Evidence for Motility of Marine Chlamydiae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Genomics 98 (2011) 370–375
Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc. -
Expanding the Chlamydiae Tree
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040 Expanding the Chlamydiae tree Insights into genome diversity and evolution JENNAH E. DHARAMSHI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1203-3 UPPSALA urn:nbn:se:uu:diva-439996 2021 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedical Centre (BMC), Husargatan 3, Uppsala, Tuesday, 8 June 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Dr. Alexander Probst (Faculty of Chemistry, University of Duisburg-Essen). Abstract Dharamshi, J. E. 2021. Expanding the Chlamydiae tree. Insights into genome diversity and evolution. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1203-3. Chlamydiae is a phylum of obligate intracellular bacteria. They have a conserved lifecycle and infect eukaryotic hosts, ranging from animals to amoeba. Chlamydiae includes pathogens, and is well-studied from a medical perspective. However, the vast majority of chlamydiae diversity exists in environmental samples as part of the uncultivated microbial majority. Exploration of microbial diversity in anoxic deep marine sediments revealed diverse chlamydiae with high relative abundances. Using genome-resolved metagenomics various marine sediment chlamydiae genomes were obtained, which significantly expanded genomic sampling of Chlamydiae diversity. These genomes formed several new clades in phylogenomic analyses, and included Chlamydiaceae relatives. Despite endosymbiosis-associated genomic features, hosts were not identified, suggesting chlamydiae with alternate lifestyles. Genomic investigation of Anoxychlamydiales, newly described here, uncovered genes for hydrogen metabolism and anaerobiosis, suggesting they engage in syntrophic interactions. -
Compendium of Measures to Control Chlamydia Psittaci Infection Among
Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017 Author(s): Gary Balsamo, DVM, MPH&TMCo-chair Angela M. Maxted, DVM, MS, PhD, Dipl ACVPM Joanne W. Midla, VMD, MPH, Dipl ACVPM Julia M. Murphy, DVM, MS, Dipl ACVPMCo-chair Ron Wohrle, DVM Thomas M. Edling, DVM, MSpVM, MPH (Pet Industry Joint Advisory Council) Pilar H. Fish, DVM (American Association of Zoo Veterinarians) Keven Flammer, DVM, Dipl ABVP (Avian) (Association of Avian Veterinarians) Denise Hyde, PharmD, RP Preeta K. Kutty, MD, MPH Miwako Kobayashi, MD, MPH Bettina Helm, DVM, MPH Brit Oiulfstad, DVM, MPH (Council of State and Territorial Epidemiologists) Branson W. Ritchie, DVM, MS, PhD, Dipl ABVP, Dipl ECZM (Avian) Mary Grace Stobierski, DVM, MPH, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Karen Ehnert, and DVM, MPVM, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Thomas N. Tully JrDVM, MS, Dipl ABVP (Avian), Dipl ECZM (Avian) (Association of Avian Veterinarians) Source: Journal of Avian Medicine and Surgery, 31(3):262-282. Published By: Association of Avian Veterinarians https://doi.org/10.1647/217-265 URL: http://www.bioone.org/doi/full/10.1647/217-265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. -
Chlamydophila Felis Prevalence Chlamydophila Felis Prevalence
ORIGINAL SCIENTIFIC ARTICLE / IZVORNI ZNANSTVENI ČLANAK A preliminary study of Chlamydophila felis prevalence among domestic cats in the City of Zagreb and Zagreb County in Croatia Gordana Gregurić Gračner*, Ksenija Vlahović, Alenka Dovč, Brigita Slavec, Ljiljana Bedrica, S. Žužul and D. Gračner Introduction Feline chlamydiosis is a disease in do- Rampazzo et al. (2003) investigated mestic cats caused by Chlamydophila felis the prevalence of Cp. felis and feline (Cp. felis), which is primarily a pathogen herpesvirus in cats with conjunctivitis by of the conjunctiva and nasal mucosa using a conventional polymerase chain rather than a pulmonary pathogen. It is reaction (PCR), and discovered that 14 capable of causing acute to chronic con- out of 70 (20%) cats with conjunctivitis junctivitis, with blepharospasm, chem- were positive only on Cp. felis and mixed osis and congestion, a serous to mucop- infections with herpesvirus were present urulent ocular discharge, and rhinitis in 5 of 70 (7%) cats. (Hoover et al., 1978; Sykes, 2005). C. Helps et al. (2005) took oropharyngeal 1 psittaci infection in kittens produces fe- and conjunctival swabs from 1101 cats ver, lethargy, lameness, and reduction and by using a PCR determined Cp. felis in weight gain (Terwee at al., 1998). Ac- in 10% of the 558 swab samples of cats cording to the literature, chlamydiosis with URDT and in 3% of the 558 swab in cats can be treated successfully by samples of cats without URDT. administering potentiated amoxicillin Low et al. (2007) investigated 55 cats for 30 days, which can result in a com- with conjunctivitis, 39 healthy cats and plete clinical recovery with no evidence 32 cats with a history of conjunctivitis of a recurrence for six months (Sturgess that been resolved for at least 3 months. -
What Is Lyme Disease?
