CALCULUS Table of Contents Calculus I, First Semester Chapter 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on Calculus II Integral Calculus Miguel A. Lerma
Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus. -
A Brief Tour of Vector Calculus
A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0. -
Differentiation Rules (Differential Calculus)
Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below. -
Calculating Volume of a Solid
Calculating volume of a solid Quick Rewind: how to calculate area 1. slice the region to smaller pieces (narrow, nearly rectangle) 2. calculate the area of rectangle 3. take the limit (more and more slices) Recipe for calculating volume (motivated by area) 1. slice the solid into smaler pieces (thin cut) 2. calculate the volume of each \thin cut" 3. take the limit (more and more slices) Step 2: volume ≈ area × thickness, because it is so thin Suppose that x-axis is perpendicular to the direction of cutting, and the solid is between x = a and x = b. Z b Volume= A(x)dx, where A(x) is the area of \thin cut"at x a (\thin cut"is called a cross section, a two-dimensional region) n Z b X A(x)dx = lim A(yi ) · ∆x, (Riemann sum), where ∆x = (b − a)=n, x0 = a, n!1 a i=1 x1 = x0 + ∆x, ··· , xk+1 = xk + ∆x, ··· , xn = b, and xi−1 ≤ yi ≤ xi . Slicing method of volume Example 1: (classical ones) Z h (a) circular cylinder with radius=r, height=h: A(x)dx, A(x) = π[R(x)]2, R(x) = r 0 Z h rx (b) circular cone with radius=r, height=h: A(x)dx, A(x) = π[R(x)]2, R(x) = 0 h Z r p (c) sphere with radius r: A(x)dx, A(x) = π[R(x)]2, R(x) = r 2 − x2. −r Example 2: Find the volume of the solid obtained by rotating the region bounded by y = x − x2, y = 0, x = 0 and x = 1 about x-axis. -
Visual Differential Calculus
Proceedings of 2014 Zone 1 Conference of the American Society for Engineering Education (ASEE Zone 1) Visual Differential Calculus Andrew Grossfield, Ph.D., P.E., Life Member, ASEE, IEEE Abstract— This expository paper is intended to provide = (y2 – y1) / (x2 – x1) = = m = tan(α) Equation 1 engineering and technology students with a purely visual and intuitive approach to differential calculus. The plan is that where α is the angle of inclination of the line with the students who see intuitively the benefits of the strategies of horizontal. Since the direction of a straight line is constant at calculus will be encouraged to master the algebraic form changing techniques such as solving, factoring and completing every point, so too will be the angle of inclination, the slope, the square. Differential calculus will be treated as a continuation m, of the line and the difference quotient between any pair of of the study of branches11 of continuous and smooth curves points. In the case of a straight line vertical changes, Δy, are described by equations which was initiated in a pre-calculus or always the same multiple, m, of the corresponding horizontal advanced algebra course. Functions are defined as the single changes, Δx, whether or not the changes are small. valued expressions which describe the branches of the curves. However for curves which are not straight lines, the Derivatives are secondary functions derived from the just mentioned functions in order to obtain the slopes of the lines situation is not as simple. Select two pairs of points at random tangent to the curves. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Volume of Solids
30B Volume Solids Volume of Solids 1 30B Volume Solids The volume of a solid right prism or cylinder is the area of the base times the height. 2 30B Volume Solids Disk Method How would we find the volume of a shape like this? Volume of one penny: Volume of a stack of pennies: 3 30B Volume Solids EX 1 Find the volume of the solid of revolution obtained by revolving the region bounded by , the x-axis and the line x=9 about the x-axis. 4 30B Volume Solids EX 2 Find the volume of the solid generated by revolving the region enclosed by and about the y-axis. 5 30B Volume Solids Washer Method How would we find the volume of a washer? 6 30B Volume Solids EX 3 Find the volume of the solid generated by revolving about the x-axis the region bounded by and . 7 30B Volume Solids EX 4 Find the volume of the solid generated by revolving about the line y = 2 the region in the first quadrant bounded by these parabolas and the y-axis. (Hint: Always measure radius from the axis of revolution.) 8 30B Volume Solids Shell Method How would we find the volume of a label we peel off a can? 9 30B Volume Solids EX 5 Find the volume of the solid generated when the region bounded by these three equations is revolved about the y-axis. 10 30B Volume Solids EX 6 Find the volume of the solid generated when the region bounded by these equations is revolved about the y-axis in two ways. -
Revolution About the X-Axis Find the Volume of the Solid of Revolution Generated by Rotating the Regions Bounded by the Curves Given Around the X-Axis
Revolution About the x-axis Find the volume of the solid of revolution generated by rotating the regions bounded by the curves given around the x-axis. a) y = 3x − x2; y = 0 p b) y = ax; y = 0; x = a Solutions a) y = 3x − x2; y = 0 We start by sketching the region, which is a parabolic \hump" between x = 0 and x = 3 with vertex (1:5; 2:25). We could compute the volume of the solid by using shells or disks. Because we're given the equation y = 3x − x2 for y in terms of x, it seems easiest to use disks. The radius of each disk will equal the height of the curve, 3x − x2 so a disk's volume will be π(3x − x2)2 dx. The limits of integration are the x-intercepts (crossing points) x = 0 and x = 3. The volume of the solid of revolution is: Z 3 Z 3 2 2 2 3 4 π(3x − x ) dx = π 9x − 6x + x dx 0 0 � 3 1 �3 = π 3x 3 − x 4 + x 5 2 5 0 �� 3 1 � � = π 3 · 33 − · 34 + · 35 − 0 2 5 � 3 3 � = 34π 1 − + 2 5 34π = ≈ 8π: 10 This seems like a reasonable answer; 8π is the volume of a cylinder with radius 2 and height 2. p b) y = ax; y = 0; x = a We must either sketch this region by hand or choose a value for a when using an electronic graphing tool. Either way, we find that the region has the shape of half of a parabolic \hump", opening to the right, with vertex at (0; 0). -
