Conditions for the Existence of Quantum Error Correction Codes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computing Overview
Quantum Computing at Microsoft Stephen Jordan • As of November 2018: 60 entries, 392 references • Major new primitives discovered only every few years. Simulation is a killer app for quantum computing with a solid theoretical foundation. Chemistry Materials Nuclear and Particle Physics Image: David Parker, U. Birmingham Image: CERN Many problems are out of reach even for exascale supercomputers but doable on quantum computers. Understanding biological Nitrogen fixation Intractable on classical supercomputers But a 200-qubit quantum computer will let us understand it Finding the ground state of Ferredoxin 퐹푒2푆2 Classical algorithm Quantum algorithm 2012 Quantum algorithm 2015 ! ~3000 ~1 INTRACTABLE YEARS DAY Research on quantum algorithms and software is essential! Quantum algorithm in high level language (Q#) Compiler Machine level instructions Microsoft Quantum Development Kit Quantum Visual Studio Local and cloud Extensive libraries, programming integration and quantum samples, and language debugging simulation documentation Developing quantum applications 1. Find quantum algorithm with quantum speedup 2. Confirm quantum speedup after implementing all oracles 3. Optimize code until runtime is short enough 4. Embed into specific hardware estimate runtime Simulating Quantum Field Theories: Classically Feynman diagrams Lattice methods Image: Encyclopedia of Physics Image: R. Babich et al. Break down at strong Good for binding energies. coupling or high precision Sign problem: real time dynamics, high fermion density. There’s room for exponential -
Quantum Clustering Algorithms
Quantum Clustering Algorithms Esma A¨ımeur [email protected] Gilles Brassard [email protected] S´ebastien Gambs [email protected] Universit´ede Montr´eal, D´epartement d’informatique et de recherche op´erationnelle C.P. 6128, Succursale Centre-Ville, Montr´eal (Qu´ebec), H3C 3J7 Canada Abstract Multidisciplinary by nature, Quantum Information By the term “quantization”, we refer to the Processing (QIP) is at the crossroads of computer process of using quantum mechanics in order science, mathematics, physics and engineering. It con- to improve a classical algorithm, usually by cerns the implications of quantum mechanics for infor- making it go faster. In this paper, we initiate mation processing purposes (Nielsen & Chuang, 2000). the idea of quantizing clustering algorithms Quantum information is very different from its classi- by using variations on a celebrated quantum cal counterpart: it cannot be measured reliably and it algorithm due to Grover. After having intro- is disturbed by observation, but it can exist in a super- duced this novel approach to unsupervised position of classical states. Classical and quantum learning, we illustrate it with a quantized information can be used together to realize wonders version of three standard algorithms: divisive that are out of reach of classical information processing clustering, k-medians and an algorithm for alone, such as being able to factorize efficiently large the construction of a neighbourhood graph. numbers, with dramatic cryptographic consequences We obtain a significant speedup compared to (Shor, 1997), search in a unstructured database with a the classical approach. quadratic speedup compared to the best possible clas- sical algorithms (Grover, 1997) and allow two people to communicate in perfect secrecy under the nose of an 1. -
Pilot Quantum Error Correction for Global
Pilot Quantum Error Correction for Global- Scale Quantum Communications Laszlo Gyongyosi*1,2, Member, IEEE, Sandor Imre1, Member, IEEE 1Quantum Technologies Laboratory, Department of Telecommunications Budapest University of Technology and Economics 2 Magyar tudosok krt, H-1111, Budapest, Hungary 2Information Systems Research Group, Mathematics and Natural Sciences Hungarian Academy of Sciences H-1518, Budapest, Hungary *[email protected] Real global-scale quantum communications and quantum key distribution systems cannot be implemented by the current fiber and free-space links. These links have high attenuation, low polarization-preserving capability or extreme sensitivity to the environment. A potential solution to the problem is the space-earth quantum channels. These channels have no absorption since the signal states are propagated in empty space, however a small fraction of these channels is in the atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground station and the satellite causes a rotation in the polarization of the quantum states. In the current approaches to compensate for these types of polarization errors, high computational costs and extra physical apparatuses are required. Here we introduce a novel approach which breaks with the traditional views of currently developed quantum-error correction schemes. The proposed solution can be applied to fix the polarization errors which are critical in space-earth quantum communication systems. The channel coding scheme provides capacity-achieving communication over slightly depolarizing space-earth channels. I. Introduction Quantum error-correction schemes use different techniques to correct the various possible errors which occur in a quantum channel. In the first decade of the 21st century, many revolutionary properties of quantum channels were discovered [12-16], [19-22] however the efficient error- correction in quantum systems is still a challenge. -
