A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia

Total Page:16

File Type:pdf, Size:1020Kb

A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia WEB-ONLY CONTENT Rare Copy Number Variants A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia Detelina Grozeva, MSc; George Kirov, PhD, MRCPsych; Dobril Ivanov, MSc; Ian R. Jones, PhD, MRCPsych; Lisa Jones, PhD; Elaine K. Green, PhD; David M. St Clair, MD, PhD; Allan H. Young, PhD, FRCPsych; Nicol Ferrier, PhD, FRCPsych; Anne E. Farmer, PhD, FRCPsych; Peter McGuffin, PhD, FRCPsych; Peter A. Holmans, PhD*; Michael J. Owen, PhD, FRCPsych*; Michael C. O’Donovan, PhD, FRCPsych*; Nick Craddock, PhD, FRCPsych*; for the Wellcome Trust Case Control Consortium Arch Gen Psychiatry. 2010;67(4):318-327 14 RESULTS schizophrenia article. In cases, this is caused by the ex- clusion of schizoaffective cases in the current analysis. The differences with regard to controls are caused by re- COMPARISON OF BURDEN OF COPY NUMBER analysis of a small subset of them. Some of the control VARIANTS ACCORDING TO SIZE BETWEEN data were processed with the use of different reference BIPOLAR CASES, CONTROLS, AND batches, which enabled us to include more controls in SCHIZOPHRENIA CASES the current analysis. We compared our bipolar disorder cases against our set of schizophrenia cases from the same population who had CNVs THAT OCCURRED MORE OFTEN IN been examined by the same methods (n=440).14 The copy BIPOLAR DISORDER CASES THAN CONTROLS number variants (CNVs) were classified into size cat- egories as in our previous report. eTable 1 shows the Although we did not observe an overall increase of CNV results. Compared with bipolar disorder, in the schizo- burden in bipolar cases compared with controls, some phrenia sample we observed a significant excess of large individual CNVs were more common in cases than con- deletions (PϽ.001) and total large CNVs (PϽ.001) and trols. None was significantly associated after correction a trend for excess large duplications (P=.053). for multiple testing. Those CNVs for which there was an uncorrected nominal significance level of ␣Յ.05 are pre- DIFFERENCES BETWEEN SAMPLES USED sented in eTable 2. IN SCHIZOPHRENIA ANALYSIS REPORTED PREVIOUSLY AND SCHIZOPHRENIA-CONTROL ANALYSIS OF CNVs IN REGIONS PREVIOUSLY COMPARISONS IN THIS ANALYSIS REPORTED TO SHOW ASSOCIATIONS IN BIPOLAR DISORDER SAMPLES There are small differences with respect to the analyzed individuals reported herein and the ones described in our We investigated whether CNV regions previously hypoth- esized to be involved in susceptibility to bipolar disorder *Indicates research team members who played a major role in were affected by CNVs in our data. The CNVs on chro- supervising and coordinating the bipolar research described mosomes 1p34.3, 14q23.3, and 22q12.3, affecting GLUR7 herein. (official symbol, GRIK3), AKAP5, and CACNG2, respec- eTable 1. Comparisons of Rates of CNVs Between Controls and BD and SZ Casesa Size CNVs per BD to Control Ratio SZ to Control Ratio BD to SZ Ratio CNV Type Range, kb Control (P Value) (P Value) (P Value) Deletion 100-200 0.104 0.801 (.03) 0.771 1.045 200-500 0.102 0.864 1.141 0.758 500-1000 0.012 1.264 0.938 1.348 Ͼ1000 0.007 0.579 3.189 (.004) 0.181 (Ͻ.001) Total 0.225 0.85 (.01) 1.032 0.825 Duplication 100-200 0.093 0.982 0.882 1.126 200-500 0.155 1.051 0.951 1.105 500-1000 0.050 0.868 1.147 0.757 Ͼ1000 0.023 0.839 1.570 0.53 (.053) Total 0.321 0.990 1.007 0.984 Total (deletionϩduplication) 0.546 0.930 1.017 0.918 Abbreviations: BD, bipolar disorder; CNV, copy number variant; kb, kilobase; SZ, schizophrenia. a Significant differences are in boldface type. P values are not corrected for multiple testing. Those that would survive correction are the excess of large (Ͼ1 megabase) deletions in SZ compared with either controls or BD cases. (REPRINTED) ARCH GEN PSYCHIATRY/ VOL 67 (NO. 4), APR 2010 WWW.ARCHGENPSYCHIATRY.COM E1 ©2010 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eTable 2. Regions Showing More CNVs in Cases Than Controls at a Nominal Significance of PՅ.05 BD P Value, Locusa Start bpb End bpb Type Casesc Controlsc Fisher Exact Test Gene 1q25.1 173 769 777 173 978 862 dup 5 1 .03 TNR 9q31.1 104 826 097 104 885 068 del/dup 3 0 .05 None 12p11.21 31 202 250 31 301 551 dup 19 16 .03 OVOS2 18p11.21-11.1 14 694 694 15 092 421 dup 3 0 .05 ANKRD30B 19p12 20 001 614 20 177 979 del/dup 5 1 .03 ZNF682, ZNF90, ZNF486 19p12 24 013 968 24 295 825 dup 3 0 .05 ZNF254 Abbreviations: BD, bipolar disorder; bp, base pair; CNV, copy number variant; del, deletion; dup, duplication. a Locus refers to the chromosome band. b Start bp and end bp provide the start base pair position and the end base pair position of the CNVs at the specified locus. c Numbers of individuals with BD and controls harboring the CNV. eTable 3. Percentage of Samples Carrying at Least 1 Singleton CNV in Our Study Compared With the Study of Zhang et al20 Current Study, No. (%) Study of Zhang et al, No. (%) Single CNV Type Cases With CNV Controls With CNV Cases With CNV Controls With CNV Deletion 101 (6.0) 173 (6.2) 162 (16.2) 127 (12.3) Duplication 121 (7.1) 234 (8.3) 197 (19.7) 197 (19.1) Deletionϩduplication 187 (11.0) 329 (11.7) 320 (32.0) 299 (29.0) Abbreviation: CNV, copy number variant. tively, were studied.21 No deletions or duplications were not in any control. Where several CNVs mapped to the found. The other studied locus was 3q13.3, reported to same region, they did not always fully overlap. The start harbor duplication in the GSK3B gene.22 This gene codes and end points in the table refer to the total region cov- for glycogen synthase kinase, a key player in the Wnt sig- ered by such a cluster of CNVs. The list contains several naling pathway and a target of lithium.22 No CNVs were intriguing candidate genes (eg, neuroligin 1, neuregu- detected at this locus in bipolar cases. lin 3, and the ␣-2 catenin), although we have no spe- cific evidence that any contribute to susceptibility to bi- SINGLETON EVENTS: COMPARISON polar disorder. OF OUR DATA WITH PREVIOUS STUDIES ANALYSIS OF CNVs THAT DISRUPT GENES With the use of PLINK,24 deletions-only and duplications- only data sets were generated. In these data sets, a dele- The global burden of CNVs in cases and controls with tion was still defined as a single-occurrence event even respect to genes that are deleted, duplicated, or dis- if there was duplication at the same region. The same rule rupted by CNVs was estimated by using PLINK24 1.05. was applied to duplications. Therefore, the number of Only CNVs that overlapped with at least 1 gene, on single-occurrence deletions and single-occurrence du- the basis of hg18 genomic coordinates, were taken into plications does not sum to the total number of single- account. This analysis was performed for all CNVs and occurrence events. then for the CNVs that occurred only once in the data. The power in our sample at ␣=.05 to detect a signifi- cant difference with the effect size observed by Zhang et CNVs PREVIOUSLY ASSOCIATED al20 (␦=0.11) was 95%. For comparison, the power to de- WITH SCHIZOPHRENIA tect a significant difference (␦=0.11) with their sample size was 71% (␣=.05). As mentioned in the “Comment” Table 4 in the main article shows the main chromo- section, the Zhang et al study20 used a higher-resolution somal regions with CNVs associated with schizophre- array (Affymetrix 6.0) and had a smaller sample size. Both nia and the number of the corresponding CNVs in the of these factors can lead to the observation of