The threat of Lyme disease Dr Roger Evans Consultant Clinical Scientist National Lyme Borreliosis Testing Laboratory What is Lyme disease? • Also known as Lyme borreliosis • An infection caused by Borrelia burgdorferi sensu lato, a gram negative spirochaete bacterium • Transmitted through the bite of an infected tick (Ixodes ricinus in the UK) – a tick needs to be attached to the skin for around 24 hours to transmit Borrelia sp. to a person. • Recognised clinical presentations: early localized, early disseminated and late Lyme disease • There are large gaps in our clinical understanding of Lyme disease, particularly for ‘Post Treatment Lyme Disease Syndrome ‘ Picture credit: James Gathany Ixodes ricinus (tick) ecology/ life cycle Adapted from Manelli et al. 2011 Laboratory samples and cases of LB in Scotland 1996 to 2016 500 7000 450 6000 400 350 5000 300 4000 250 3000 200 Number of cases Number of samples 150 2000 100 1000 50 0 0 Cases Seroneg EM Year Samples GP study (2010-2012) • Three GP practices in NHS Highland region: Nairn, Culloden, Fort William • Number of laboratory cases compared to number of cases treated for Lyme disease without testing • About 2 x number of cases diagnosed by GP without lab testing compared to those that were tested • 2010-2011 • 1440 blood donors • Screened by EIA • EIA positive or equivocal samples confirmed by immunoblot (IB) • 60/1440 (4.2%) IB positive Munro et al (2015) Transfusion Medicine. Letter to the Editor doi: 10.1111/tme.12197 What does it cost? • Netherlands study (2010) – 5 health outcomes: -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Product Description EN Bactoreal® Kit Chlamydiaceae
Product Description BactoReal® Kit Chlamydiaceae For research only, not for diagnostic use BactoReal® Kit Chlamydiaceae Order no. Reactions Pathogen Internal positive control DVEB03113 100 FAM channel Cy5 channel DVEB03153 50 FAM channel Cy5 channel DVEB03111 100 FAM channel VIC/HEX channel DVEB03151 50 FAM channel VIC/HEX channel Kit contents: Detection assay for Chlamydia and Chlamydophila species Detection assay for internal positive control (control of amplification) DNA reaction mix (contains uracil-N glycosylase, UNG) Positive control for Chlamydiaceae Water Background: The Chlamydiaceae family currently includes two genera and one candidate genus: genus Chlamydia (including the species Chlamydia muridarum, Chlamydia suis, Chlamydia trachomatis), genus Chlamydophila (including the species Chlamydophila abortus, Chlamydophila caviae Chlamydophila felis, Chlamydia pecorum, Chlamydophila pneumoniae, Chlamydophila psittaci), and candidatus Clavochlamydia. All Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause diseases in humans and animals worldwide. Description: BactoReal® Kit Chlamydiaceae is based on the amplification and detection of the 23S rRNA gene of C. muridarum, C. suis, C. trachomatis, C. abortus, C. caviae, C. felis, C. pecorum, C. pneumoniae and C. psittaci using real-time PCR. It allows the rapid and sensitive detection of the 23S rRNA gene of Chlamydiaceae from DNA samples purified from different sample material (e.g. with the QIAamp DNA Mini Kit). For subtyping please contact ingenetix. PCR-platforms: BactoReal® Kit Chlamydiaceae is developed and validated for the ABI PRISM® 7500 instrument (Life Technologies), LightCycler® 480 (Roche) and Mx3005P® QPCR System (Agilent), but is also suitable for other real-time PCR instruments. Sensitivity and specificity: BactoReal® Kit Chlamydiaceae detects at least 10 copies/reaction. -
