RCA REFERENCE BOOK R 1964 Frni
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lawrence Berkeley National Laboratory Recent Work
Lawrence Berkeley National Laboratory Recent Work Title TESTING TECHNIQUES USED IN THE QUALITY SELECTION OF RCA 6810 MULTIPLIER PHOTOTUBES Permalink https://escholarship.org/uc/item/5jv0v3kb Author Kirsten, Frederick A. Publication Date 1956-10-16 eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA ' TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Diuision, Ext. 5545 BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. · UCRL- 3430(rev.) Engineering Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Berkeley,. California Contract No. W -7405-eng-48 • •·l TESTING TECHNIQUES USED IN THE QUALITY SELECTION OF RCA 6810 MULTIPLIER PHOTOTUBES . -
Iii. Modern Electronic Techniques Applied to Physics and Engineering
_~__~~n~~____ I_~__ III. MODERN ELECTRONIC TECHNIQUES APPLIED TO PHYSICS AND ENGINEERING A. DESIGN AND CONSTRUCTION OF A MICROWAVE ACCELERATOR Staff: Professor J. C. Slater Professor A. F. Kip Dr. W. H. Bostick R. J. Debs P. T. Demos M. Labitt L. Maier S. J. Mason I. Polk J. R. Terrall Since the last progress report, primary emphasis has been on con- struction of additional lengths of accelerating cavity and the associated equipment necessary for operation. Primary design work has been finished on all components necessary for operation of the accelerator and most com- ponents are in the process of being assembled. The following items include recent developments and design details which have not been mentioned earlier. Delivery on the 2-Mev Van de Graaff machine is expected at an early date. A pulsing circuit to modulate the electron beam from the Van de Graaff machine has been designed and built. Since this circuit is to be placed in the dome of the machine at high pres- sure, all component parts have been subjected to 400 lb/in2 pressure to ensure that they have the necessary strength. Machining work on the one-foot accelerator sections is essentially completed. Assembly and brazing of the parts are now in progress. The final design for the 20-foot accelerator tube has been slightly modified in that it has been divided into three sections which are isolated from each other rf-wise by short drift tubes which act as waveguides beyond cut-off. The primary purpose of this procedure is to allow for tuning each section to optimum frequency independently. -
Nojivw&Ohn? *Joto Omaj
Dec. 18, 1962 W. R. SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March la, l960 3 Sheets-Sheet 1. r LIMAS9.NIHO BOHABO ??31=== IWWBO-BNI-NOI.-OL SV78EWIlCJE OMAJ.*JOTOO NOJIVW&JOHN? MABIA9.NI BOV-38ñS [] [] INVENTOR. WILLIAM R. SLOAN BY ????????? ? ???? AT TORNEYS Dec. 18, 1962 W. R, SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3. Sheets-Sheet 2 GN2&#OTOO ea? ?——?? AT TORNEYS Dec. 18, 1962 W. R. SOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3 Sheets-Sheet 3 – E. T =-4 HORIZONAL ? SWEEP GENERATOR 44 68 256 K.C. GENERATORPULSE ( BSTABLE BSTABLE B|STABLE ? B|STABLE BSTABLE ??? ? ??82 m232 -- 198 lost 3 -- SAS JS JAAYeASeSYe SAuSJSJASJLLLTLTMSTTLTTTLLLSLLSS LL LLL LLLLLL DISPLAY SURFACE HORIZONTAL SWEEP GENERATOR INVENTOR. WLLAM R. SOAN ATTORNEYS 3,069,681 United States Patent Office Patented Dec. 18, 1962 2 3,069,681 when the electrodes are respectively pulsed. Each of the SYSTEM FOR LARGE-AREA DISPLAY OF pluralities of electrodes is in spaced-apart alignment along TWO,-COLOR ENSFORMATION one dimension of the sheet and the two pluralities of William R. Sloan, Fort Wayne, Ind., assignor to Inter electrodes are respectively spaced-apart along the other national Telephone and Telegraph Corporation dimension of the sheet. Means are provided for moving Filed Mar. 14, 1960, Ser. No. 14,743 the sheet with respect to the electrodes along the other 9 Claims. (Cl, 346-74) dimension. First switching means is provided sequen tially coupling the first electrodes to the converting means This invention relates to a system for presenting in for sampling one of the color-responsive signals at dis two colors alpha-numeric information, i.e., words and Crete intervals and for pulsing the first electrodes respon numbers, and graphical information, such as maps, sive to the presence of the one color signal at the respec graphs, etc., visually on a large-area display for group tive intervals. -