MATH 162: Calculus II Differentiation
MATH 162: Calculus II Framework for Mon., Jan. 29 Review of Differentiation and Integration Differentiation Definition of derivative f 0(x): f(x + h) − f(x) f(y) − f(x) lim or lim . h→0 h y→x y − x Differentiation rules: 1. Sum/Difference rule: If f, g are differentiable at x0, then 0 0 0 (f ± g) (x0) = f (x0) ± g (x0). 2. Product rule: If f, g are differentiable at x0, then 0 0 0 (fg) (x0) = f (x0)g(x0) + f(x0)g (x0). 3. Quotient rule: If f, g are differentiable at x0, and g(x0) 6= 0, then 0 0 0 f f (x0)g(x0) − f(x0)g (x0) (x0) = 2 . g [g(x0)] 4. Chain rule: If g is differentiable at x0, and f is differentiable at g(x0), then 0 0 0 (f ◦ g) (x0) = f (g(x0))g (x0). This rule may also be expressed as dy dy du = . dx x=x0 du u=u(x0) dx x=x0 Implicit differentiation is a consequence of the chain rule. For instance, if y is really dependent upon x (i.e., y = y(x)), and if u = y3, then d du du dy d (y3) = = = (y3)y0(x) = 3y2y0. dx dx dy dx dy Practice: Find d x d √ d , (x2 y), and [y cos(xy)]. dx y dx dx MATH 162—Framework for Mon., Jan. 29 Review of Differentiation and Integration Integration The definite integral • the area problem • Riemann sums • definition Fundamental Theorem of Calculus: R x I: Suppose f is continuous on [a, b]. -
Unit – 1 Differential Calculus
Differential Calculus UNIT 1 DIFFERENTIAL CALCULUS Structure 1.0 Introduction 1.1 Objectives 1.2 Limits and Continuity 1.3 Derivative of a Function 1.4 The Chain Rule 1.5 Differentiation of Parametric Forms 1.6 Answers to Check Your Progress 1.7 Summary 1.0 INTRODUCTION In this Unit, we shall define the concept of limit, continuity and differentiability. 1.1 OBJECTIVES After studying this unit, you should be able to : define limit of a function; define continuity of a function; and define derivative of a function. 1.2 LIMITS AND CONTINUITY We start by defining a function. Let A and B be two non empty sets. A function f from the set A to the set B is a rule that assigns to each element x of A a unique element y of B. We call y the image of x under f and denote it by f(x). The domain of f is the set A, and the co−domain of f is the set B. The range of f consists of all images of elements in A. We shall only work with functions whose domains and co–domains are subsets of real numbers. Given functions f and g, their sum f + g, difference f – g, product f. g and quotient f / g are defined by (f + g ) (x) = f(x) + g(x) (f – g ) (x) = f(x) – g(x) (f . g ) (x) = f(x) g(x) f f() x and (x ) g g() x 5 Calculus For the functions f + g, f– g, f. g, the domain is defined to be intersections of the domains of f and g, and for f / g the domain is the intersection excluding the points where g(x) = 0. -
Calculus of Variations
Calculus of Variations The biggest step from derivatives with one variable to derivatives with many variables is from one to two. After that, going from two to three was just more algebra and more complicated pictures. Now the step will be from a finite number of variables to an infinite number. That will require a new set of tools, yet in many ways the techniques are not very different from those you know. If you've never read chapter 19 of volume II of the Feynman Lectures in Physics, now would be a good time. It's a classic introduction to the area. For a deeper look at the subject, pick up MacCluer's book referred to in the Bibliography at the beginning of this book. 16.1 Examples What line provides the shortest distance between two points? A straight line of course, no surprise there. But not so fast, with a few twists on the question the result won't be nearly as obvious. How do I measure the length of a curved (or even straight) line? Typically with a ruler. For the curved line I have to do successive approximations, breaking the curve into small pieces and adding the finite number of lengths, eventually taking a limit to express the answer as an integral. Even with a straight line I will do the same thing if my ruler isn't long enough. Put this in terms of how you do the measurement: Go to a local store and purchase a ruler. It's made out of some real material, say brass. -
CALCULUS I §2.2: Differentiability, Graphs, and Higher Derivatives
MATH 12002 - CALCULUS I x2.2: Differentiability, Graphs, and Higher Derivatives Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 10 Differentiability The process of finding a derivative is called differentiation, and we define: Definition Let y = f (x) be a function and let a be a number. We say f is differentiable at x = a if f 0(a) exists. What does this mean in terms of the graph of f ? If f 0(a) = lim f (a+h)−f (a) exists, then f (a) must be defined. h!0 h Since the denominator is approaching 0, in order for the limit to exist, the numerator must also approach 0; that is, lim (f (a + h) − f (a)) = 0: h!0 Hence lim f (a + h) = f (a), and so lim f (x) = f (a), h!0 x!a meaning f must be continuous at x = a. D.L. White (Kent State University) 2 / 10 Differentiability But being continuous at a is not enough to make f differentiable at a. Differentiability is \continuity plus." The \plus" is smoothness: the graph cannot have a sharp \corner" at a. The graph also cannot have a vertical tangent line at x = a: the slope of a vertical line is not a real number. Hence, in order for f to be differentiable at a, the graph of f must 1 be continuous at a, 2 be smooth at a, i.e., no sharp corners, and 3 not have a vertical tangent line at x = a.