FUNDAMENTALS of ACOUSTICS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Model-Based Processing for Underwater Acoustic Arrays
Books NEW Book from ASA Press ASA Press is a meritorious imprint of the Acoustical Society of America in collaboration with the major international publisher Springer Science + Business Media. All new books that are published with the ASA Press imprint will be announced in Acoustics Today. Individuals who have ideas for books should feel free to contact the ASA Publications Office to discuss their ideas. Model-Based Processing can be recursive either in space or time, depending on the for Underwater Acoustic application.This is done for three reasons. First, the Kalman Arrays filter provides a natural framework for the inclusion of phys- Author: Edmund J. Sullivan ical models in a processing scheme. Second, it allows poorly ISBN: 978-3-319-17556-0 known model parameters to be jointly estimated along with Pages: 113 pp., 25 illus., the quantities of interest. This is important, since in cer- 14 illus. in color tain areas of array processing already in use, such as those Available formats: based on matched-field processing, the so-called mismatch Softcover, $54.99, problem either degrades performance or, indeed, prevents eBook, MyCopy any solution at all. Thirdly, such a unification provides a for- Publication Date: 2015 mal means of quantifying the performance improvement. Publisher: Springer The term model-based will be strictly defined as the use of International Publishing physics-based models as a means of introducing a priori in- formation. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory This monograph presents a unified approach to model- and acoustic array theory are presented, followed by a pre- based processing for underwater acoustic arrays. -
HP-2 Acoustic Design Guide
ACOUSTIC PRODUCT FAMILY Specifying Design Guide Our in-house, custom 7 STEPS TO SPECIFY Robust Examples including APPLICATION DRAWINGS Informative intro to the world of ACOUSTICS Table of Contents INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 STEPS OVERVIEW � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 MATERIAL TABLE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5 REVERBERATION TIME TABLE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6 PRODUCT TABLE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 EXAMPLE 1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 EXAMPLE 2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �12 WORKSHEET � � � � � � � � � � � � � � � -
Basics of Acoustics Contents
BASICS OF ACOUSTICS CONTENTS 1. preface 03 2. room acoustics versus building acoustics 04 3. fundamentals of acoustics 05 3.1 Sound 05 3.2 Sound pressure 06 3.3 Sound pressure level and decibel scale 06 3.4 Sound pressure of several sources 07 3.5 Frequency 08 3.6 Frequency ranges relevant for room planning 09 3.7 Wavelengths of sound 09 3.8 Level values 10 4. room acoustic parameters 11 4.1 Reverberation time 11 4.2 Sound absorption 14 4.3 Sound absorption coefficient and reverberation time 16 4.4 Rating of sound absorption 16 5. index 18 2 1. PREFACE Noise or unwanted sounds is perceived as disturbing and annoying in many fields of life. This can be observed in private as well as in working environments. Several studies about room acoustic conditions and annoyance through noise show the relevance of good room acoustic conditions. Decreasing success in school class rooms or affecting efficiency at work is often related to inadequate room acoustic conditions. Research results from class room acoustics have been one of the reasons to revise German standard DIN 18041 on “Acoustic quality of small and medium-sized room” from 1968 and decrease suggested reverberation time values in class rooms with the new 2004 version of the standard. Furthermore the standard gave a detailed range for the frequency dependence of reverberation time and also extended the range of rooms to be considered in room acoustic design of a building. The acoustic quality of a room, better its acoustic adequacy for each usage, is determined by the sum of all equipment and materials in the rooms. -
The Standing Acoustic Wave Principle Within the Frequency Analysis Of
