Article in Press As: Hampshire Et Al., Fractionating Human Intelligence, Neuron (2012)

Total Page:16

File Type:pdf, Size:1020Kb

Article in Press As: Hampshire Et Al., Fractionating Human Intelligence, Neuron (2012) Please cite this article in press as: Hampshire et al., Fractionating Human Intelligence, Neuron (2012), http://dx.doi.org/10.1016/j.neuron.2012.06.022 Neuron Article Fractionating Human Intelligence Adam Hampshire,1,* Roger R. Highfield,2 Beth L. Parkin,1 and Adrian M. Owen1 1The Brain and Mind Institute, The Natural Sciences Centre, Department of Psychology, The University of Western Ontario, London ON, N6A 5B7, Canada 2Science Museum, Exhibition Road, London SW72DD, UK *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2012.06.022 SUMMARY as opposed to a bias in testing paradigms toward particular components of a more complex intelligence construct (Gould, What makes one person more intellectually able 1981; Horn and Cattell, 1966; Mackintosh, 1998). Indeed, over than another? Can the entire distribution of human the past 100 years, there has been much debate over whether intelligence be accounted for by just one general general intelligence is unitary or composed of multiple factors factor? Is intelligence supported by a single neural (Carroll, 1993; Cattell, 1949; Cattell and Horn, 1978; Johnson system? Here, we provide a perspective on human and Bouchard, 2005). This debate is driven by the observation intelligence that takes into account how general that test measures tend to form distinctive clusters. When combined with the intractability of developing tests that mea- abilities or ‘‘factors’’ reflect the functional organiza- sure individual cognitive processes, it is likely that a more tion of the brain. By comparing factor models of complex set of factors contribute to correlations in performance individual differences in performance with factor (Carroll, 1993). models of brain functional organization, we demon- Defining the biological basis of these factors remains a strate that different components of intelligence challenge, however, due in part to the limitations of behavioral have their analogs in distinct brain networks. Using factor analyses. More specifically, behavioral factor analyses simulations based on neuroimaging data, we show do not provide an unambiguous model of the underlying cogni- that the higher-order factor ‘‘g’’ is accounted for tive architecture, as the factors themselves are inaccessible, by cognitive tasks corecruiting multiple networks. being measured indirectly by estimating linear components Finally, we confirm the independence of these com- from correlations between the performance measures of dif- ponents of intelligence by dissociating them using ferent tests. Thus, for a given set of behavioral correlations, there are many factor solutions of varying degrees of complexity, all questionnaire variables. We propose that intelli- of which are equally able to account for the data. This ambiguity gence is an emergent property of anatomically is typically resolved by selecting a simple and interpretable distinct cognitive systems, each of which has its factor solution. However, interpretability does not necessarily own capacity. equate to biological reality. Furthermore, the accuracy of any factor model depends on the collection of a large number of pop- ulation measures. Consequently, the classical approach to intel- INTRODUCTION ligence testing is hampered by the logistical requirements of pen and paper testing. It would appear, therefore, that the classical Few topics in psychology are as old or as controversial as approach to behavioral factor analysis is near the limit of its the study of human intelligence. In 1904, Charles Spearman resolution. famously observed that performance was correlated across Neuroimaging has the potential to provide additional con- a spectrum of seemingly unrelated tasks (Spearman, 1904). straint to behavioral factor models by leveraging the spatial He proposed that a dominant general factor ‘‘g’’ accounts for segregation of functional brain networks. For example, if one correlations in performance between all cognitive tasks, with homogeneous system supports all intelligence processes, then residual differences across tasks reflecting task-specific fac- a common network of brain regions should be recruited when- tors. More controversially, on the basis of subsequent attempts ever difficulty increases across all cognitive tasks, regardless to measure ‘‘g’’ using tests that generate an intelligence quotient of the exact stimulus, response, or cognitive process that is (IQ), it has been suggested that population variables including manipulated. Conversely, if intelligence is supported by multiple gender (Irwing and Lynn, 2005; Lynn, 1999), class (Burt, 1959, specialized systems, anatomically distinct brain networks 1961; McManus, 2004), and race (Rushton and Jensen, 2005) should be recruited when tasks that load on distinct