Environmental Chemicals, the Human Microbiome, and Health Risk: a Research Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Chemicals, the Human Microbiome, and Health Risk: a Research Strategy PREPUBLICATION COPY Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy ADVANCE COPY NOT FOR PUBLIC RELEASE BEFORE December 20, 2017 11 a.m. EST A Consensus Study Report of The National Academies of SCIENCES · ENGINEERING · MEDICINE This prepublication version has been provided to the public to facilitate timely access to the committee's findings. Although the substance of the report is final, editorial changes will be made throughout the text, and citations will be checked prior to publication. THE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu REPUBLICATION COPY Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy Committee on Advancing Understanding of the Implications of Environmental-Chemical Interactions with the Human Microbiome Board on Environmental Studies and Toxicology Board on Life Sciences Division on Earth and Life Studies A Consensus Study Report of The National Academies of SCIENCES · ENGINEERING · MEDICINE TilE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This project was supported by Contract EP-C-14-005, T0#0012 between the National Academies of Sciences, Engineering, and Medicine and the US Environmental Protection Agency, and Contract HHSN2632012000741, TO#HHSN26300097, US Department of Health and Human Services. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the organizations or agencies that provided support for this project. Digital Object Identifier: https://doi.org/1 0.17226/24960 Additional copies of this publication are available for sale from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. Copyright 2017 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Suggested citation: National Academies of Sciences, Engineering, and Medicine. 2017. Environmental Chemi­ cals, the Human Microbiome, and Health Risk: A Research Strategy. Washington, DC: The National Academies Press. doi: https://doi.org/1 0.17226/24960. Prepublication Copy The National Academies of SCIENCES · ENGINEERING ·MEDICINE The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Acad­ emy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medi­ cine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public under­ standing in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national academies.org. Prepublication Copy The National Academies of SCIENCES · ENGINEERING ·MEDICINE Consensus Study Reports published by the National Academies of Sciences, Engineering, and Medicine document the evidence-based consensus on the study's statement of task by an authoring committee of experts. Reports typically include findings, conclusions, and recommendations based on information gathered by the committee and the committee's deliberations. Each report has been subjected to a rigorous and independent peer-review process and it represents the position of the National Academies on the statement of task. Proceedings published by the National Academies of Sciences, Engineering, and Medicine chronicle the presentations and discussions at a workshop, symposium, or other event convened by the National Academies. The statements and opinions contained in proceedings are those of the participants and are not endorsed by other participants, the planning committee, or the National Academies. For information about other products and activities of the National Academies, please visit www. nationalacademies. org I about I whatwedo. Prepublication Copy COMMITTEE ON ADVANCING UNDERSTANDING OF THE IMPLICATIONS OF ENVIRONMENTAL-CHEMICAL INTERACTIONS WITH THE HUMAN MICROBIOME Members RONALD M. ATLAS (Chair), University of Louisville, Louisville, KY KJERSTI M. AAGAARD, Baylor College of Medicine, Houston, TX ELAINE HSIAO, University of California, Los Angeles, CA YVONNE HUANG, University of Michigan, Ann Arbor, MI CURTIS