inee Eng ring al & ic d M e e d Misun, J Biomed Eng Med Devic 2016, 1:3 m i o c i a B l D f o e v DOI: 10.4172/2475-7586.1000116 l i a c n e r s u o Journal of Biomedical Engineering and Medical Devices J ISSN: 2475-7586 Review Article Open Access The Standing Acoustic Wave Principle within the Frequency Analysis of Acoustic Signals in the Cochlea Vojtech Misun* Department of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic Abstract The organ of hearing is responsible for the correct frequency analysis of auditory perceptions coming from the outer environment. The article deals with the principles of the analysis of auditory perceptions in the cochlea only, i.e., from the overall signal leaving the oval window to its decomposition realized by the basilar membrane. The paper presents two different methods with the function of the cochlea considered as a frequency analyzer of perceived acoustic signals. First, there is an analysis of the principle that cochlear function involves acoustic waves travelling along the basilar membrane; this concept is one that prevails in the contemporary specialist literature. Then, a new principle with the working name “the principle of standing acoustic waves in the common cavity of the scala vestibuli and scala tympani” is presented and defined in depth. According to this principle, individual structural modes of the basilar membrane are excited by continuous standing waves of acoustic pressure in the scale tympani. Keywords: Cochlea function; Acoustic signals; Frequency analysis; The following is a description of the theories in question: Travelling wave principle; Standing wave principle 1. -
Nuclear Acoustic Resonance Investigations of the Longitudinal and Transverse Electron-Lattice Interaction in Transition Metals and Alloys V
NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer To cite this version: V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer. NUCLEAR ACOUSTIC RESONANCE INVES- TIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERAC- TION IN TRANSITION METALS AND ALLOYS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-389-C6-391. 10.1051/jphyscol:19816113. jpa-00221175 HAL Id: jpa-00221175 https://hal.archives-ouvertes.fr/jpa-00221175 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE CoZZoque C6, suppZe'ment au no 22, Tome 42, de'cembre 1981 page C6-389 NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Miiller, G. Schanz, E.-J. Unterhorst and D. Maurer &eie Universit8G Berlin, Fachbereich Physik, Kiinigin-Luise-Str.28-30, 0-1000 Berlin 33, Gemany Abstract.- In metals the conduction electrons contribute significantly to the acoustic-wave-induced electric-field-gradient-tensor (DEFG) at the nuclear positions. Since nuclear electric quadrupole coupling to the DEFG is sensi- tive to acoustic shear modes only, nuclear acoustic resonance (NAR) is a par- ticularly useful tool in studying the coup1 ing of electrons to shear modes without being affected by volume dilatations. -
Acoustic Wave Propagation in Rivers: an Experimental Study Thomas Geay1, Ludovic Michel1,2, Sébastien Zanker2 and James Robert Rigby3 1Univ
Acoustic wave propagation in rivers: an experimental study Thomas Geay1, Ludovic Michel1,2, Sébastien Zanker2 and James Robert Rigby3 1Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France 2EDF, Division Technique Générale, 38000 Grenoble, France 5 3USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi, USA Correspondence to: Thomas Geay ([email protected]) Abstract. This research has been conducted to develop the use of Passive Acoustic Monitoring (PAM) in rivers, a surrogate method for bedload monitoring. PAM consists in measuring the underwater noise naturally generated by bedload particles when impacting the river bed. Monitored bedload acoustic signals depend on bedload characteristics (e.g. grain size 10 distribution, fluxes) but are also affected by the environment in which the acoustic waves are propagated. This study focuses on the determination of propagation effects in rivers. An experimental approach has been conducted in several streams to estimate acoustic propagation laws in field conditions. It is found that acoustic waves are differently propagated according to their frequency. As reported in other studies, acoustic waves are affected by the existence of a cutoff frequency in the kHz region. This cutoff frequency is inversely proportional to the water depth: larger water depth enables a better propagation of 15 the acoustic waves at low frequency. Above the cutoff frequency, attenuation coefficients are found to increase linearly with frequency. The power of bedload sounds is more attenuated at higher frequencies than at low frequencies which means that, above the cutoff frequency, sounds of big particles are better propagated than sounds of small particles. Finally, it is observed that attenuation coefficients are variable within 2 orders of magnitude from one river to another. -
Springer Handbook of Acoustics