a higher bipolar disorder cases and controls. Herein we provide number of singleton CNVs in their study and could ex- more information on these CNVs. plain the differences from our study (eTable 3). A deletion at 15q13.3 loci has been found to be asso- ciated with schizophrenia in 2 large studies of schizo- ANALYSIS OF GENES WITHIN CNVs phrenia.12,13 Deletion in the same region was reported to FOUND ONLY IN CASES be associated with mental retardation and seizures.16 No deletions were observed in bipolar disorder, but 2 cases We provide a list of genes within all CNVs that were pres- and no controls were found to harbor duplications in this ent in cases but not in controls (eTable 4). The list in- region (Fisher exact test, P=.14). The significance (or oth- cludes not only singleton CNVs (those found once in the erwise) of duplications in this region is not yet known data set) but also CNVs found in more than 1 case, but from other studies. (REPRINTED) ARCH GEN PSYCHIATRY/ VOL 67 (NO. 4), APR 2010 WWW.ARCHGENPSYCHIATRY.COM E2 ©2010 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eTable 4. Genes in CNVs in Cases Only No. of Chr Start bp End bp Type NCBI Genes Observations 1 45 592 076 45 881 891 3 TESK2, LOC126661, MMACHC, PRDX1, AKR1A1, NASP, CCDC17, 1 GPBP1L1 1 46 131 935 46 268 021 3 MAST2 1 1 65 071 676 65 413 912 3 JAK1, MIRN101-1, AK3L1, AK3L2 1 1 86 324 452 86 589 985 1 COL24A1, ODF2L 1 1 88 847 985 89 032 679 3 PKN2 1 1 107 551 303 107 823 281 3 NTNG1 1 1 143 576 984 143 916 898 1 PDE4DIP, FLJ21272, SEC22B 1 1 152 936 201 153 149 168 1 KCNN3 1 1 166 729 757 167 024 066 1 XCL2, XCL1, DPT 1 1 173 980 586 174 202 365 3 LOC100128153, RFWD2 1 1 217 365 162 217 613 673 1 LOC643723, LYPLAL1 1 1 221 702 789 222 127 692 3 LOC644151, LOC653428, CAPN8, CAPN2, TP53BP2 1 1 231 361 905 231 514 154 1 PCNXL2 1 1 244 896 239 245 307 486 3 C1orf71, SCCPDH, LOC100130097, LOC149134, AHCTF1, ZNF695, 1 ZNF670 2 155 674 306 842 3 LOC727818, SH3YL1, ACP1, FAM150B 1 2 9 950 762 10 157 626 3 TAF1B, GRHL1, UNQ5830, KLF11, LOC100131506,
Recommended publications
  • Case Report Clinical Report of a 17Q12 Microdeletion with Additionally Unreported Clinical Features
    Hindawi Publishing Corporation Case Reports in Genetics Volume 2014, Article ID 264947, 6 pages http://dx.doi.org/10.1155/2014/264947 Case Report Clinical Report of a 17q12 Microdeletion with Additionally Unreported Clinical Features Jennifer L. Roberts,1 Stephanie K. Gandomi,2 Melissa Parra,2 Ira Lu,2 Chia-Ling Gau,2 Majed Dasouki,1,3 and Merlin G. Butler1 1 The University of Kansas Medical Center, Kansas City, KS 66160, USA 2 Ambry Genetics, Aliso Viejo, CA 92656, USA 3 King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia Correspondence should be addressed to Stephanie K. Gandomi; [email protected] Received 18 March 2014; Revised 13 May 2014; Accepted 14 May 2014; Published 2 June 2014 Academic Editor: Philip D. Cotter Copyright © 2014 Jennifer L. Roberts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copy number variations involving the 17q12 region have been associated with developmental and speech delay, autism, aggression, self-injury, biting and hitting, oppositional defiance, inappropriate language, and auditory hallucinations. We present a tall- appearing 17-year-old boy with marfanoid habitus, hypermobile joints, mild scoliosis, pectus deformity, widely spaced nipples, pes cavus, autism spectrum disorder, intellectual disability, and psychiatric manifestations including physical and verbal aggression, obsessive-compulsive behaviors, and oppositional defiance. An echocardiogram showed borderline increased aortic root size. An abdominal ultrasound revealed a small pancreas, mild splenomegaly with a 1.3 cm accessory splenule, and normal kidneys and liver.
