<I>Kluyveromyces Marxianus</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>Kluyveromyces Marxianus</I> 189 Journal of Food Protection, Vol. 62, No. 2, 1999, Pages 189±193 Copyright Q, International Association of Milk, Food and Environmental Sanitarians A Differential Medium for the Isolation of Kluyveromyces marxianus and Kluyveromyces lactis from Dairy Products MARIA-JOSEÂ VALDERRAMA,* M. ISABEL DE SILOÂ NIZ, PILAR GONZALO, AND JOSEÂ M. PEINADO Departamento de MicrobiologõÂa, Facultad de BiologõÂa, Universidad Complutense de Madrid, 28040 Madrid, Spain MS 98-18: Received 26 January 1998/Accepted 10 August 1998 ABSTRACT Downloaded from http://meridian.allenpress.com/jfp/article-pdf/62/2/189/1665745/0362-028x-62_2_189.pdf by guest on 28 September 2021 A selective and differential solid medium, called Kluyveromyces Differential Medium (KDM), is described for the isolation of Kluyveromyces marxianus and K. lactis from dairy products. Its discriminative potential is based on the detection of the enzyme b-galactosidase, in the absence of lactose. Of the more than 95 strains tested, including yeasts, bacteria, and ®lamentous fungus, only the strains of K. marxianus and K. lactis produced blue colonies on the medium due to the presence of X-Gal/ IPTG. The bacterial strains were not able to grow in KDM. On this basis, the medium was very satisfactory when testing naturally or experimentally contaminated dairy food products. When quality assessment tests were performed, optimal values of productivity (growth and color) and selectivity were obtained for K. marxianus and K. lactis. At present, microbial quality control in food industries MATERIALS AND METHODS is mainly focused on detecting pathogenic bacteria, while only total numbers of yeasts, together with ®lamentous fun- Strains. A total of 87 yeast strains have been used in this work (Table 1). They had been isolated in our laboratory from gi, are considered. Nevertheless, in recent years, economic spoiled food products or obtained from culture collections. Seven losses due to spoilage by yeasts have increased in European strains of bacteria and one ®lamentous fungus were also included. companies because of use of lower concentrations of pre- servatives, less severe preservation procedures, packaging Media. The new culture medium, called Kluyveromyces Dif- in modi®ed atmospheres, or new formulations that on oc- ferential Medium (KDM), consisted of a basal medium containing casion allow the growth of yeasts. the following: yeast extract (Difco Laboratories, Detroit, Mich.), When investigation of speci®c spoilage yeasts is re- 5 g/liter; proteose-peptone no. 3 (Difco), 3 g/liter; malt extract (Difco), 3 g/liter; glucose, 10 g/liter; and agar, 20 g/liter. After quired, traditional identi®cation methods are used after iso- autoclaving and cooling to 45 to 508C, adequate volumes of ®lter- lation of the yeasts, but these methods are laborious and sterilized solutions of the following substances were added: 5- time-consuming. bromo-4-chloro-3-indolyl-b-D-galactopyranoside (XGal) (Sigma- A number of selective culture media are currently Aldrich Quimica S.A., Barcelona, Spain), 0.08 mg/liter; isopropil- available for quantitative recovery of yeasts from foods. In b-D-thiogalactopyranoside (IPTG) (Sigma), 0.1 mg/liter; and general, they are acidi®ed or contain antimicrobial agents chloramphenicol (Sigma), 0.5 mg/liter. This medium was poured to inhibit bacterial growth. Certain substances, such as dich- into Petri dishes (15 ml/plate) and stored at 48C. The ®nal pH of 6 loran or rose bengal, are also added to inhibit radial growth the medium was 7.0 0.2. of microfungi (9, 19). As reference media, yeast morphology agar (YMA; Difco) was used for yeast and mold strains, and Trypticase soy agar Kluyveromyces marxianus and K. lactis are two of the (TSA; Panreac, Panreac Quimica S.A. Barcelona, Spain) for bac- most frequent spoilage yeasts of milk and dairy products teria. because of their capacity