Test Data for Electron Tube Test Sets Tv-7/U, Tv-7A/U, Tv-7B/U, and Tv-7D/U
NAVWEPS 16-45-637 TB 11-6625-274-12/1 DEPARTMENT OF THE ARMY TECHNICAL BULLETIN TEST DATA FOR ELECTRON TUBE TEST SETS TV-7/U, TV-7A/U, TV-7B/U, AND TV-7D/U This copy is a reprint which includes current pages from Changes 3. HEADQUARTERS, DEPARTMENT OF THE ARMY JANUARY 1962 *TB 11-6625-274-12/1 TWENIGAL BUMIN ME ADQUARTERS, DEPARTMENT OF THE ARMY No. 11-6826-274-12/1 WASHtNGTUN 26, D. C.,17Januarui96S TEST DATA FOR ELECTRON TUBE TEST SETS TV-7/U, TV-7A/U, TV-7B/U, AND TV-7 D/U 1. Operation. The following instructions are keyed to the table of teat data given In paragraph & For comule@ operating inatruetions see TM 11-6625-274-12, Operator’s nnd Organizational Maintena.nee Manual, Test Sets, Electron Tube TV-7/U, TV-7 A/IJ, TV-7B/U, and TV-7D/U. & Turn the POWER switch to the ON po.cition. b. Press push button l-LINE ADJ and hold it down. S1OWIY rotata the LINE AD- JUST control knob untii the pointer of the meter rcata over the LINE TEST mark. This adjustment is not required for all tubes (refer to Notntiom column). c. Locate the type number of the tube to be taatcd (par. 2) under the column heading Tube twe. d. Refer ta the Notatiene column for $pecinl information pertaining to apcciflc typcc of tubcc. 8. Set the lrILAM ENT VOLTAGE owitch et the voltage shown under the heading Fil. /. Set the selector awitehes as indicated under tbe column headed Setectoru in the fol-” Jowfng order: FILAMENT (left), FILAMENT (right). -
Teelllliedi Siteeifieatittil CONTENTS
'. INTERACTIVE GRAPHIC SYSTEMS t;DSn teellllieDI Siteeifieatittil CONTENTS Section Page Section Page 1 Introducing GDS II ........................................... 1-1 4 Specifications ................................................ 4-1 2 General Description .......................................... 2-1 4.1 Database Features ....................................... 4-1 4.2 Input/Editing ............................................ 4-1 2.1 The Problems of VLSI .................................... 2-1 4.3 Display Control .......................................... 4-3 2.2 The Solution - GDS II .................................... 2-1 4.4 Background Programs ................................... 4-4 2.3 Exploiting the Latest Technology .................. , ...... 2-2 4.5 Application Programming Tools .......................... 4-5 4.6 Hardware ............................................... 4-6 3 System Operation ............................................ 3-1 5 Software ..................................................... 5-1 3.1 Database Extensibility ................................... 3-1 3.2 Database Elements ...................................... 3-1 5.1 Multiground RDOS ...................................... 5-1 3.3 Database Construction ................................... 3-2 5.2 Database Management System ........................... 5-3 3.4 Menu Operations ........................................ 3-2 5.3 GPL™ ................................................... 5-7 3.5 Graphic Display ......................................... 3-2 -
1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual................................................................. -
7.4 UV, Visible and Near IR Detectors
7.4 UV, Visible and Near IR Detectors • in the photoelectric effect light ejects an electron from a metal surface • a vacuum phototube converts a light flux into an electrical current, and is useful for detecting high levels of light • a photomultiplier converts a single photon into a current pulse, and is useful for detecting low levels of light • photodiodes are based on the promotion of electrons from the valence band to the conduction band of semiconductors, and are useful for detecting both high and low levels of light 7.4 : 1/8 Photoelectric Effect • because metals contain free electrons they can absorb UV, visible, and near IR radiation • if the energy of the absorbed photon is greater than the ______ ________ of the metal, an electron is ejected into the vacuum • the energy of the photon equals the work function of the metal plus the kinetic energy of the electron hc1 hc =+mv2 ωλ = λ 2 0 ω where ω is the work function, and λ0 is the wavelength that just barely ejects an electron • alkali metals are commonly used in detectors metal Li Na K Rb Cs ω 2.9 eV 2.75 2.3 2.16 2.14 λ0 428 nm 451 539 574 579 • mixtures of alkali metals can give λ0 as high as ______ nm • because __________ energy can combine with optical energy, the onset of photo-ejection is gradual 7.4 : 2/8 Vacuum Phototube A metallic surface with a low work function is placed inside an evacuated tube. When light interacts with the metal, electrons are photo-ejected. -