Springer Handbook of Acoustics Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physi- cal sciences and engineering. The world’s leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters com- prising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information. The volumes are designed to be useful as readable desk reference books to give a fast and comprehen- sive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibli- ographies. References to extensive sources are provided. HandbookSpringer of Acoustics Thomas D. Rossing (Ed.) With CD-ROM, 962 Figures and 91 Tables 123 Editor: Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics Stanford, CA 94305, USA Editorial Board: Manfred R. Schroeder, University of Göttingen, Germany William M. Hartmann, Michigan State University, USA Neville H. Fletcher, Australian National University, Australia Floyd Dunn, University of Illinois, USA D. Murray Campbell, The University of Edinburgh, UK Library of Congress Control Number: 2006927050 ISBN: 978-0-387-30446-5 e-ISBN: 0-387-30425-0 Printed on acid free paper c 2007, Springer Science+Business Media, LLC New York All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC New York, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. -
About Possibility of Using the Reverberation Phenomenon in the Defectoscopy Field and the Stress-Strain State Evaluation of Solids
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13122-13126 © Research India Publications. http://www.ripublication.com About Possibility of using the Reverberation Phenomenon in the Defectoscopy Field and the Stress-Strain State Evaluation of Solids Petr N. Khorsov1, Anna A. Demikhova1* and Alexander A. Rogachev2 1 National Research Tomsk Polytechnic University, 30, Lenina Avenue, 634050, Tomsk, Russia. 2 Francisk Skorina Gomel State University, 104, Sovetskaya str., 246019, Gomel, Republic of Belarus. Abstract multiple reflections from natural and artificial interference [6- 8]. The work assesses the possibilities of using the reverberation phenomenon for defectiveness testing and stress-strain state of The reverberation phenomenon is also used in the solid dielectrics on the mechanoelectrical transformations mechanoelectrical transformations (MET) method for method base. The principal reverberation advantage is that investigation the defectiveness and stress-strain state (SSS) of excitation acoustic wave repeatedly crosses the dielectric composite materials [9]. The essence of the MET- heterogeneities zones of testing objects. This causes to method is that the test sample is subjected pulse acoustic distortions accumulation of wave fronts which is revealed in excitement, as a result of which an acoustic wave propagates the response parameters. A comparative responses analysis in it. Waves fronts repeatedly reflecting from the boundaries from the sample in uniaxial compression conditions at crosse defective and local inhomogeneities zones. different loads in two areas of responses time realizations was Part of the acoustic energy waves converted into made: deterministic ones in the initial intervals and pseudo- electromagnetic signal on the MET sources. Double electrical random intervals in condition of superposition of large layers at the boundaries of heterogeneous materials, as well as numbers reflected acoustic waves. -
Martinho, Claudia. 2019. Aural Architecture Practice: Creative Approaches for an Ecology of Affect
Martinho, Claudia. 2019. Aural Architecture Practice: Creative Approaches for an Ecology of Affect. Doctoral thesis, Goldsmiths, University of London [Thesis] https://research.gold.ac.uk/id/eprint/26374/ The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information. If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: [email protected]. The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: [email protected] !1 Aural Architecture Practice Creative Approaches for an Ecology of Affect Cláudia Martinho Goldsmiths, University of London PhD Music (Sonic Arts) 2018 !2 The work presented in this thesis has been carried out by myself, except as otherwise specified. December 15, 2017 !3 Acknowledgments Thanks to: my family, Mazatzin and Sitlali, for their support and understanding; my PhD thesis’ supervisors, Professor John Levack Drever and Dr. Iris Garrelfs, for their valuable input; and everyone who has inspired me and that took part in the co-creation of this thesis practical case studies. This research has been supported by the Foundation for Science and Technology fellowship. Funding has also been granted from the Department of Music and from the Graduate School at Goldsmiths University of London, the arts organisations Guimarães Capital of Culture 2012, Invisible Places and Lisboa Soa, to support the creation of the artworks presented in this research as practical case studies. -
Reverberation and the Art of Architectural Acoustics