HUTTENHOWER, Harvard University, Boston, MA ROSA KRAJMALNIK-BROWN, Arizona State University, Tempe, AZ SUSAN LYNCH, University of California, San Francisco, CA WILLIAM W. NAZAROFF, University of California, Berkeley, CA ANDREW D. PATTERSON, Pennsylvania State University, University Park, PA JOHN F. RAWLS, Duke University School of Medicine, Durham, NC JOSEPH V. RODRICKS, Ramboll Environ, Arlington, VA PAMELA SHUBAT (Retired), Minnesota Department of Health, MN BRIAN THRALL, Pacific Northwest National Laboratory, Richland, W A Staff ELLEN K. MANTUS, Project Director ANDREA HODGSON, Associate Program Officer MIRSADA KARALIC-LONCAREVIC, Manager, Technical Information Center RADIAH ROSE-CRAWFORD, Manager, Editorial Projects IVORY CLARKE, Research Assistant Sponsor US ENVIRONMENTAL PROTECTION AGENCY NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES Prepublication Copy v BOARD ON ENVIRONMENTAL STUDIES AND TOXICOLOGY Members WILLIAM H. FARLAND (Chair), Colorado State University, Fort Collins, CO RICHARD A. BECKER, American Chemistry Council, Washington, DC COLGLAZIER, E. WILLIAM, AAAS, Washington, DC DOMINIC M. DITORO, University of Delaware, Newark, DE DAVID C. DORMAN, North Carolina State University, Raleigh, NC CHARLES T. DRISCOLL, JR., Syracuse University, Syracuse, NY ANNE FAIRBROTHER, Exponent, Inc., Philomath, OR GEORGE GRAY, The George Washington University, Washington, DC STEVEN P. HAMBURG, Environmental Defense Fund, New York, NY ROBERT A. HIATT, University of California, San Francisco, CA SAMUEL KACEW, University of Ottawa, Ontario H. SCOTT MATTHEWS, Carnegie Mellon University, Pittsburgh, PA ROBERT PERCIASEPE, Center for Climate and Energy Solutions, Arlington, VA R. CRAIG POSTLEWAITE, Department of Defense, Burke, VA MARK A. RATNER, Northwestern University, Evanston, IL JOAN B. ROSE, Michigan State University, East Lansing, MI GINA M. SOLOMON, California Environmental Protection Agency, Sacramento, CA ROBERT M. SUSSMAN, Sussman and Associates, Washington, DC DEBORAH L. SWACKHAMER, University ofMinnesota, St. Paul, MN PETERS. THORNE, University oflowa, Iowa City, IA Staff TERESA A. FRYBERGER, Director ELLEN K. MANTUS, Scholar and Director of Risk Assessment RAYMOND A. WASSEL, Scholar and Director of Environmental Studies SUSAN N.J. MARTEL, Senior Program Officer for Toxicology ELIZABETH BOYLE, Program Officer TAMARA DAWSON, Program Associate BERNIDEAN WILLIAMS-SMITH, Financial Associate SUZANNE THILENIUS, Administrative Coordinator vi Prepublication Copy BOARD ON LIFE SCIENCES Members JAMES P. COLLINS (Chair), Arizona State University A. ALONSO AGUIRRE, George Mason University ENRIQUETA C. BOND, Burroughs Wellcome Fund ROGER D. CONE, University of Michigan NANCY D. CONNELL, Rutgers New Jersey Medical School JOSEPH R. ECKER, Salk Institute for Biological Studies SCOTT V. EDWARDS, Harvard University SARAH C.R. ELGIN, Washington University, St. Louis ROBERT J. FULL, University of California, Berkeley ELIZABETH HEITMAN, Vanderbilt University Medical Center JUDITH KIMBLE, University ofWisconsin-Madison MARY E. MAXON, Lawrence Berkeley National Laboratory JILL P. MESIROV, University of California, San Diego KAREN E. NELSON, J. Craig Venter Institute CLAIRE POMEROY, Albert and Mary Lasker Foundation MARY E. POWER, University of California, Berkeley LANA SKIRBOLL, Sanofi JANIS WEEKS, University of Oregon Staff FRANCES SHARPLES, Director JO HUSBANDS, Senior Scholar JAY LABOV, Senior Scholar LIDA ANESTIDOU, Senior Program Officer KATIE BOWMAN, Senior Program Officer KEEGAN SAWYER, Senior Program Officer AUDREY THEVENON, Program Officer ANDREA HODGSON, Associate Program Officer BETHELHEM MEKASHA, Financial Associate JENNA OGILVIE, Research Associate ANGELA KOLESNIKOVA, Senior Program Assistant AANIKA SENN, Senior Program Assistant Prepublication Copy vii Acknowledgments This Consensus Study Report was reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise. The purpose of this independent review is to provide candid and crit­ ical comments that will assist the National Academies of Sciences, Engineering, and Medicine in making each published report as sound as possible and to ensure that it meets the institutional
