of Maryland.
    [Show full text]
  • Math 865, Topics in Riemannian Geometry
    Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor .
    [Show full text]
  • 3+1 Formalism and Bases of Numerical Relativity
    3+1 Formalism and Bases of Numerical Relativity Lecture notes Eric´ Gourgoulhon Laboratoire Univers et Th´eories, UMR 8102 du C.N.R.S., Observatoire de Paris, Universit´eParis 7 arXiv:gr-qc/0703035v1 6 Mar 2007 F-92195 Meudon Cedex, France [email protected] 6 March 2007 2 Contents 1 Introduction 11 2 Geometry of hypersurfaces 15 2.1 Introduction.................................... 15 2.2 Frameworkandnotations . .... 15 2.2.1 Spacetimeandtensorfields . 15 2.2.2 Scalar products and metric duality . ...... 16 2.2.3 Curvaturetensor ............................... 18 2.3 Hypersurfaceembeddedinspacetime . ........ 19 2.3.1 Definition .................................... 19 2.3.2 Normalvector ................................. 21 2.3.3 Intrinsiccurvature . 22 2.3.4 Extrinsiccurvature. 23 2.3.5 Examples: surfaces embedded in the Euclidean space R3 .......... 24 2.4 Spacelikehypersurface . ...... 28 2.4.1 Theorthogonalprojector . 29 2.4.2 Relation between K and n ......................... 31 ∇ 2.4.3 Links between the and D connections. .. .. .. .. .. 32 ∇ 2.5 Gauss-Codazzirelations . ...... 34 2.5.1 Gaussrelation ................................. 34 2.5.2 Codazzirelation ............................... 36 3 Geometry of foliations 39 3.1 Introduction.................................... 39 3.2 Globally hyperbolic spacetimes and foliations . ............. 39 3.2.1 Globally hyperbolic spacetimes . ...... 39 3.2.2 Definition of a foliation . 40 3.3 Foliationkinematics .. .. .. .. .. .. .. .. ..... 41 3.3.1 Lapsefunction ................................. 41 3.3.2 Normal evolution vector . 42 3.3.3 Eulerianobservers ............................. 42 3.3.4 Gradients of n and m ............................. 44 3.3.5 Evolution of the 3-metric . 45 4 CONTENTS 3.3.6 Evolution of the orthogonal projector . ....... 46 3.4 Last part of the 3+1 decomposition of the Riemann tensor .
    [Show full text]
  • View Front and Back Matter from The
    VOLUME 19 NUMBER 4 OCTOBER 2006 J OOUF THE RNAL A M E R I C AN M A T H E M A T I C A L S O C I ET Y EDITORS Ingrid Daubechies Robert Lazarsfeld John W. Morgan Andrei Okounkov Terence Tao ASSOCIATE EDITORS Francis Bonahon Robert L. Bryant Weinan E Pavel I. Etingof Mark Goresky Alexander S. Kechris Robert Edward Kottwitz Peter Kronheimer Haynes R. Miller Andrew M. Odlyzko Bjorn Poonen Victor S. Reiner Oded Schramm Richard L. Taylor S. R. S. Varadhan Avi Wigderson Lai-Sang Young Shou-Wu Zhang PROVIDENCE, RHODE ISLAND USA ISSN 0894-0347 Available electronically at www.ams.org/jams/ Journal of the American Mathematical Society This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics. Submission information. See Information for Authors at the end of this issue. Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval. Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. Subscription information. The Journal of the American Mathematical Society is published quarterly. Beginning January 1996 the Journal of the American Mathemati- cal Society is accessible from www.ams.org/journals/. Subscription prices for Volume 19 (2006) are as follows: for paper delivery, US$276 list, US$221 institutional member, US$248 corporate member, US$166 individual member; for electronic delivery, US$248 list, US$198 institutional member, US$223 corporate member, US$149 individual mem- ber.
    [Show full text]
  • Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems
    Francesco Bullo and Andrew D. Lewis Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems – Supplementary Material – August 1, 2014 Contents S1 Tangent and cotangent bundle geometry ................. S1 S1.1 Some things Hamiltonian.......................... ..... S1 S1.1.1 Differential forms............................. .. S1 S1.1.2 Symplectic manifolds .......................... S5 S1.1.3 Hamiltonian vector fields ....................... S6 S1.2 Tangent and cotangent lifts of vector fields .......... ..... S7 S1.2.1 More about the tangent lift ...................... S7 S1.2.2 The cotangent lift of a vector field ................ S8 S1.2.3 Joint properties of the tangent and cotangent lift . S9 S1.2.4 The cotangent lift of the vertical lift ............ S11 S1.2.5 The canonical involution of TTQ ................. S12 S1.2.6 The canonical endomorphism of the tangent bundle . S13 S1.3 Ehresmann connections induced by an affine connection . S13 S1.3.1 Motivating remarks............................ S13 S1.3.2 More about vector and fiber bundles .............. S15 S1.3.3 Ehresmann connections ......................... S17 S1.3.4 Linear connections and linear vector fields on vector bundles ....................................... S18 S1.3.5 The Ehresmann connection on πTM : TM M associated with a second-order vector field→ on TM . S20 S1.3.6 The Ehresmann connection on πTQ : TQ Q associated with an affine connection on Q→.......... S21 ∗ S1.3.7 The Ehresmann connection on πT∗Q : T Q Q associated with an affine connection on Q ..........→ S23 S1.3.8 The Ehresmann connection on πTTQ : TTQ TQ associated with an affine connection on Q ..........→ S23 ∗ S1.3.9 The Ehresmann connection on πT∗TQ : T TQ TQ associated with an affine connection on Q ..........→ S25 ∗ S1.3.10 Representations of ST and ST ..................