Sabine and reverberation 11/29/02 11:21 AM Reverberation and the Art of Architectural Acoustics © 2002 Robert Sekuler (revised) In 1895 Harvard University, that other school situated on the Charles River, opened its Fogg Art Museum. This wonderful building, still much used today, contained an equally wonderful, large lecture hall. Audiences flocked in, eager to experience intellectual enlightenment in beautiful new surroundings. But there was a large, ugly fly in this intellectual ointment: No one could understand any of the lectures that were given in Fogg lecture hall. And it wasn't because the lectures were too esoteric, or because the lecturers mumbled into their beards, or because the students were too distracted. The problem was acoustics and hearing. For help, Harvard turned to one of its own, Wallace Clement Sabine (photo), then a 27 year-old Assistant Professor of Physics. To that point in his career, Sabine had distinguished himself primarily through his teaching; research productivity was not his strongest suit. Even though Sabine had not previously worked with this sort of problem, his writings show that he was a remarkably quick study and a truly dedicated scientist. His published work also provides a model of good, clear scientific prose. After diagnosing and then solving Harvard's problem with the Fogg lecture room, Sabine devoted the rest of his career to the new field that he had virtually created in the process: architectural acoustics. First, Sabine noted that when anyone spoke in the Fogg Museum lecture room, even at normal conversational levels, the sound of his or her voice remained audible in the room for several seconds thereafter. -
Recent Advances in Acoustic Metamaterials for Simultaneous Sound Attenuation and Air Ventilation Performances
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2020 doi:10.20944/preprints202007.0521.v2 Peer-reviewed version available at Crystals 2020, 10, 686; doi:10.3390/cryst10080686 Review Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances Sanjay Kumar1,* and Heow Pueh Lee1 1 Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; [email protected] * Correspondence: [email protected] (S.K.); [email protected] (H.P.Lee) Abstract: In the past two decades, acoustic metamaterials have garnered much attention owing to their unique functional characteristics, which is difficult to be found in naturally available materials. The acoustic metamaterials have demonstrated to exhibit excellent acoustical characteristics that paved a new pathway for researchers to develop effective solutions for a wide variety of multifunctional applications such as low-frequency sound attenuation, sound wave manipulation, energy harvesting, acoustic focusing, acoustic cloaking, biomedical acoustics, and topological acoustics. This review provides an update on the acoustic metamaterials' recent progress for simultaneous sound attenuation and air ventilation performances. Several variants of acoustic metamaterials, such as locally resonant structures, space-coiling, holey and labyrinthine metamaterials, and Fano resonant materials, are discussed briefly. Finally, the current challenges and future outlook in this emerging field -
Effect of Thickness, Density and Cavity Depth on the Sound Absorption Properties of Wool Boards
AUTEX Research Journal, Vol. 18, No 2, June 2018, DOI: 10.1515/aut-2017-0020 © AUTEX EFFECT OF THICKNESS, DENSITY AND CAVITY DEPTH ON THE SOUND ABSORPTION PROPERTIES OF WOOL BOARDS Hua Qui, Yang Enhui Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Jiangsu, China Abstract: A novel wool absorption board was prepared by using a traditional non-woven technique with coarse wools as the main raw material mixed with heat binding fibers. By using the transfer-function method and standing wave tube method, the sound absorption properties of wool boards in a frequency range of 250–6300 Hz were studied by changing the thickness, density, and cavity depth. Results indicated that wool boards exhibited excellent sound absorption properties, which at high frequencies were better than that at low frequencies. With increasing thickness, the sound absorption coefficients of wool boards increased at low frequencies and fluctuated at high frequencies. However, the sound absorption coefficients changed insignificantly and then improved at high frequencies with increasing density. With increasing cavity depth, the sound absorption coefficients of wool boards increased significantly at low frequencies and decreased slightly at high frequencies. Keywords: wool boards; sound absorption coefficients; thickness; density; cavity depth 1. Introduction perforated facing promotes sound absorption coefficients in low- frequency range, but has a reverse effect in the high-frequency The booming development of industrial production, region.[3] Discarded polyester fiber and fabric can be reused to transportation and poor urban planning cause noise pollution produce multilayer structural sound absorption material, which to our society, which has become one of the four major is lightweight, has a simple manufacturing process and wide environmental hazards including air pollution, water pollution, sound absorption bandwidth with low cost.[4] Needle-punched and solid waste pollution.