Of 38 an Inexpensive VTCT Adapter for All Tektronix Scts Version. 1.04.1
Page 1 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Page 2 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Figure 1 Front cover—Tektronix 577 Semiconductor Curve Tracer displaying the characteristic curves of a TRIODE VACUUM TUBE. Page 3 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 AN INEXPENSIVE VACUUM TUBE CURVE TRACER ADAPTER FOR ALL TEKTRONIX SEMICONDUCTOR CURVE TRACERS © Dennis Tillman W7pF, [email protected], Version 1.04.1, Mar. 10, 2020 CONTENTS INTRODUCTION ................................................................................................................................... 5 TEKTRONIX CURVE TRACER FEATURE COMPARISON .................................................................. 6 TEKTRONIX CURVE TRACERS .......................................................................................................... 6 VACUUM TUBE TESTER FEATURE COMPARISON .......................................................................... 8 THEORY OF OPERATION .................................................................................................................. 11 EICO 667 MODIFICATIONS................................................................................................................ 13 WHAT CAN I EXPECT WITH THE CURVE TRACER I MAY ALREADY OWN? ................................ 13 WHAT YOU WILL NEED TO MAKE THIS VTCT ................................................................................ 14 TWO CHARACTERISTIC CURVES -
Frequency Spectrum Generated by Thyristor Control J
Electrocomponent Science and Technology (C) Gordon and Breach Science Publishers Ltd. 1974, Vol. 1, pp. 43-49 Printed in Great Britain FREQUENCY SPECTRUM GENERATED BY THYRISTOR CONTROL J. K. HALL and N. C. JONES Loughborough University of Technology, Loughborough, Leics. U.K. (Received October 30, 1973; in final form December 19, 1973) This paper describes the measured harmonics in the load currents of thyristor circuits and shows that with firing angle control the harmonic amplitudes decrease sharply with increasing harmonic frequency, but that they extend to very high harmonic orders of around 6000. The amplitudes of the harmonics are a maximum for a firing delay angle of around 90 Integral cycle control produces only low order harmonics and sub-harmonics. It is also shown that with firing angle control apparently random inter-harmonic noise is present and that the harmonics fall below this noise level at frequencies of approximately 250 KHz for a switched 50 Hz waveform and for the resistive load used. The noise amplitude decreases with increasing frequency and is a maximum with 90 firing delay. INTRODUCTION inductance. 6,7 Literature on the subject tends to assume that noise is due to the high frequency Thyristors are now widely used for control of power harmonics generated by thyristor switch-on and the in both d.c. and a.c. circuits. The advantages of design of suppression components is based on this. relatively small size, low losses and fast switching This investigation has been performed in order to speeds have contributed to the vast growth in establish the validity of this assumption, since it is application since their introduction, when they were believed that there may be a number of perhaps basically a solid-state replacement for mercury-arc separate sources of noise in thyristor circuits. -
ARGUS, the VCR97 CRT, the PENTODE THAT WON the WAR and “MY ARGUS”