Recommended publications
  • CHRISTINA “TINA” WARINNER (Last Updated October 18, 2018)
    CHRISTINA “TINA” WARINNER (last updated October 18, 2018) Max Planck Institute University of Oklahoma for the Science of Human History (MPI-SHH) Department of Anthropology Department of Archaeogenetics Laboratories of Molecular Anthropology Kahlaische Strasse 10, 07743 Jena, Germany And Microbiome Research (LMAMR) +49 3641686620 101 David L. Boren Blvd, [email protected] Norman, OK 73019 USA www.christinawarinner.com [email protected] http://www.shh.mpg.de/employees/50506/25522 www.lmamr.org APPOINTMENTS W2 Group Leader, Max Planck Institute for the Science of Human History, Germany 2016-present University Professor, Friedrich Schiller University, Jena, Germany 2018-present Presidential Research Professor, Univ. of Oklahoma, USA 2014-present Assistant Professor, Dept. of Anthropology, Univ. of Oklahoma, USA 2014-present Adjunct Professor, Dept. of Periodontics, College of Dentistry, Univ. of Oklahoma, USA 2014-present Visiting Associate Professor, Dept. of Systems Biology, Technical University of Denmark 2015 Research Associate, Dept. of Anthropology, Univ. of Oklahoma, USA 2012-2014 Acting Head of Group, Centre for Evolutionary Medicine, Univ. of Zürich, Switzerland 2011-2012 Research Assistant, Centre for Evolutionary Medicine, Univ. of Zürich, Switzerland 2010-2011 EDUCATION Ph.D., Anthropology, Dept. of Anthropology, Harvard University 2010 Thesis Title: “Life and Death at Teposcolula Yucundaa: Mortuary, Archaeogenetic, and Isotopic Investigations of the Early Colonial Period in Mexico” A.M., Anthropology, Dept. of Anthropology, Harvard University 2008 B.A., with Honors, Anthropology, University of Kansas 2003 B.A., Germanic Literatures and Languages, University of Kansas 2003 SELECTED HONORS, AWARDS, AND FELLOWSHIPS Invited speaker, British Academy, Albert Reckitt Archaeological Lecture (forthcoming) 2019 Invited speaker, EMBL Science and Society (forthcoming, Nov.
    [Show full text]
  • Pharmacomicrobiomics: a Novel Route Towards Personalized Medicine?
    Protein Cell 2018, 9(5):432–445 https://doi.org/10.1007/s13238-018-0547-2 Protein & Cell REVIEW Pharmacomicrobiomics: a novel route towards personalized medicine? Marwah Doestzada1,2, Arnau Vich Vila1,3, Alexandra Zhernakova1, Debby P. Y. Koonen2, Rinse K. Weersma3, Daan J. Touw4, Folkert Kuipers2,5, Cisca Wijmenga1,6, Jingyuan Fu1,2& 1 Departments of Genetics, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands 2 Departments of Paediatrics, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands 3 Departments of Gastroenterology & Hepatology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands 4 Departments of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands Cell 5 Departments of Laboratory Medicine, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, & The Netherlands 6 K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, P.O. Box 1072, Blindern, 0316 Oslo, Norway & Correspondence: [email protected] (J. Fu) Received March 5, 2018 Accepted April 16, 2018 Protein ABSTRACT INTRODUCTION Inter-individual heterogeneity in drug response is a Individual responses to a specific drug vary greatly in terms serious problem that affects the patient’s wellbeing and of both efficacy and toxicity. It has been reported that poses enormous clinical and financial burdens on a response rates to common drugs for the treatment of a wide societal level. Pharmacogenomics has been at the variety of diseases fall typically in the range of 50%–75%, forefront of research into the impact of individual indicating that up to half of patients are seeing no benefit genetic background on drug response variability or drug (Spear et al., 2001).
