Spawning and Larval Rearing of Geoduck (Panopea Generosa)

Total Page:16

File Type:pdf, Size:1020Kb

Spawning and Larval Rearing of Geoduck (Panopea Generosa) Spawning and Larval Rearing of Geoduck (Panopea generosa) Jesse Ronquillo, PhD North Island College Campbell River, BC Panopea generosa Gould, 1850 (Pacific Geoduck Clam) Scientific classification Kingdom: Animalia Phylum: Mollusca Class: Bivalvia (Pelecypoda) Order: Myoida Family: Hiatellidae • World’s largest burrowing clam. • Weighs 0.5-1.5 kg at maturity. Genus: Panopea • Maximum weight: 7.15 kgs. Species • Live to over 140 years and reach a Panopea generosa Gould, 1850 maximum shell length of 23 cm. Pacific Geoduck Clam • Oldest geoduck clam aged from British Columbia is 168 years old Pacific Geoduck Clam Geographic Distribution Pacific Geoduck Clam • Geoduck is the most important commercial shellfish species in British Columbia. • Commercial production is limited by the reliable supply of high quality hatchery- produced juveniles. • Developing viable and sustainable culture protocols for this species will provide the industry with the needed seedstock to expand production. Objectives • Determine the best algal diet for larval geoduck; • Develop inexpensive system for efficient and continuous culture of microalgae for feeding geoduck seedstock. • Manipulate geoduck broodstock spawning; • Design and construct of a prototype closed- culture system for controlled geoduck spawning; • Fabricate an inexpensive seawater filtration system for geoduck hatchery operation; Broodstock Disease Collection & Diagnosis Maintenance Genomics & DNA Markers Spawning/ Algal Incubation Production Larval Rearing Juvenile Rearing Nutritional Statistical Analysis Analysis Schematic Flow Diagram of Activities PUFA – Polyunsaturated Fatty Acids LA (Linoleic acid, 18:2n-6) ALA (Alpha-linolenic acid, 18:3n-3) AA (Arachidonic Acid, 20:4n-6) EPA (Eicosapentaenoic Acid, 20:5n-3) DHA (Docosahexaeoic Acid, 22:6n-3) Modified from: http://en.wikipedia.org/wiki/Fatty_acid PUFAs EPA & DHA are structural component of brain, eyes, heart tissues and all cell membranes. http://kvhs.nbed.nb.ca/gallant/biology/biology.html Algal Production of HUFA PUFAs Thalassiosira weissfloggii http://www.nies.go.jp/biology/mcc/class/Te traselmis.html Microalgae Thalassiosira weissfloggii Chaetoceros muelleri Nannochloropsis oculata (ACTIN) (CHGRA) (NANNO) Isochrysis galbana (T. ISO) Pavlova lutheri (PAV) Tetraselmis striata (TETRA) Agar Plate Isolation 24-hole plate 100 mL flask 7 L glass container Carboy 1 L flask Algal Scaling Up Culture Algal Production • Algal inocula were procured from UBC and USA. • f/2 medium was used to enrich algal culture. • Microalgae were scaled up from 5 mL test tubes up to 500 L capacity tanks Algal Production Lab 40 algal species www.nsac.ca/pas/aqua Lipid Analysis Summary • Algal Preparation •Fatty acid extracted using MeOH and chloroform •Phases separated using 0.9% potassium chloride •Upper layer filtered through Na2SO4 then evaporated •Methylated by adding Hilditch reagent and heated. •Phase separated via hexane & deionized water. •Filtered upper layer through Na2SO4 •Evaporated, weighed, and run through Gas Chromatography EPA, DHA and AA of Experimental Algal Species Species EPA DHA AA (% DW) (% DW) (% DW) Chaetoceros muelleri 7.00 1.21 4.70 Isochrysis galbana 1.13 9.95 0.11 Tetraselmis striata 13.82 0.21 8.72 Thalassiosira 14.42 3.04 0.29 weissfloggii Nannochloropsis oculata 12.60 0.23 15.65 Pavlova lutheri 13.81 9.65 0.41 PUFA Profile of Algae Treatment ΣEPA Σ DHA Σ AA Σ (EPA+DHA) Σ (DHA+AA) Σ (EPA+DHA+AA) (% DW) (% DW) (% DW) (% DW) (% DW) (% DW) Chagra + 8.13b 11.16a 4.81c 19.29c 15.97b 24.1c T.Iso Tetra + 28.24a 3.25b 9.01b 31.49b 12.26c 40.5b Actin Nanno + 26.41a 9.88a 16.41 36.29a 26.29a 52.7a a Pav (P<0.001***). Microalgal Nutrition Research (In-House Research) Microalgae Chaetoceros muelleri (CHGRA) Thalassiosira weissfloggii (ACTIN) Nannochloropsis oculata (NANNO) Isochrysis galbana (T. ISO) Pavlova lutheri (PAV) Tetraselmis striata (TETRA) Level of PUFA in Each Treatment. 