    [Show full text]
  • Chapter 7: Monogenic Forms of Diabetes
    CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0237501 A1 SHARP Et Al
    US 2016O23750 1A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0237501 A1 SHARP et al. (43) Pub. Date: Aug. 18, 2016 (54) BIOMARKERS FOR DIAGNOSIS OF Related U.S. Application Data TRANSIENT SCHEMICATTACKS (62) Division of application No. 13/182,630, filed on Jul. (71) Applicant: The Regents of the University of 14, 2011, now abandoned. California, Oakland, CA (US) (60) Provisional application No. 61/364.334, filed on Jul. 14, 2010. (72) Inventors: Frank SHARP, Davis, CA (US); Xinhua ZHAN. Vacaville, CA (US); Publication Classification Glen C. JICKLING, Sacramento, CA (US): S. Claiborne JOHNSTON, San (51) Int. Cl. Francisco, CA (US) CI2O I/68 (2006.01) (52) U.S. Cl. (73) Assignee: The Regents of the University of CPC ........ CI2O 1688 (2013.0); CI2O 2600/158 California, Oakland, CA (US) (2013.01); C12O 2600/1 18 (2013.01) (57) ABSTRACT (21) Appl. No.: 15/043,577 The present invention provides methods and compositions for diagnosing and predicting the risk and cause of transient (22) Filed: Feb. 14, 2016 ischemic attacks (TIA). Patent Application Publication Aug. 18, 2016 Sheet 1 of 4 US 2016/0237SO1 A1 Standardized intensity s sis: iagnosis Controls xIA Figure IA-B Patent Application Publication Aug. 18, 2016 Sheet 2 of 4 US 2016/0237SO1 A1 & TA Cross-validated Probabilities (Thresholds 0.89) * Controls Controls TA ----------------------------------------------------------------------------------------------------------------------------------------- ... 0.9 O.8 O O 20 Subjects30 40 SO 50 Figure 2 Patent Application Publication Aug. 18, 2016 Sheet 3 of 4 US 2016/0237SO1 A1 Cross-validated Probabilities (Threshold=3.97) & TIA1 & A2 TIA1 T1A2 .
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Implications in Parkinson's Disease
    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
    [Show full text]
  • Pan-KIR2DL NK-Receptor Antibodies and Their Use in Diagnostik and Therapy
    (19) TZZ _ T (11) EP 2 287 195 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.02.2011 Bulletin 2011/08 C07K 16/28 (2006.01) G01N 33/52 (2006.01) (21) Application number: 10178924.6 (22) Date of filing: 01.07.2005 (84) Designated Contracting States: • Romagne, François AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 13600 La Ciotat (FR) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Wagtmann, Peter, Andreas, Nicolai, Reumert SK TR 2960 Rungsted Kyst (DK) • Svendsen, Ivan (30) Priority: 06.01.2005 DK 200500025 2765 Smorum (DK) 01.07.2004 PCT/DK2004/000470 • Zahn, Stefan 01.07.2004 PCT/IB2004/002464 2750 Ballerup (DK) • Svensson, Anders (62) Document number(s) of the earlier application(s) in 21746 Malmö (DK) accordance with Art. 76 EPC: • Thorolfsson, Matthias 05758642.2 / 1 791 868 2920 Charlottenlund (DK) • Berg Padkaer, Soren (71) Applicants: 3500 Vaerlose (DK) • Novo Nordisk A/S • Kjaergaard, Kristian 2880 Bagsvaerd (DK) 2750 Ballerup (DK) • Innate Pharma • Spee, Pieter 13009 Marseille (FR) 3450 Allerod (DK) • Universita di Genova • Wilken, Michael 16132 Genova (IT) 3390 Hundested (DK) (72) Inventors: (74) Representative: Gallois, Valérie et al • Moretta, Alessandro Cabinet BECKER & ASSOCIES 16133 Genova (IT) 25, rue Louis Le Grand • Della Chiesa, Mariella 75002 Paris (FR) 16132 Genova (IT) • Andre, Pascale Remarks: 13006 Marseille (FR) This application was filed on 23-09-2010 as a • Gauthier, Laurent divisional application to the application mentioned 13008 Marseille (FR) under INID code 62.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA503371 AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] Product data: Product Type: Primary Antibodies Clone Name: OTI3A9 Applications: FC, WB Recommended Dilution: WB 1:2000, FLOW 1:100 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG2b Clonality: Monoclonal Immunogen: Full length human recombinant protein of human AK4(NP_037542) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 25.1 kDa Gene Name: adenylate kinase 4 Database Link: NP_037542 Entrez Gene 11639 MouseEntrez Gene 29223 RatEntrez Gene 205 Human P27144 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] – TA503371 Background: This gene encodes a member of the adenylate kinase family of enzymes. The encoded protein is localized to the mitochondrial matrix. Adenylate kinases regulate the adenine and guanine nucleotide compositions within a cell by catalyzing the reversible transfer of phosphate group among these nucleotides. Five isozymes of adenylate kinase have been identified in vertebrates.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • AK3L1 Antibody - Middle Region Rabbit Polyclonal Antibody Catalog # AI12098