    [Show full text]
  • Ayshwarya Subramanian Updated June 10, 2021
    Ayshwarya Subramanian Updated June 10, 2021 Contact Kuchroo Lab and Klarman Cell Observatory Information Broad Institute twitter: @ayshwaryas 5407G, 415 Main Street website: ayshwaryas.github.io Cambridge, MA 02412 USA email:[email protected] Areas of Computational Biology (Kidney disease, Cancer, Inflammatory Bowel Disease, RNA Biology), Ge- expertise nomic Data Analysis (Single-cell and Bulk-RNAseq, Metagenomics, Exome and single-nucleus DNA sequencing), Machine Learning, Probabilistic modeling, Phylogenetics, Applied Statistics Education 2013 Ph.D., Biological Sciences Carnegie Mellon University, Pittsburgh, PA USA Doctoral Advisor: Russell Schwartz, Ph.D. Dissertation: Inferring tumor evolution using computational phylogenetics 2007 M.Sc. (Hons), Biological Sciences (Undergraduate degree) Birla Institute of Technology and Science (BITS{Pilani), Rajasthan, India CGPA 9.21/10, Major GPA 10/10, with Distinction Undergraduate Honors Thesis: A mathematical model for phototactic responses in Halobac- terium salinarium, Max Planck Institute for Complex Technical Systems, Germany. Current Computational Scientist, Cambridge MA 2017{Present Appointment Mentors: Aviv Regev, Ph.D. & Vijay Kuchroo, Ph.D., D.V.M Research Summary: Single-cell portraits of disease and normal states using human data, mouse and organoid models Klarman Cell Observatory Broad Institute, Cambridge, MA 02142 Publications Pre-prints/Under review [1] Subramanian A†, Vernon KA†, Zhou Y† et al. Obesity-instructed TREM2high macrophages identified by comparative analysis of diabetic mouse and human kidney at single cell resolution. bioRxiv 2021.05.30.446342; doi: https://doi.org/10.1101/2021.05.30.446342. [2] Subramanian A†,Vernon KA†, Slyper M, Waldman J, et al. RAAS blockade, kidney dis- ease, and expression of ACE2, the entry receptor for SARS-CoV-2, in kidney epithelial and endothelial cells.
    [Show full text]
  • Functional Selectivity and Classical Concepts of Quantitative Pharmacology
    JPET Fast Forward. Published on June 27, 2006 as DOI: 10.1124/jpet.106.104463 JPET ThisFast article Forward. has not been Published copyedited andon formatted.June 27, The 2006 final versionas DOI:10.1124/jpet.106.104463 may differ from this version. JPET #104463 PiP Title Page Functional selectivity and classical concepts of quantitative pharmacology Jonathan D. Urban, William P. Clarke, Mark von Zastrow, David E. Nichols, Brian Kobilka, Harel Weinstein, Jonathan A. Javitch, Bryan L. Roth, Arthur Christopoulos Patrick M. Sexton, Keith J. Miller, Michael Spedding, Richard B. Mailman Downloaded from Curriculum in Toxicology (JDU, RBM) and Departments of Pharmacology, Psychiatry Medicinal Chemistry (BLR, RBM), and Neurology (RBM), University of North Carolina, Chapel Hill, NC Department of Pharmacology, University of Texas Health Science Center, San Antonio, jpet.aspetjournals.org TX (WPC) Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, CA (MvZ) at ASPET Journals on September 25, 2021 Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, IN (DEN) Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA Department of Physiology and Biophysics, and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY (HW) Center for Molecular Recognition, and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY (JJ) Department of Pharmacology, Monash University, Clayton, Victoria, Australia (AC, PMS) Obesity Department, Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ (KJM) Institute de Recherches Servier, Suresnes 92150, France MS) 1 Copyright 2006 by the American Society for Pharmacology and Experimental Therapeutics.