11 a 10 18 9 a 16 a b 14 8 a a 12 b 7 a a b AA 10 a,b a b c 6 b b a EPA (g) Weight 8 b.c b 5 a,b DHA c b,c 6 b a a b c 4 a c Level of PUFAs (%) Level of PUFAs 4 a 2 3 0 2 Chgra+ Iso Nanno+ Pav Tetra+Actin 0 1 2 3 4 5 6 7 Week Oyster Treatment Weight t.iso/chg Weight Nan/Pav Weight Tet/Act (P<0.001). Weekly average weight of oyster juveniles in each diet treatment (P<0.001) Ronquillo, JR, Fraser J, McConkey, AJ. 2012. Effect of mixed microalgal diets on growth and polyunsaturated fatty acid profile of European oyster (Ostrea edulis) juveniles. Aquaculture 360-361: .64-68. Microalgal Study CONCLUSION The best algal diet in shellfish larval rearing was a mixture of Nannochloropsis oculata and Pavlova lutheri (Nanno+Pav). Tetraselmis striata and Thalassiosira weissfloggii (Tetra+Actin) diet has the lowest level of total DHA+AA among treatments; thus, resulted poor growth. Nannochloropsis oculata and Pavlova lutheri (Nanno+Pav) diet has the highest level of omega-3 PUFAs among treatments which made growth faster (P<0.0001***) and higher bioaccumulation of PUFAs in the soft tissues. Geoduck Broodstock Collection & Transport • Geoduck broodstock were collected by diving from Vancouver Island by BCPOL • Broodstock were transported by boat to the facilities at DFO West Vancouver Laboratory and at UBC Faculty of Science. Transfer and Cleaning of Broodstock Gonadal Maturation Analysis Microscopic Analysis of Gonad Smear Geoduck Spawning Geoduck Spawning Spawning at UBC Faculty of Science Lab Spawning at DFO West Vancouver Lab Embryonic Development Newly Spawned Egg and Sperm Newly Fertilized Egg Embryonic Development First Polar Body and Two-Cell Stage Development of Daughter Cell Embryonic Development Four-Cell Stage Eight-Cell Stage Embryonic Development 16-Cell Stage 32-Cell Stage Post-Embryonic Development D-shape Veliger, 7 days Umbone Stage, 15 days Post-Larval Stages 30 days old, 1.2 mm 35 days old, 3 mm Early Settling Stage 50 days old geoduck juveniles (7-12 mm) Newly spawned Fertilization Stage 2-Cell Stage 4-Cell Stage 8-Cell Stage egg and sperm 16-Cell Stage Juvenile 32-Cell Stage 50 days old geoduck juveniles (7-12 mm) Pediveliger Veliger Comparative Rearing (85 Days Old Juveniles) Culturing Without Substrate Culturing in Sandy Substrate Burrowing Behaviour Early Juvenile Feeding Behaviour Culturing Without Substrate Culturing in Sandy Substrate Early Juvenile Behaviour Disease Analysis Conclusions • The preliminary research outcomes include: – (1) Design and construction of a prototype closed-culture system for controlled geoduck spawning; – (2) Fabrication of an elegant yet inexpensive seawater filtration system; – (3) Successful induction of geoduck broodstock spawning based on environmental manipulation among desiccation, temperature shifts, UV-filtered water stimulation, microalgal addition, and various combinations of the above; and – (4) Successful development of inexpensive system for efficient and continuous culture of microalgae for feeding geoduck seedstock. ACKNOWLEDGEMENT • BC Pacific Oysters Ltd –John Zhang, CEO –Dan McDermid • NSERC • UBC – Prof. Andrew Riseman – Prof. David Kitts • North Island College.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Population Structure, Distribution and Harvesting of Southern Geoduck, Panopea Abbreviata, in San Matías Gulf (Patagonia, Argentina)