Yu-Chen Ling and John W. Moreau
Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig. -
Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea
Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea 1. The Bacteria 2. The Archaea Important Metabolic Terms Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: autotroph – uses CO2 as a carbon source • photoautotroph – uses light as an energy source • chemoautotroph – gets energy from inorganic mol. heterotroph – requires an organic carbon source • chemoheterotroph – gets energy & carbon from organic molecules …more Important Terms Facultative vs Obligate: facultative – “able to, but not requiring” e.g. • facultative anaerobes – can survive w/ or w/o O2 obligate – “absolutely requires” e.g. • obligate anaerobes – cannot tolerate O2 • obligate intracellular parasite – can only survive within a host cell The 2 Prokaryotic Domains Overview of the Bacterial Domain We will look at examples from several bacterial phyla grouped largely based on rRNA (ribotyping): Gram+ bacteria • Firmicutes (low G+C), Actinobacteria (high G+C) Proteobacteria (Gram- heterotrophs mainly) Gram- nonproteobacteria (photoautotrophs) Chlamydiae (no peptidoglycan in cell walls) Spirochaetes (coiled due to axial filaments) Bacteroides (mostly anaerobic) 1. The Gram+ Bacteria Gram+ Bacteria The Gram+ bacteria are found in 2 different phyla: Firmicutes • low G+C content (usually less than 50%) • many common pathogens Actinobacteria • high G+C content (greater than 50%) • characterized by branching filaments Firmicutes Characteristics associated with this phylum: • low G+C Gram+ bacteria -
Supplementary Information For
1 2 Supplementary Information for 3 Quantifying the impact of treatment history on plasmid-mediated resistance evolution in 4 human gut microbiota 5 Burcu Tepekule, Pia Abel zur Wiesch, Roger Kouyos, Sebastian Bonhoeffer 6 Burcu Tepekule. 7 E-mail: [email protected] 8 This PDF file includes: 9 Figs. S1 to S6 10 Tables S1 to S2 11 References for SI reference citations Burcu Tepekule, Pia Abel zur Wiesch, Roger Kouyos, Sebastian Bonhoeffer 1 of 11 www.pnas.org/cgi/doi/10.1073/pnas.1912188116 12 Model parameters 13 The obtained growth rates are all positive, and consistent with the underlying biological assumptions, as well as the reported 14 growth rates in (1). Values obtained for interaction terms are all negative except one inter-phyla interaction term, which is 15 positive but small in magnitude. Hence, our numerical estimations for the interaction terms are dominated by competition, 16 which is shown to improve gut microbiome stability and permit high diversity of species to coexist (2). Statistics on the 17 parameter estimates are provided in Table S1 and Figures S1 and S2. Figure S1 shows that the phylum Firmicutes and 18 Actinobacteria do not affect the abundances of Proteobacteria and Bacteroidetes strongly due to their low inter-phyla interaction 19 rates. From the perspective of resistance evolution modeling, this indicates that the model can be reduced to two phyla 20 including Proteobacteria and Bacteroidetes, since they are the only two phyla with the resistant variants. Dynamics of this 21 reduced model are presented in Figure S3, where three random treatment courses are applied on the 4-phyla (full) and 2-phyla 22 (reduced) models, and very similar results are observed. -
Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).