    [Show full text]
  • Case Studies in Bayesian Statistics Workshop 9 Poster Session
    Case Studies in Bayesian Statistics Workshop 9 Poster Session Following is a tentative list of posters being presented during the workshop: 1. Edoardo Airoldi, Curtis Huttenhower, Olga Troyanskaya and David Botstein 2. Dipankar Bandyopadhyay, Elizabeth Slate, Debajyoti Sinha, Dikpak Dey and Jyotika Fernandes 3. Brenda Betancourt and Maria-Eglee Perez 4. Sham Bhat, Murali Haran, Julio Molineros and Erick Dewolf 5. Jen-hwa Chu, Merlise A. Clyde and Feng Liang 6. Jason Connor, Scott Berry and Don Berry 7. J. Mark Donovan, Michael R. Elliott and Daniel F. Heitjan 8. Elena A. Erosheva, Donatello Telesca, Ross L. Matsueda and Derek Kreager 9. Xiaodan Fan and Jun S. Liu 10. Jairo A. Fuquene and Luis Raul Pericchi 11. Marti Font, Josep Ginebra, Xavier Puig 12. Isobel Claire Gormley and Thomas Brendan Murphy 13. Cari G. Kaufman and Stephan R. Sain 14. Alex Lenkoski 15. Herbie Lee 16. Fei Liu 17. Jingchen Liu, Xiao-Li Meng, Chih-nan Chen, Margarita Alegria 18. Christian Macaro 19. Il-Chul Moon, Eunice J. Kim and Kathleen M. Carley 20. Christopher Paciorek 21. Susan M. Paddock and Patricia Ebener 22. Nicholas M. Pajewski, L. Thomas Johnson, Thomas Radmer, and Purushottam W. Laud 23. Mark W. Perlin, Joseph B. Kadane, Robin W. Cotton and Alexander Sinelnikov 24. Alicia Quiros, Raquel Montes Diez and Dani Gamerman 25. Eiki Satake and Philip Amato 26. James Scott 27. Russell Steele, Robert Platt and Michelle Ross 28. Alejandro Villagran, Gabriel Huerta, Charles S. Jackson and Mrinal K. Sen 29. Dawn Woodard 30. David C. Wheeler, Lance A. Waller and John O.
    [Show full text]
  • Exploring the Concept of Safety and Tolerability
    SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Session 1 Exploring the Concepts of Safety and Tolerability: Incorporating the Patient Voice SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Disclaimer • The views and opinions expressed in the following slides are those of the individual presenters and should not be attributed to their respective organizations/companies, the U.S. Food and Drug Administration or the Critical Path Institute. • These slides are the intellectual property of the individual presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners. 3 Session Participants Chair • Bindu Kanapuru, MD – Medical Officer, Division of Hematology Products, OHOP, FDA Presenters • James (Randy) Hillard, MD – Professor of Psychiatry, Michigan State University • Crystal Denlinger, MD, FACP – Associate Professor, Department of Hematology/Oncology; Chief, Gastrointestinal Medical Oncology; Director, Survivorship Program; Deputy Director, Phase 1 Program, Fox Chase Cancer Center • Katherine Soltys, MD – Acting Director, Bureau of Medical Sciences, Therapeutic Products Directorate, Health Products and Food Branch, Health Canada • Karen E. Arscott, DO, MSc – Associate Professor of Medicine-Patient Advocate and Survivor, Geisinger Commonwealth
    [Show full text]
  • Metaproteomics As a Tool for Studying the Protein Landscape of Human-Gut Bacterial Species
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458484; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species Moses Stamboulian1, Jamie Canderan1, and Yuzhen Ye1 1Luddy School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408. Email address: Moses Stamboulian, [email protected] Jamie Canderan, [email protected] Yuzhen Ye, [email protected] Corresponding author: Yuzhen Ye, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458484; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a pow- erful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associ- ated with a certain phenotype.