to assimilate or ferment lactose, as well as to hydrolyze fats or proteins present in milk (9, Inoculation. The media were inoculated with 10 ml of a sus- 10). In a previous work (8), we studied the enzymatic pro- pension in water (approximately 6 MacFarland) of an actively ®les of a number of spoilage yeasts in search of discrimi- growing culture of the strains. The drops were left to absorb on 8 native activities, and we found that K. marxianus was the the surface, and the plates were incubated at 28 C (yeasts and mold) or 378C (bacterial strains) for 7 days. Growth and color only species able to show b-galactosidase activity in the were checked daily. experimental conditions. Several chromogenic and ¯uoro- genic substrates were also screened for the detection of this In¯uence of incubation temperature. The strains of K. enzyme on solid media. On this basis, the aim of the present marxianus and K. lactis were inoculated on KDM plates as pre- work has been to develop a selective and differential culture viously described, and plates were incubated at 40 and 428C for medium for the isolation and rapid detection of Kluyvero- 7 days. Growth and color were recorded daily. As a growth con- myces in milk and dairy products. trol, the strains were inoculated in a similar manner on YMA plates, those being incubated in parallel at the same temperatures. * Author for correspondence. Tel: 34-1-3944964; Quality assessment of the culture medium. Twenty three E-mail: [email protected]. strains of K. marxianus and 9 strains of K. lactis, listed in Table 190 VALDERRAMA ET AL. J. Food Prot., Vol. 62, No. 2 TABLE 1. Growth of the studied strains on KDM TABLE 2. In¯uence of high incubation temperatures on the growth and color production of K. marxianus and K. lactis on No. of Organisms strains Growthb Colorc KDM Temperature (8C) Candida albicansa 2 1 2 C. guillermondii 1 1 2 40 42 C. lipolytica 1 1 2 C. parapsilosisa 2 1 2 Strains (no.) Growth Color Growth Color C. rugosa 1 1 2 K. marxianus (23) 15a 15 6 6 Debaryomyces hanseniia 7 1 2 K. lactis (9) 2 2 0 0 Issatchenkia orientalisa 4 1 2 a 1 1 Kluyveromyces lactis 8 a Results are expressed as number of strains that grew or produced 1 2 1 blue color at the tested temperatures. K. marxianusa 22 1 1 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/62/2/189/1665745/0362-028x-62_2_189.pdf by guest on 28 September 2021 1 1 2 K. thermotolerans 1 1 2 K. veronaea 1 1 2 TABLE 3. Productivity and selectivity of KDM assessed by the Pichia anomalaa 1 1 ecometric method and the modi®ed Miles-Misra methoda P. membranaefaciensa 1 1 2 Rhodotorula glutinis 1 1 2 Selec- R. minutaa 2 1 2 Strains RGi PR tivity R. mucilaginosaa 3 1 2 T Saccharomyces cerevisiaea 6 1 2 K. lactis CYC 1386 0.95 ND 1 Soporidiobolus salmonicolor 1 1 2 CYC 1009 0.93 ND 1 Torulaspora delbrueckii 8 1 2 CYC 1010 1 ND 1 Zygosaccharomyces bailiia 4 1 2 CYC 1361 1 ND 1 Z. bisporus 1 1 2 CECT 1362 0.81 1 1 Z. rouxiia 7 1 2 CECT 10.361 0.86 ND 1 Eurotium amstelodamii 1 1 2 CECT 10.366 1.18 ND 1 Bacillus cereus 1 2 2 CECT 10.356 1.06 ND 1 b Staphylococcus aureus 1 2 2 CECT 10.669 1 ND 1 Escherichia coli 1 2 2 K. marxianus CYC 1162T 1 1.4 1.1 Enterococcus faecalis 1 2 2 CYC 1059 1.25 0.6 1 Lactococcus lactis var. lactis 1 2 2 CYC 1165 1 1.1 1 Pseudomonas aeruginosa 1 2 2 CYC 1167 0.85 1 0.9 P. ¯uorescens 1 2 2 CYC 1182 1 0.9 1 CYC 1355 1 1 1 a Type strain included. CYC 1366 1 0.95 1 b 1 2 , growth; , absence of growth. CYC 1392 1 1.2 1 c 1 2 , blue color, , absence of blue color. CYC 1363 1 0.8 1 CYC 1364 1 0.9 1.1 CYC 1365 0.76 0.8 0.9 3, together with reference strains Zygosaccharomyces rouxii CYC 1394 1 1.4 1 NCYC 1152, Saccharomyces cerevisiae ATCC 7754, Eurotium CECT 10.315 1 1.4 1 amstelodamii ATCC 16018, and Bacillus cereus CECT 193 were CECT 10.257 1 1 1 used. Productivity and selectivity were tested by both the ecom- CECT 10.367 1.12 0.95 1 etric streaking procedure and the modi®ed Miles-Misra colony CECT 10.368 1 1 1 counting method (6, 14, 