    Scientia Marina 74(4) December 2010, 763-772, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2010.74n4763 Population structure, distribution and harvesting of southern geoduck, Panopea abbreviata, in San Matías Gulf (Patagonia, Argentina) ENRIQUE MORSAN 1, PAULA ZAIDMAN 1,2, MATÍAS OCAMPO-REINALDO 1,3 and NÉSTOR CIOCCO 4,5 1 Instituto de Biología Marina y Pesquera Almirante Storni, Universidad Nacional del Comahue, Guemes 1030, 8520 San Antonio Oeste, Río Negro, Argentina. E-mail: [email protected] 2 CONICET-Chubut. 3 CONICET. 4 IADIZA, CCT CONICET Mendoza, C.C. 507, 5500 Mendoza, Argentina. 5 Instituto de Ciencias Básicas, Universidad Nacional de Cuyo, 5500 Mendoza Argentina. SUMMARY: Southern geoduck is the most long-lived bivalve species exploited in the South Atlantic and is harvested by divers in San Matías Gulf. Except preliminary data on growth and a gametogenic cycle study, there is no basic information that can be used to manage this resource in terms of population structure, harvesting, mortality and inter-population compari- sons of growth. Our aim was to analyze the spatial distribution from survey data, population structure, growth and mortality of several beds along a latitudinal gradient based on age determination from thin sections of valves. We also described the spatial allocation of the fleet’s fishing effort, and its sources of variability from data collected on board. Three geoduck beds were located and sampled along the coast: El Sótano, Punta Colorada and Puerto Lobos. Geoduck ages ranged between 2 and 86 years old. Growth patterns showed significant differences in the asymptotic size between El Sótano (109.4 mm) and Puerto Lobos (98.06 mm).
    [Show full text]
  • Monda Y , March 22, 2021
    NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 113th Annual Meeting March 22 − 25, 2021 Global Edition @ http://shellfish21.com Follow on Social Media: #shellfish21 NSA 113th ANNUAL MEETING (virtual) National Shellfisheries Association March 22—March 25, 2021 MONDAY, MARCH 22, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound Chesapeake Bay Monterey Bay SHELLFISH ONE HEALTH: SHELLFISH AQUACULTURE EPIGENOMES & 8:30-10:30 AM CEPHALOPODS OYSTER I RESTORATION & BUSINESS & MICROBIOMES: FROM SOIL CONSERVATION ECONOMICS TO PEOPLE WORKSHOP 10:30-10:45 AM MORNING BREAK THE SEA GRANT SHELLFISH ONE HEALTH: EPIGENOMES COVID-19 RESPONSE GENERAL 10:45-1:00 PM OYSTER I RESTORATION & & MICROBIOMES: FROM SOIL TO THE NEEDS OF THE CONTRIBUTED I CONSERVATION TO PEOPLE WORKSHOP SHELLFISH INDUSTRY 1:00-1:30 PM LUNCH BREAK WITH SPONSOR & TRADESHOW PRESENTATIONS PLENARY LECTURE: Roger Mann (Virginia Institute of Marine Science, USA) (LIVE) 1:30-2:30 PM Chesapeake Bay EASTERN OYSTER SHELLFISH ONE HEALTH: EPIGENOMES 2:30-3:45 PM GENOME CONSORTIUM BLUE CRABS VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP CONSERVATION TO PEOPLE WORKSHOP BLUE CRAB GENOMICS EASTERN OYSTER & TRANSCRIPTOMICS: SHELLFISH ONE HEALTH: EPIGENOMES 3:45–5:45 PM GENOME CONSORTIUM THE PROGRAM OF THE VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP BLUE CRAB GENOME CONSERVATION TO PEOPLE WORKSHOP PROJECT TUESDAY, MARCH 23, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Panopea Abrupta ) Ecology and Aquaculture Production
    COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ...................................................