    [Show full text]
  • Linear Degeneracy in Multidimensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository Linear degeneracy in multidimensions by Jonathan Moss A Doctoral Thesis Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University September 2015 c J J Moss 2015 Abstract Linear degeneracy of a PDE is a concept that is related to a number of interesting geometric constructions. We first take a quadratic line complex, which is a three- parameter family of lines in projective space P3 specified by a single quadratic relation in the Pl¨ucker coordinates. This complex supplies us with a conformal structure in P3. With this conformal structure, we associate a three-dimensional second order quasilin- ear wave equation. We show that any PDE arising in this way is linearly degenerate, furthermore, any linearly degenerate PDE can be obtained by this construction. We classify Segre types of quadratic complexes for which the structure is conformally flat, as well as Segre types for which the corresponding PDE is integrable. These results were published in [1]. We then introduce the notion of characteristic integrals, discuss characteristic integrals in 3D and show that, for certain classes of second-order linearly degenerate dispersionless integrable PDEs, the corresponding characteristic integrals are parameterised by points on the Veronese variety. These results were published in [2]. Keywords Second order PDEs, hydrodynamic reductions, integrability, conformal structures, quadratic line complexes, linear degeneracy, characteristic integrals, principal symbol. 1 Acknowledgments I would like to express many thanks to Prof E.V.
    [Show full text]
  • Arxiv:1408.0902V1 [Math.DG] 5 Aug 2014 Bandb Usy[ Gursky by Obtained Ufcsaeawy Ofral A,Hnei Sntrlt L to Natural Is It [ Hence Kuiper flat, Conformally Case
    ON CONFORMALLY FLAT MANIFOLDS WITH CONSTANT POSITIVE SCALAR CURVATURE GIOVANNI CATINO Abstract. We classify compact conformally flat n-dimensional manifolds with constant positive scalar curvature and satisfying an optimal integral pinching condition: they are − covered isometrically by either Sn with the round metric, S1 × Sn 1 with the product metric − or S1 × Sn 1 with a rotationally symmetric Derdzi´nski metric. Key Words: conformally flat manifold, rigidity AMS subject classification: 53C20, 53C21 1. Introduction In this paper, we study compact conformally flat Riemannian manifolds, i.e. compact man- ifolds whose metrics are locally conformally equivalent to the Euclidean metric. Riemannian surfaces are always conformally flat, hence it is natural to look to the higher-dimensional case. Kuiper [21] was the first who studied global properties of this class of manifolds. He showed that every compact, simply connected, conformally flat manifolds is conformally dif- feomorphic to the round sphere Sn. In the last years, much attention has been given to the classification of conformally flat manifolds under topological and/or geometrical assumptions. From the curvature point of view, conformal flatness is equivalent to the vanishing of the Weyl and the Cotton tensor. In particular, the Riemann tensor can be recovered by its trace part, namely the Ricci tensor. Schoen and Yau [26] showed that conformal flatness together with (constant) positive scalar curvature still allows much flexibility. In contrast, conditions on the Ricci curvature put strong restrictions on the geometry of the manifold. Tani [27] proved that any compact conformally flat n-dimensional manifold with positive Ricci curvature and constant positive scalar curvature is covered isometrically by Sn with the round metric.
    [Show full text]
  • Incomplete Yamabe Flows and Removable Singularities
    Incomplete Yamabe flows and removable singularities Mario B. Schulz ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland 5 August 2019 We study the Yamabe flow on a Riemannian manifold of dimension m ≥ 3 minus a closed submanifold of dimension n and prove that there m−2 exists an instantaneously complete solution if and only if n > 2 . In the m−2 remaining cases 0 ≤ n ≤ 2 including the borderline case, we show that the removability of the n-dimensional singularity is necessarily preserved along the Yamabe flow. In particular, the flow must remain geodesically incomplete as long as it exists. This is contrasted with the two-dimensional case, where instantaneously complete solutions always exist. Contents 1. Introduction2 1.1. Main result . .3 1.2. Similarities with the singular Yamabe problem . .4 1.3. Geometric lemmata . .5 2. Boundedness7 2.1. The key idea . .7 2.2. Low-dimensional singularities . .8 2.3. The borderline case . 11 3. Preservation of removability 12 A. Appendix 16 References 19 1 Mario B. Schulz Incomplete Yamabe flows and removable singularities 1. Introduction Let (M, g0) be any Riemannian manifold of dimension m ≥ 3. We do not necessarily assume that M is compact or complete. However, we always implicitly assume that manifolds and Riemannian metrics are smooth. A family (g(t))t∈[0,T [ of Riemannian metrics on M is called Yamabe flow with initial metric g0 if ( ∂ g(t) = −R g(t) in M × [0,T [, ∂t g(t) (1) g(0) = g0 on M, where Rg(t) denotes the scalar curvature of the Riemannian manifold (M, g(t)).
    [Show full text]