16), following the recommendations of CECT 10.369 1 1 1 the International Committee for Food Microbiology and Hygiene CECT 10.370 1 1.2 1 Working Party for Culture Media (ICFMH-WPCM) (6). Produc- CECT 10.371 1 1.1 1 tivity was expressed using two parameters: the relative growth CECT 10.374 1 1.4 1 index (RGi) (ecometric method) and productivity rate (PR) (mod- CECT 10.379 1 1 1 i®ed Miles-Misra method). CECT 10.668 1 0.9 1 CECT 10.649 1b 0.92b 1 Shelf life. In order to assess the shelf life of the medium, plates were stored at 48C for 1 month after preparation. They were S. cerevisiae ATCC 7754 1.1b 1b 1 checked weekly for performance (growth and color) using two Z. rouxii NCYC 1522 0.9b 0.8b 1 selected Kluyveromyces strains. Inoculation and incubation were B. cereus CECT 193 0 0 0 performed as previously described. a CYC, Complutensis Yeasts Collection; CECT, ColeccioÂn EspanÄ- Sample analysis. The performance of KDM as a differential ola de Cultivos Tipo; ATCC, American Type Culture Collection; medium for dairy products was analyzed on a total of 15 natural NCYC, National Collection of Yeast Cultures; T, Type strain; samples (Table 4).
Recommended publications
  • Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
    bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga ,​ Annie Espinal-Centeno ,​ Shamayim Martinez-Sanchez ,​ Juan ​ ​ 1 2 ​ 1,3 ​ Caballero-Pérez ,​ Luis D. Alcaraz *​ & Alfredo Cruz-Ramirez *.​ ​ ​ ​ 1 Molecular​ & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio​ de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela​ de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ​ ​ ​ ● ​Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. ​ During colonial times they were renamed with the antillan word maguey. This was changed ​ ​ again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several ​ Mexican prehispanic cultures, Agave species were not only considered as crops, but also part ​ of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli.
    [Show full text]
  • Probiotic Lactic Yeast® New Generation Probiotic Kluyveromyces B0399
    PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399®(Turval B0399®) Kluyveromyces marxianus fragilis B0399 “K. marxianus B0399® demonstrated a number of beneficial and strain specific properties desirable for application as a probiotic”, research done by University of Bologna, Italy and University of Reading, UK and published by the American Society for Microbiology in the scientific journal Applied Environmental Microbiology, 2012 Feb; 78 (4) APPROVALS AND RECOGNITIONS BY NATIONAL AND INTERNATIONAL AUTHORITIES: Turval is an official supplier of the Italian MInistry of Health Italian Army (Esercito Italiano) for animal use: Canadian Food Inspection Agency Scientific and Technologic Park (ZIU); University of Udine via J.Linussio, 51; 33100 Udine, Italy tel.+39 (0432)629731 fax.+39 (0432)603887 E-mail: [email protected] Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 HUMAN NUTRITION NUTRIRE IL PIANETA ENERGIA PER LA VITA FEEDING THE PLANET ENERGY FOR LIFE EUFYR [COOP, ITALY], THE FIRST COMMERCIALISED PROBIOTIC YOGURT CONTAINING KLUYVEROMYCES B0399®, WAS CHOSEN FOR THE UNIVERSAL EXHIBITION EXPO 2015 AS AN EXAMPLE OF LEADING INNOVATION IN FUNCTIONAL DAIRY PRODUCTS. NEW GENERATION PROBIOTYC YOGURT WITH PROBIOTIC LACTIC YEAST® COOP ITALY Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® BROUGHT MULTIPLE AWARDS TO YOGURTS PRODUCERS FOR THE MOST INNOVATIVE PRODUCT EUROPEAN AWARD IN 2014 "EUFYR POMEGRANATE", PRODUCED BY ONE OF THE BIGGEST ITALIAN RETAILERS, COOP – ITALY, WINS PRESTIGIOUS PLMA'S INTERNATIONAL "SALUTE TO EXCELLENCE" AWARD IN AMSTERDAM; EUFYR IS THE WINNER AMONG 16 EUROPEAN COUNTRIES FOR THE BEST INNOVATION IN PRIVATE LABEL Recognizing Innovation in Private Label Welcome to PLMA’s International Salute to Excellence Awards, honouring retailers for their commitment to their own brands and giving recognition to their innovative private label products.