    [Show full text]
  • Redalyc.Spatial Distribution, Density and Population Structure of The
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Aragón-Noriega, E. Alberto; Calderon-Aguilera, Luis E.; Alcántara-Razo, Edgar; Mendivil- Mendoza, Jaime E. Spatial distribution, density and population structure of the Cortes geoduck, Panopea globosa in the Central Gulf of California Revista de Biología Marina y Oceanografía, vol. 51, núm. 1, abril, 2016, pp. 1-10 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47945599001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 51, Nº1: 1-10, abril 2016 DOI 10.4067/S0718-19572016000100001 ARTÍCULO Spatial distribution, density and population structure of the Cortes geoduck, Panopea globosa in the Central Gulf of California Distribución espacial, densidad y estructura poblacional de la almeja de sifón Panopea globosa en la parte central del Golfo de California E. Alberto Aragón-Noriega1, Luis E. Calderon-Aguilera2, Edgar Alcántara-Razo1 and Jaime E. Mendivil-Mendoza1 1Centro de Investigaciones Biológicas del Noroeste, Unidad Sonora, Km 2.35 Camino al Tular, Estero Bacochibampo, Guaymas, Sonora 85454, México. [email protected] 2Centro de Investigación Científica y de Educación Superior de Ensenada. Carretera Ensenada-Tijuana 3918, Ensenada, Baja California 22860, México Resumen.- La almeja de sifón Panopea globosa es una especie de importancia comercial por su alta demanda en el mercado de Asia.
    [Show full text]
  • Ecological Effects of the Harvest Phase of Geoduck
    Ecological Effects of the Harvest Phase Of Geoduck (Panopea generosa Gould, 1850) Aquaculture on Infaunal Communities in Southern Puget Sound, Washington Author(s): Glenn R. Vanblaricom, Jennifer L. Eccles, Julian D. Olden and P. Sean Mcdonald Source: Journal of Shellfish Research, 34(1):171-187. Published By: National Shellfisheries Association DOI: http://dx.doi.org/10.2983/035.034.0121 URL: http://www.bioone.org/doi/full/10.2983/035.034.0121 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 34, No. 1, 171–187, 2015. ECOLOGICAL EFFECTS OF THE HARVEST PHASE OF GEODUCK (PANOPEA GENEROSA GOULD, 1850) AQUACULTURE ON INFAUNAL
    [Show full text]
  • Palaeodemecological Analysis of Infaunal Bivalves “Lebensspuren” from the Mulichinco Formation, Lower Cretaceous, Neuquén Basin, Argentina
    AMEGHINIANA - 2012 - Tomo 49 (1): 47 – 59 ISSN 0002-7014 PALAEODEMECOLOGICAL ANALYSIS OF INFAUNAL BIVALVES “LEBENSSPUREN” FROM THE MULICHINCO FORMATION, LOWER CRETACEOUS, NEUQUÉN BASIN, ARGENTINA JAVIER ECHEVARRÍA, SUSANA E. DAMBORENEA and MIGUEL O. MANCEÑIDO División Paleozoología Invertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). [email protected] Abstract. The study of palaeodemecological features requires some particular taphonomic conditions. These conditions were met in the Mulichinco Formation (Valanginian), where burrowing bivalve trace fossils are widespread and often appear in cross section on bedding surfaces. Two groups of such beds were analyzed, measuring population density, spatial distribution, size distribution and horizontal orienta- tion of the burrows. The palaeoenvironment was established by means of a detailed sedimentological analysis, and the bivalve fauna present was checked, in order to attempt identifying their potential producers. High population densities were found in the two groups, indicating favourable physical conditions and good food supply, while differences in both spatial and size distributions were noticed between them; on most surfaces there was no preferred orientation. The first group (group A) showed a uniform pattern of spatial distribution and larger traces, with a remarkable absence of small sizes. In the second group (group B), the spatial distribution pattern is indistinguishable from a random distribution (except one case in which the pattern appears to be aggregated). Group A is interpreted as a set of escape traces made by deep burrowers in response to storm deposition, while group B is considered as resting/escape traces made by shallow burrowers in tide-dominated environments.