PRACTICAL TELEVISION MAGAZINE'S ARGUS, THE VCR97 CRT, THE PENTODE THAT WON THE WAR and “MY ARGUS”. Dr. Hugo Holden, Oct. 2016. (Updated Nov.2016- Argus Filters & case page 37. Change to sync Sep value, pg 14) INTRODUCTION: Firstly some photos of “My Argus”. This name, throughout this article, refers to my unique version of the Argus build your own Television project from Practical Television (P.T.) magazine 1952. My Argus has a different mechanical construction philosophy and altered electrical design which is described in this article: SCREEN IMAGES: The Argus employed the VCR97 CRT (Radar Cathode Ray Tube). Just how good is a VCR97 CRT at producing a 405 line television picture? The answer to this question depends on the actual VCR97 you have and the performance of the set’s vision amplifier and video output stage. Some VCR97’s, due to an anomaly in their electron gun and deflection plate construction, cannot deflect a full screen image. Other VCR97’s now have low emission and brightness and while being ok for a single line scope or radar display, are poor for displaying a TV scanning raster. After sorting through a good number of them I selected the better performing tube. A number of screen images are shown below. The screen image photographs below show that the horizontal and vertical scanning linearity is not perfect. It is a little stretched at the start of the horizontal scan and compressed a little at the end vertical scan. This turned out to have a different reason in the line and frame oscillator/deflection circuits and was subsequently remedied with simple modifications described later in this article. -
Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976
NAT'L INST. OF STAND ms & TECH R.I.C. Pubii - cations A111D4 4 Tfi 3 4 4 NBSIR 78-1564 Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final QC— U.S. DEPARTMENT OF COMMERCE 100 NATIONAL BUREAU OF STANDARDS U56 73-1564 Buraev of Standard! NBSIR 78-1564 1 4 ^79 fyr *'• 1 f TABULATION OF PUBLISHED DATA ON ELECTRON DEVICES OF THE U.S.S.R. THROUGH DECEMBER 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary / Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director - 1 TABLE OF CONTENTS Page Preface i v 1. Introduction 2. Description of the Tabulation ^ 1 3. Organization of the Tabulation ’ [[ ] in ’ 4. Terminology Used the Tabulation 3 5. Groups: I. Numerical 7 II. Receiving Tubes 42 III . Power Tubes 49 IV. Rectifier Tubes 53 IV-A. Mechanotrons , Two-Anode Diode 54 V. Voltage Regulator Tubes 55 VI. Current Regulator Tubes 55 VII. Thyratrons 56 VIII. Cathode Ray Tubes 58 VIII-A. Vidicons 61 IX. Microwave Tubes 62 X. Transistors 64 X-A-l . Integrated Circuits 75 X-A-2. Integrated Circuits (Computer) 80 X-A-3. Integrated Circuits (Driver) 39 X-A-4. Integrated Circuits (Linear) 89 X- B. -
Hereby the Screen Stands in For, and Thereby Occludes, the Deeper Workings of the Computer Itself
John Warnock and an IDI graphical display unit, University of Utah, 1968. Courtesy Salt Lake City Deseret News . 24 doi:10.1162/GREY_a_00233 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/GREY_a_00233 by guest on 27 September 2021 The Random-Access Image: Memory and the History of the Computer Screen JACOB GABOURY A memory is a means for displacing in time various events which depend upon the same information. —J. Presper Eckert Jr. 1 When we speak of graphics, we think of images. Be it the windowed interface of a personal computer, the tactile swipe of icons across a mobile device, or the surreal effects of computer-enhanced film and video games—all are graphics. Understandably, then, computer graphics are most often understood as the images displayed on a computer screen. This pairing of the image and the screen is so natural that we rarely theorize the screen as a medium itself, one with a heterogeneous history that develops in parallel with other visual and computa - tional forms. 2 What then, of the screen? To be sure, the computer screen follows in the tradition of the visual frame that delimits, contains, and produces the image. 3 It is also the skin of the interface that allows us to engage with, augment, and relate to technical things. 4 But the computer screen was also a cathode ray tube (CRT) phosphorescing in response to an electron beam, modified by a grid of randomly accessible memory that stores, maps, and transforms thousands of bits in real time. The screen is not simply an enduring technique or evocative metaphor; it is a hardware object whose transformations have shaped the ma - terial conditions of our visual culture.