    [Show full text]
  • Synthesis of Polyketides from Low Cost Substrates by the Thermotolerant Yeast Kluyveromyces Marxianus
    ! ! "#$%&'()(!*+!,*-#.'%)/'(!+0*1!-*2!3*(%!(45(%06%'(!5#!%&'! %&'01*%*-'06$%!#'6(%!!"#$%&'()$*&+,)-'./-0#+, ! ! !"#$%&'%()!"**"+,-%."/$0110%2030+-%45"/0%2"660,,-%"/7%8"/)9%:'%."%4$13"!% ! !"#$%&'"(&)*+),-"'./$0)$(1)2.*'*0"/30$%)4(5.(""%.(5) 6(.7"%8.&9)*+),$0.+*%(.$:);%7.(":),<:)6=<) ! ! ",*%%"8#*(1.(5)$3&-*%) !01;)>?@ABCBDEFCDEFEE) <=#"$1;)(1$8.07$G3/.H"13) % % % ! >09%?@+76;!"#$%&'()*%+',!*-(./-0$,1!&-"%'*&*0"%$(/":)I90*8":)#*09J"&.1"8:)&%.$/"&./)$/.1) 0$/&*(") ! ! ! "! "#$%&'(%! !"#$%&'()$*&+,)-'./-0#+,$%!&!'()*$%$+,!+)+-)+./+0$)+&1!2/&%0!3)(!4$)4&%/5!-6/*$-&1!'()57-0$)+!57/!0)! $0%! (&'$5! ,()806! (&0/9! 6$,6! :;<! -2-1/! 317=9! &+5! 0)1/(&+-/! 0)! 1)8! '>! &+5! 6$,6! 0/*'/(&07(/?! @+1$A/! 12, *&'&%/+/-&3!!2,)-'./-0#+,,()8%!)+!1)8B-)%0!%74%0(&0/%!0)!-/11!5/+%$0$/%!06&0!/C7&1!)(!%7('&%%!5/+%$0$/%!$+! ,17-)%/9! 86$-6! -&+! 4/! 4/+/3$-$&1! 3)(! 70$1$D&0$)+! )3! 1$,+)-/1171)%$-! 4$)*&%%! E=21)%/F9! 4$)37/1! '()57-0$)+! 8&%0/!E,12-/()1F9!&+5!86/2!E1&-0)%/F?!G/!6&./!/.&17&0/5!!2,)-'./-0#+!3)(!06/!%2+06/%$%!)3!')12A/0$5/%9! 7%$+,! 0($&-/0$-! &-$5! 1&-0)+/! E:<HF! &%! 06/! '()57-0?! :6/! #B'2()+/! %2+06&%/! E#BIJF! 8&%! /='(/%%/5! )+! &! ;KLM<NJ!'1&%*$5!$+!06(//!5$33/(/+0!%0(&$+%9!&+5!06/!/33/-0%!)3!0/*'/(&07(/9!-&(4)+!%)7(-/9!&+5!-710$.&0$)+! %0(&0/,2!)+!:<H!1/./1%!8/(/!5/0/(*$+/5?!:6/!6$,6/%0!0$0/(!8&%!)40&$+/5!$+!5/3$+/5!"O!=21)%/!*/5$7*!&0! PQ!;9! 8$06! %74%0&+0$&1! 0$0/(%! &0! R"!;! &+5! RP!;?! :6/! $+0()57-0$)+! )3! &! 6$,6B%0&4$1$02! #BIJ! *70&+0! &+5! &! '()*)0/(! %74%0$070$)+! $+-(/&%/5! 0$0/(! RB3)15?! #BIJ! /='(/%%$)+! 3()*! &!
    [Show full text]
  • Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
    FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult.