    [Show full text]
  • ( 12 ) United States Patent
    US010314866B2 (12 ) United States Patent (10 ) Patent No. : US 10 ,314 ,866 B2 Kovarik ( 45 ) Date of Patent: * Jun . 11, 2019 ( 54 ) METHOD OF REDUCING THE 61/ 919 , 297 , filed on Dec . 20 , 2013, provisional LIKELIHOOD OF SKIN CANCER IN AN application No . 61/ 467, 767 , filed on Mar . 25, 2011 . INDIVIDUAL HUMAN BEING (71 ) Applicant: Joseph E . Kovarik , Englewood , CO (51 ) Int. Cl. (US ) A61K 31 / 58 ( 2006 . 01 ) A61K 35 /00 (2006 . 01 ) (72 ) Inventor: Joseph E . Kovarik , Englewood , CO A61K 35 / 74 (2015 . 01 ) ( US ) A61K 38 / 17 ( 2006 .01 ) A61K 31 / 715 ( 2006 . 01 ) ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 (32 ) U . S . Cl. CPC .. .. .. .. A61K 35 / 74 ( 2013 .01 ) ; A61K 31 /58 U . S . C . 154 ( b ) by 0 days . (2013 .01 ) ; A61K 31/ 715 (2013 . 01 ) ; A61K This patent is subject to a terminal dis 38 / 1709 (2013 . 01 ) ; A61K 38 / 1758 ( 2013 .01 ) ; claimer . A61K 2035 / 11 ( 2013 .01 ) (58 ) Field of Classification Search ( 21) Appl. No .: 16 / 160, 336 None (22 ) Filed : Oct . 15, 2018 See application file for complete search history . (65 ) Prior Publication Data ( 56 ) References Cited US 2019 / 0038680 A1 Feb . 7 , 2019 U . S . PATENT DOCUMENTS Related U . S . Application Data 3 , 178 , 341 A 4 / 1965 Hamill et al . 4 , 568 ,639 A 2 / 1986 Lew (63 ) Continuation of application No . 15 / 403 , 823 , filed on 4 ,687 , 841 A 8 / 1987 Spilburg et al. Jan . 11 , 2017 , now Pat. No. 10 , 111, 913 , which is a 4 , 720 ,486 A 1 / 1988 Spilburg et al .
    [Show full text]
  • Studies on the Role of the Keratinocytes in Cutaneous Immnity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Factors shaping the composition of the cutaneous microbiota K. Szabó1, L. Erdei2, B. Sz. Bolla2, G. Tax2, T. Bíró3, L. Kemény1,2 1. MTA-SZTE Dermatological Research Group, Szeged, Hungary 2. Department of Dermatology and Allergology, University of Szeged, Hungary 3. DE-MTA “Lendület” Cellular Physiology Research Group, Departments of Physiology and Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Running head: Factors shaping the composition of the cutaneous microbiota Manuscript word count: Manuscript table count: none Manuscript figure count: none Corresponding author: Kornélia Szabó Tel: +36-62-545 799 Fax: +36-62-545 799 E-mail address: [email protected] Keywords: microbiota, cutaneous microbiota, Propionibacterium acnes, acne vulgaris, disappearing microbiota hypothesis What's already known about this topic: -Microbes are integral components of the human ecosystem. -The cutaneous microbiota plays an important role in the regulation of skin homeostasis. -The composition of skin microbiota is influenced by many factors. What does this study add? -The dominance of P. acnes in the postadolescent sebum-rich skin regions and its role in acne pathogenesis may be explained by the disappearing microbiota hypothesis. Funding sources: Hungarian Scientific Research Fund (OTKA NK105369), János Bolyai Research Scholarship from the Hungarian Academy of Sciences (for K. Sz). Conflict of interest: The authors declare no conflict of interest. 1 Abstract From our birth, we are constantly exposed to bacteria, fungi and viruses, some of which are capable of transiently or permanently inhabiting our different body parts as our microbiota.