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 AK3L1 antibody - middle region Rabbit Polyclonal Antibody Catalog # AI12098 Specification AK3L1 antibody - middle region - Product Information Application WB Primary Accession P27144 Other Accession NM_001005353, NP_001005353 Reactivity Human, Mouse, Rat, Rabbit, Zebrafish, Pig, Horse, Bovine, Guinea Pig, Dog Predicted Pig, Dog WB Suggested Anti-AK3L1 Antibody Titration: Host Rabbit 2.5μg/ml Clonality Polyclonal Positive Control: Jurkat cell lysate Calculated MW 25kDa KDa AK3L1 antibody - middle region - Additional Information AK3L1 antibody - middle region - References Gene ID 205 Noma,T.,Biochem.J.358(PT1),225-232(2001)Re Alias Symbol AK3, AK4, AK3L1, constitutionandStorage:Forshorttermuse,storea AK3L2 t2-8Cupto1week.Forlongtermstorage,storeat-2 Other Names 0Cinsmallaliquotstopreventfreeze-thawcycles. Adenylate kinase 4, mitochondrial {ECO:0000255|HAMAP-Rule:MF_03170}, AK 4 {ECO:0000255|HAMAP-Rule:MF_03170}, 2.7.4.10 {ECO:0000255|HAMAP-Rule:MF_03170}, 2.7.4.6 {ECO:0000255|HAMAP-Rule:MF_03170}, Adenylate kinase 3-like {ECO:0000255|HAMAP-Rule:MF_03170}, GTP:AMP phosphotransferase AK4 {ECO:0000255|HAMAP-Rule:MF_03170}, AK4 {ECO:0000255|HAMAP-Rule:MF_03170} Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Reconstitution & Storage Add 100 ul of distilled water. Final anti-AK3L1 antibody concentration is 1 Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 mg/ml in PBS buffer with 2% sucrose. For longer periods of storage, store at 20°C. Avoid repeat freeze-thaw cycles. Precautions AK3L1 antibody - middle region is for research use only and not for use in diagnostic or therapeutic procedures.
    [Show full text]
  • Copy Number Variation in Fetal Alcohol Spectrum Disorder
    Biochemistry and Cell Biology Copy number variation in fetal alcohol spectrum disorder Journal: Biochemistry and Cell Biology Manuscript ID bcb-2017-0241.R1 Manuscript Type: Article Date Submitted by the Author: 09-Nov-2017 Complete List of Authors: Zarrei, Mehdi; The Centre for Applied Genomics Hicks, Geoffrey G.; University of Manitoba College of Medicine, Regenerative Medicine Reynolds, James N.; Queen's University School of Medicine, Biomedical and Molecular SciencesDraft Thiruvahindrapuram, Bhooma; The Centre for Applied Genomics Engchuan, Worrawat; Hospital for Sick Children SickKids Learning Institute Pind, Molly; University of Manitoba College of Medicine, Regenerative Medicine Lamoureux, Sylvia; The Centre for Applied Genomics Wei, John; The Centre for Applied Genomics Wang, Zhouzhi; The Centre for Applied Genomics Marshall, Christian R.; The Centre for Applied Genomics Wintle, Richard; The Centre for Applied Genomics Chudley, Albert; University of Manitoba Scherer, Stephen W.; The Centre for Applied Genomics Is the invited manuscript for consideration in a Special Fetal Alcohol Spectrum Disorder Issue? : Keyword: Fetal alcohol spectrum disorder, FASD, copy number variations, CNV https://mc06.manuscriptcentral.com/bcb-pubs Page 1 of 354 Biochemistry and Cell Biology 1 Copy number variation in fetal alcohol spectrum disorder 2 Mehdi Zarrei,a Geoffrey G. Hicks,b James N. Reynolds,c,d Bhooma Thiruvahindrapuram,a 3 Worrawat Engchuan,a Molly Pind,b Sylvia Lamoureux,a John Wei,a Zhouzhi Wang,a Christian R. 4 Marshall,a Richard F. Wintle,a Albert E. Chudleye,f and Stephen W. Scherer,a,g 5 aThe Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital 6 for Sick Children, Toronto, Ontario, Canada 7 bRegenerative Medicine Program, University of Manitoba, Winnipeg, Canada 8 cCentre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]