    [Show full text]
  • Rational Engineering of Kluyveromyces Marxianus to Create a Chassis for the Production of Aromatic Products Arun S
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247957; this version posted August 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products Arun S. Rajkumar and John P. Morrissey* School of Microbiology / Centre for Synthetic Biology and Biotechnology / Environmental Research Institute / APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland *To whom correspondence may be addressed: [email protected] Abstract The yeast Kluyveromyces marxianus offers unique potential for industrial biotechnology because of useful features like rapid growth, thermotolerance and a wide substrate range. As an emerging alternative platform, K. marxianus requires the development and validation of metabolic engineering strategies to best utilize its metabolism as a basis for bio-based production. To illustrate the synthetic biology strategies to be followed and showcase its potential, we describe a comprehensive approach to rationally engineer a metabolic pathway in K. marxianus. We use the phenylalanine biosynthetic pathway both as a prototype and because phenylalanine is a precursor for commercially valuable secondary metabolites. First, we modify and overexpress the pathway to be resistant to feedback inhibition so as to overproduce phenylalanine de novo from synthetic minimal medium. Second, we assess native and heterologous means to increase precursor supply to the biosynthetic pathway. Finally, we eliminate branch points and competing reactions in the pathway and rebalance precursors to redirect metabolic flux to a specific product, 2-phenylethanol (2-PE).
    [Show full text]
  • Lachancea Thermotolerans Applications in Wine Technology
    fermentation Review Lachancea thermotolerans Applications in Wine Technology Antonio Morata 1,* ID , Iris Loira 1 ID , Wendu Tesfaye 1, María Antonia Bañuelos 2, Carmen González 1 and José Antonio Suárez Lepe 1 1 Department of Chemistry and Food Technology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] (I.L.); [email protected] (W.T.); [email protected] (C.G.); [email protected] (J.A.S.L.) 2 Department of Biotechnology-Plant Biology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected] Received: 20 June 2018; Accepted: 6 July 2018; Published: 11 July 2018 Abstract: Lachancea (kluyveromyces) thermotolerans is a ubiquitous yeast that can be naturally found in grapes but also in other habitats as soil, insects and plants, extensively distributed around the world. In a 3-day culture, it shows spherical to ellipsoidal morphology appearing in single, paired cells or short clusters. It is a teleomorph yeast with 1–4 spherical ascospores and it is characterized by a low production of volatile acidity that helps to control global acetic acid levels in mixed or sequential inoculations with either S. cerevisiae or other non-Saccharomyces species. It has a medium fermentative power, so it must be used in sequential or mixed inoculations with S. cerevisiae to get dry wines. It shows a high production of lactic acid able to affect strongly wine pH, sometimes decreasing wine pH by 0.5 units or more during fermentation. Most of the acidification is produced at the beginning of fermentation facilitating the effect in sequential fermentations because it is more competitive at low alcoholic degree.
    [Show full text]
  • Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of K
    processes Article Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of Kluyveromyces marxianus SS106 Thermotolerant Yeast Strain for Single-Step Ethanol Fermentation from Raw Cassava Starch Kwanruthai Malairuang 1 , Morakot Krajang 1, Rapeepong Rotsattarat 2 and Saethawat Chamsart 3,* 1 Biological Sciences Program, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] (K.M.); [email protected] (M.K.) 2 Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] 3 Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand * Correspondence: [email protected]; Tel.: +6696-887-3878 Received: 29 June 2020; Accepted: 20 July 2020; Published: 27 July 2020 Abstract: We developed the intensive multiple sequential batch simultaneous saccharification and cultivation of the selected thermotolerant yeast strain for single-step ethanol production. The selection and high-cell-density inoculum production of thermotolerant yeast able to produce ethanol under the optimal conditions for single-step ethanol fermentation has become a necessity. In this study, the newly isolated Kluyveromyces marxianus SS106 could tolerate high temperatures (35–45 ◦C) and grow under a wide range of pH values (3.0–5.5), which are the optimum conditions of raw cassava starch hydrolyzing enzyme used in single-step ethanol fermentation. The high-cell-density concentration of K. marxianus SS106 was produced by a single batch and an intensive multiple sequential batch process in a 5-L stirred tank bioreactor using the simultaneous saccharification and cultivation (SSC) method. The single SSC process yielded the yeast cell biomass at a concentration of 39.30 g/L with a productivity 1 of 3.28 g/L/h and a specific growth rate of 0.49 h− .