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]
  • Pubblicazioni Della Stazione Zoologica Di Napoli
    PUBBLICAZIONI DELLA STAZIONE ZOOLOGICA DI NAPOLI VOLUME 37, 2° SUPPLEMENTO ATTI DEL 1° CONGRESSO DELLA SOCIETÀ ITALIANA DI BIOLOGIA MARINA Livorno 3-4-5 giugno 1969 STAZIONE ZOOLOGICA DI NAPOLI 1969 Comitato direttivo: G. BACCI, L. CALIFANO, P. DOHRN, G. MONTALENTI. Comitato di consulenza: F. BALTZER (Bern), J. BRACHET (Bruxelles), G. CHIEFFI (Napoli), T. GAMULIN (Dubrovnik), L. W. KLEINHOLZ (Portland), P. WEIß (New York), R. WURMSER (Paris), J. Z. YOUNG (London). Comitato di redazione: G. BONADUCE, G. C. CARRADA, F. CINELLI, E. FRESI. Segreteria di redazione: G. PRINCIVALLI. OSTRACODS AS ECOLOGICAL AND PALAEOECOLOGICAL INDICATORS (Pubbl. Staz. Zool. Napoli, Suppl. 33, 1964, pp. 612) Price: U.S. $ 15,— (Lire 9.400) An International Symposium sponsored by the ANTON and REINHARD DOHRN Foundation at the Stazione Zoologica di Napoli, June 10th-19, 1963. Chairman: Dr. HARBANS S. PURI, Florida Geological Survey, Tallahassee. Fla. U.S.A. Contributions by P. ASCOLI, R. H. BENSON, J. P. HARDING, G. HARTMANN, N. C. HULINGS, H. S. PURI, L. S. KORNICKER, K. G. MCKENZIE, J. NEALE, V. POKORNÝ, G. BONADUCE, J. MALLOY, A. RITTMANN, D. R. ROME, G. RUGGIERI, P. SANDBERG, I. G. SOHN, F. M. SWAIN, J. M. GILBY, and W. WAGNER. FAUNA E FLORA DEL GOLFO DI NAPOLI 39. Monografia: Anthomedusae/Athecatae (Hydrozoa, Cnidaria) of the Mediterranean PART I CAPITATA BY ANITA BRINCKMANN-VOSS with 11 colour - plates drawn by ILONA RICHTER EDIZIONE DELLA STAZIONE ZOOLOGICA DI NAPOLI Prezzo: Ut. 22.000 ($ 35.—) PUBBLICATO IL 19-11-1971 PARTECIPANTI AL SIMPOSIO Livorno 3 - 4 - 5 giugno 1969 ARENA dott. PASQUALE - M essina CRISAFI prof.
    [Show full text]
  • WSN Long Program 2014 FINAL
    Western Society of Naturalists Meeting Program Tacoma, WA Nov. 13-16, 2014 1 Western Society of Naturalists Treasurer President ~ 2014 ~ Andrew Brooks Steven Morgan Dept of Ecology, Evolution Bodega Marine Laboratory, Website and Marine Biology UC Davis www.wsn-online.org UC Santa Barbara P.O. Box 247 Santa Barbara, CA 93106 Bodega, CA 94923 Secretariat [email protected] [email protected] Michael Graham Scott Hamilton Member-at-Large Diana Steller President-Elect Phil Levin Moss Landing Marine Laboratories Northwest Fisheries Science Gretchen Hofmann 8272 Moss Landing Rd Center Dept. Ecology, Evolution, & Moss Landing, CA 95039 Conservation Biology Division Marine Biology Seattle, WA 98112 Corey Garza UC Santa Barbara [email protected] CSU Monterey Bay Santa Barbara, CA 93106 [email protected] Seaside, CA 93955 [email protected] 95TH ANNUAL MEETING NOVEMBER 13-16, 2014 IN TACOMA, WASHINGTON Registration and Information Welcome! The registration desk will be open Thurs 1600-2000, Fri-Sat 0730-1800, and Sun 0800-1000. Registration packets will be available at the registration table for those members who have pre-registered. Those who have not pre-registered but wish to attend the meeting can pay for membership and registration (with a $20 late fee) at the registration table. Unfortunately, banquet tickets cannot be sold at the meeting because the hotel requires final counts of attendees well in advance. The Attitude Adjustment Hour (AAH) is included in the registration price, so you will only need to show your badge for admittance. WSN t-shirts and other merchandise can be purchased or picked up at the WSN Student Committee table.
    [Show full text]