    [Show full text]
  • The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide–Mediated Hepatic Clearance and May Potentiate Statin-Induced Myopathy
    1521-009X/44/5/692–699$25.00 http://dx.doi.org/10.1124/dmd.115.067447 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:692–699, May 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide–Mediated Hepatic Clearance and May Potentiate Statin-Induced Myopathy Heather Eng, Renato J. Scialis, Charles J. Rotter, Jian Lin, Sarah Lazzaro, Manthena V. Varma, Li Di, Bo Feng, Michael West, and Amit S. Kalgutkar Pharmacokinetics, Pharmacodynamics, and Metabolism Department–New Chemical Entities, Pfizer Inc., Groton, Connecticut (H.E., R.J.S., C.J.R., J.L., S.L., M.V.V., L.D., B.F., M.W.); and Pharmacokinetics, Pharmacodynamics, and Metabolism Department–New Chemical Entities, Pfizer Inc., Cambridge MA (A.S.K.) Received September 28, 2015; accepted February 12, 2016 Downloaded from ABSTRACT Chronic treatment of methicillin-resistant Staphylococcus aureus with an IC50 value of 157 6 1.0 mM and was devoid of breast strains with the bacteriostatic agent fusidic acid (FA) is frequently cancer resistance protein inhibition (IC50 > 500 mM).Incontrast, associated with myopathy including rhabdomyolysis upon coad- FA showed potent inhibition of OATP1B1- and OATP1B3-specific ministration with statins. Because adverse effects with statins are rosuvastatin transport with IC50 values of 1.59 mM and 2.47 mM, usually the result of drug–drug interactions, we evaluated the respectively. Furthermore, coadministration of oral rosuvastatin dmd.aspetjournals.org
    [Show full text]
  • A Decade of Metaproteomics: Where We Stand and What the Future Holds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Repository and Bibliography - Luxembourg www.proteomics-journal.com Page 1 Proteomics Viewpoint A decade of metaproteomics: where we stand and what the future holds Paul Wilmes1, Anna Heintz-Buschart1 and Philip L. Bond2 1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg 2Advanced Water Management Centre, University of Queensland, Brisbane, Australia Correspondence: Paul Wilmes, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; Philip L. Bond, Advanced Water Management Centre, University of Queensland, Queensland 4072, Australia E-mail: [email protected]; [email protected] Fax: (352) 466644 6188; (61) 07 33654726 Received: 15-May-2015; Revised: 06-Jul-2015; Accepted: 05-Aug-2015. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/pmic.201500183. This article is protected by copyright. All rights reserved. www.proteomics-journal.com Page 2 Proteomics Abstract We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high-resolution “meta-omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities.
    [Show full text]
  • Pharmacogenetic Testing: a Tool for Personalized Drug Therapy Optimization
    pharmaceutics Review Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization Kristina A. Malsagova 1,* , Tatyana V. Butkova 1 , Arthur T. Kopylov 1 , Alexander A. Izotov 1, Natalia V. Potoldykova 2, Dmitry V. Enikeev 2, Vagarshak Grigoryan 2, Alexander Tarasov 3, Alexander A. Stepanov 1 and Anna L. Kaysheva 1 1 Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; [email protected] (T.V.B.); [email protected] (A.T.K.); [email protected] (A.A.I.); [email protected] (A.A.S.); [email protected] (A.L.K.) 2 Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; [email protected] (N.V.P.); [email protected] (D.V.E.); [email protected] (V.G.) 3 Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-764-9878 Received: 2 November 2020; Accepted: 17 December 2020; Published: 19 December 2020 Abstract: Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician’s ability to understand the obtained results in a standardized way for each particular patient.
    [Show full text]