    [Show full text]
  • Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come
    P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi Biology and Applications Second Edition Editor Kevin Kavanagh Department of Biology National University of Ireland Maynooth Maynooth County Kildare Ireland A John Wiley & Sons, Ltd., Publication P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come This edition first published 2011 © 2011 by John Wiley & Sons, Ltd. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered Office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/ wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
    FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Downloaded from https://academic.oup.com/femsyr/article-abstract/4/3/233/562841 by guest on 29 May 2020 Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult.
    [Show full text]
  • Inhibition of MRN Activity by a Telomere Protein Motif
    ARTICLE https://doi.org/10.1038/s41467-021-24047-2 OPEN Inhibition of MRN activity by a telomere protein motif Freddy Khayat1,6, Elda Cannavo2,6, Majedh Alshmery1, William R. Foster1, Charly Chahwan 1,4, Martino Maddalena1,5, Christopher Smith 1, Antony W. Oliver 1, Adam T. Watson1, Antony M. Carr 1, ✉ Petr Cejka2,3 & Alessandro Bianchi 1 The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) 1234567890():,; initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N- terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end- resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles’ heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well. 1 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK. 2 Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universitàdella Svizzera italiana (USI), Bellinzona, Switzerland. 3 Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
    [Show full text]
  • Signatures of Optimal Codon Usage Predict Metabolic Ecology in Budding Yeasts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.22.214635; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Signatures of optimal codon usage predict metabolic ecology in budding yeasts 2 Abigail Leavitt LaBella 3 Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 4 ORCID: 0000-0003-0068-6703 5 [email protected] 6 7 Dana A. Opulente 8 Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy 9 Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, 10 University of Wisconsin-Madison, Madison, WI 53726, USA 11 12 Jacob Steenwyk 13 Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 14 ORCID: 0000-0002-8436-595X 15 [email protected] 16 17 Chris Todd Hittinger 18 Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy 19 Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, 20 University of Wisconsin-Madison, Madison, WI 53726, USA 21 ORCID: 0000-0001-5088-7461 22 [email protected] 23 24 Antonis Rokas 25 Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 26 ORCID: 0000-0002-7248-6551 27 [email protected] 28 Running head: Codon usage as a lens into the metabolic ecology of budding yeasts 29 Keywords: Codon usage bias; Budding yeasts; Secondary metabolism; Reverse Ecology bioRxiv preprint doi: https://doi.org/10.1101/2020.07.22.214635; this version posted July 24, 2020.
    [Show full text]
  • Efficient Growth of Kluyveromyces Marxianus Biomass Used As A
    Löser et al. Energy, Sustainability and Society (2015) 5:2 DOI 10.1186/s13705-014-0028-2 ORIGINAL ARTICLE Open Access Efficient growth of Kluyveromyces marxianus biomass used as a biocatalyst in the sustainable production of ethyl acetate Christian Löser1*, Thanet Urit1,2, Erik Gruner1 and Thomas Bley1 Abstract Background: Whey is just turning from a waste of milk processing to a renewable raw material in biotechnology for producing single-cell protein, bio-ethanol, or ethyl acetate as an economic alternative. Conversion of whey-borne sugar into ethyl acetate requires yeast biomass as a biocatalyst. A high cell concentration results in a quick ester synthesis, but biomass growth means consumption of sugar at the expense of ester production. Efficient and cost-saving biomass production is thus a practical requirement. Whey is poor in nitrogen and has therefore to be supplemented with a bioavailable N source. Methods: Several aerobic growth tests were performed with Kluyveromyces marxianus DSM 5422 as a potent producer of ethyl acetate in whey-borne media supplemented with various N sources. Preliminary tests were done in shake flasks while detailed studies were performed in a stirred bioreactor. Results: Ammonium sulfate resulted in strong acidification due to remaining sulfate, but costly pH control increases the salt load, being inhibitory to yeasts and causing environmental impacts. Ammonium carbonate lessened acidification, but its supplement increased the initial pH to 7.5 and delayed growth. Urea as an alternative N source was easily assimilated by the studied yeast and avoided strong acidification (much less base was required for pH control). Urea was assimilated intracellularly rather than hydrolyzed extracellularly by urease.
    [Show full text]