Models of Quantum Complexity Growth
Models of quantum complexity growth Fernando G.S.L. Brand~ao,a;b;c;d Wissam Chemissany,b Nicholas Hunter-Jones,* e;b Richard Kueng,* b;c John Preskillb;c;d aAmazon Web Services, AWS Center for Quantum Computing, Pasadena, CA bInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 cDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125 dWalter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 ePerimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 *Corresponding authors: [email protected] and [email protected] Abstract: The concept of quantum complexity has far-reaching implications spanning theoretical computer science, quantum many-body physics, and high energy physics. The quantum complexity of a unitary transformation or quantum state is defined as the size of the shortest quantum computation that executes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state governed by a chaotic many- body Hamiltonian grows linearly with time for a time that is exponential in the system size; however, because it is hard to rule out a short-cut that improves the efficiency of a computation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries or states without making additional assumptions. To go further, one may study more generic models of complexity growth. We provide a rigorous connection between complexity growth and unitary k-designs, ensembles which capture the randomness of the unitary group. This connection allows us to leverage existing results about design growth to draw conclusions about the growth of complexity. -
Booklet of Abstracts
Booklet of abstracts Thomas Vidick California Institute of Technology Tsirelson's problem and MIP*=RE Boris Tsirelson in 1993 implicitly posed "Tsirelson's Problem", a question about the possible equivalence between two different ways of modeling locality, and hence entanglement, in quantum mechanics. Tsirelson's Problem gained prominence through work of Fritz, Navascues et al., and Ozawa a decade ago that establishes its equivalence to the famous "Connes' Embedding Problem" in the theory of von Neumann algebras. Recently we gave a negative answer to Tsirelson's Problem and Connes' Embedding Problem by proving a seemingly stronger result in quantum complexity theory. This result is summarized in the equation MIP* = RE between two complexity classes. In the talk I will present and motivate Tsirelson's problem, and outline its connection to Connes' Embedding Problem. I will then explain the connection to quantum complexity theory and show how ideas developed in the past two decades in the study of classical and quantum interactive proof systems led to the characterization (which I will explain) MIP* = RE and the negative resolution of Tsirelson's Problem. Based on joint work with Ji, Natarajan, Wright and Yuen available at arXiv:2001.04383. Joonho Lee, Dominic Berry, Craig Gidney, William Huggins, Jarrod McClean, Nathan Wiebe and Ryan Babbush Columbia University | Macquarie University | Google | Google Research | Google | University of Washington | Google Efficient quantum computation of chemistry through tensor hypercontraction We show how to achieve the highest efficiency yet for simulations with arbitrary basis sets by using a representation of the Coulomb operator known as tensor hypercontraction (THC). We use THC to express the Coulomb operator in a non-orthogonal basis, which we are able to block encode by separately rotating each term with angles that are obtained via QROM. -
Lecture 6: Quantum Error Correction and Quantum Capacity
Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde∗ The quantum capacity theorem is one of the most important theorems in quantum Shannon theory. It is a fundamentally \quantum" theorem in that it demonstrates that a fundamentally quantum information quantity, the coherent information, is an achievable rate for quantum com- munication over a quantum channel. The fact that the coherent information does not have a strong analog in classical Shannon theory truly separates the quantum and classical theories of information. The no-cloning theorem provides the intuition behind quantum error correction. The goal of any quantum communication protocol is for Alice to establish quantum correlations with the receiver Bob. We know well now that every quantum channel has an isometric extension, so that we can think of another receiver, the environment Eve, who is at a second output port of a larger unitary evolution. Were Eve able to learn anything about the quantum information that Alice is attempting to transmit to Bob, then Bob could not be retrieving this information|otherwise, they would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel input where she can place her quantum information such that only Bob has access to it, while Eve does not. That the dimensionality of this subspace is exponential in the coherent information is perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is an entropy difference H(B) − H(E)|a measure of the amount of quantum correlations that Alice can establish with Bob less the amount that Eve can gain. -
Quantum Algorithms
An Introduction to Quantum Algorithms Emma Strubell COS498 { Chawathe Spring 2011 An Introduction to Quantum Algorithms Contents Contents 1 What are quantum algorithms? 3 1.1 Background . .3 1.2 Caveats . .4 2 Mathematical representation 5 2.1 Fundamental differences . .5 2.2 Hilbert spaces and Dirac notation . .6 2.3 The qubit . .9 2.4 Quantum registers . 11 2.5 Quantum logic gates . 12 2.6 Computational complexity . 19 3 Grover's Algorithm 20 3.1 Quantum search . 20 3.2 Grover's algorithm: How it works . 22 3.3 Grover's algorithm: Worked example . 24 4 Simon's Algorithm 28 4.1 Black-box period finding . 28 4.2 Simon's algorithm: How it works . 29 4.3 Simon's Algorithm: Worked example . 32 5 Conclusion 33 References 34 Page 2 of 35 An Introduction to Quantum Algorithms 1. What are quantum algorithms? 1 What are quantum algorithms? 1.1 Background The idea of a quantum computer was first proposed in 1981 by Nobel laureate Richard Feynman, who pointed out that accurately and efficiently simulating quantum mechanical systems would be impossible on a classical computer, but that a new kind of machine, a computer itself \built of quantum mechanical elements which obey quantum mechanical laws" [1], might one day perform efficient simulations of quantum systems. Classical computers are inherently unable to simulate such a system using sub-exponential time and space complexity due to the exponential growth of the amount of data required to completely represent a quantum system. Quantum computers, on the other hand, exploit the unique, non-classical properties of the quantum systems from which they are built, allowing them to process exponentially large quantities of information in only polynomial time. -
SECURING CLOUDS – the QUANTUM WAY 1 Introduction
SECURING CLOUDS – THE QUANTUM WAY Marmik Pandya Department of Information Assurance Northeastern University Boston, USA 1 Introduction Quantum mechanics is the study of the small particles that make up the universe – for instance, atoms et al. At such a microscopic level, the laws of classical mechanics fail to explain most of the observed phenomenon. At such a state quantum properties exhibited by particles is quite noticeable. Before we move forward a basic question arises that, what are quantum properties? To answer this question, we'll look at the basis of quantum mechanics – The Heisenberg's Uncertainty Principle. The uncertainty principle states that the more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa. For instance, if you measure the position of an electron revolving around the nucleus an atom, you cannot accurately measure its velocity. If you measure the electron's velocity, you cannot accurately determine its position. Equation for Heisenberg's uncertainty principle: Where σx standard deviation of position, σx the standard deviation of momentum and ħ is the reduced Planck constant, h / 2π. In a practical scenario, this principle is applied to photons. Photons – the smallest measure of light, can exist in all of their possible states at once and also they don’t have any mass. This means that whatever direction a photon can spin in -- say, diagonally, vertically and horizontally -- it does all at once. This is exactly the same as if you constantly moved east, west, north, south, and up-and-down at the same time. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines. -
Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces -
Arxiv:0905.2794V4 [Quant-Ph] 21 Jun 2013 Error Correction 7 B
Quantum Error Correction for Beginners Simon J. Devitt,1, ∗ William J. Munro,2 and Kae Nemoto1 1National Institute of Informatics 2-1-2 Hitotsubashi Chiyoda-ku Tokyo 101-8340. Japan 2NTT Basic Research Laboratories NTT Corporation 3-1 Morinosato-Wakamiya, Atsugi Kanagawa 243-0198. Japan (Dated: June 24, 2013) Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspect of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. This development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future. -
Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.