intelligence correlate with ‘‘g’’ and, by extension, with one’s genetically pre- factors are undertaken. On the surface, neuroimaging results determined potential. It remains unclear, however, whether accord well with the former account. Thus, a common set of population differences in intelligence test scores are driven by frontal and parietal brain regions is rendered when peak activa- heritable factors or by other correlated demographic variables tion coordinates from a broad range of tasks that parametrically such as socioeconomic status, education level, and motivation modulate difficulty are smoothed and averaged (Duncan and (Gould, 1981; Horn and Cattell, 1966). More relevantly, it is Owen, 2000). The same set of multiple demand (MD) regions is questionable whether they relate to a unitary intelligence factor, activated during tasks that load on ‘‘g’’ (Duncan, 2005; Jung Neuron 76, 1–13, December 20, 2012 ª2012 Elsevier Inc. 1 NEURON 11201 Please cite this article in press as: Hampshire et al., Fractionating Human Intelligence, Neuron (2012), http://dx.doi.org/10.1016/j.neuron.2012.06.022 Neuron Fractionating Human Intelligence and Haier, 2007), while the level of activation within frontoparietal RESULTS AND DISCUSSION cortex correlates with individuals differences in IQ score (Gray et al., 2003). Critically, after brain damage, the size of the lesion Identifying Functional Networks within MD Cortex within, but not outside of, MD cortex is correlated with the esti- Sixteen healthy young participants undertook the cognitive mated drop in IQ (Woolgar et al., 2010). However, these results battery in the MRI scanner. The cognitive battery consisted of should not necessarily be equated with a proof that intelligence 12 tasks, which, based on well-established paradigms from is unitary. More specifically, if intelligence is formed from multiple the neuropsychology literature, measured a range of the types cognitive systems and one looks for brain responses during of planning, reasoning, attentional, and working memory skills tasks that weigh most heavily on the ‘‘g’’ factor, one will most that are considered akin to general intelligence (see Supple- likely corecruit all of those functionally distinct systems. Similarly, mental Experimental Procedures available online). The activation by rendering brain activation based on many task demands, level of each voxel within MD cortex was calculated separately one will have the statistical power to render the networks for each task relative to a resting baseline using general linear that are most commonly recruited, even if they are not always modeling (see Supplemental Experimental Procedures) and the corecruited. Indeed, there is mounting evidence demonstrating resultant values were averaged across participants to remove that different MD regions respond when distinct cognitive between-subject variability in activation—for example, due to demands are manipulated (Corbetta and Shulman, 2002; individual differences in regional signal intensity. D’Esposito et al., 1999; Hampshire and Owen, 2006; Hampshire The question of how many functionally distinct networks were et al., 2008, 2011; Koechlin et al., 2003; Owen et al., 1996; Pet- apparent within MD cortex was addressed using exploratory rides, 2005). However, such a vast array of highly specific func- factor analysis. Voxels within MD cortex (Figure 1A) were tional dissociations have been proposed in the neuroimaging transformed into 12 vectors, one for each task, and these were literature as a whole that they often lack credibility, as they fail examined using principal components analysis (PCA), a factor to account for the broader involvement of the same brain regions analysis technique that extracts orthogonal linear components in other aspects of cognition (Duncan and Owen, 2000; Hamp- from the 12-by-12 matrix of task-task bivariate correlations. shire et al., 2010). The question remains, therefore, whether intel- The results revealed two ‘‘significant’’ principal components, ligence is supported by one or multiple systems, and if the latter each of which explained more variability in brain activation than is the case, which cognitive processes those systems can most was contributed by any one task. These components accounted broadly be described as supporting. Furthermore, even if for 90% of the total variance in task-related activation across multiple functionally distinct brain networks contribute to intelli- MD cortex (Table S1). After orthogonal rotation with the Varimax gence, it is unknown whether the capacities of those networks algorithm, the strengths of the task-component loadings were are independent or are related to the same set of diffuse biolog- highly variable and easily comprehensible (Table 1 and Figure 1B). ical factors
Recommended publications
  • Theories of Intelligence, Learning, and Motivation As a Basis for Praxis
    Theories of Intelligence, Learning, and Motivation as a Basis for Praxis Dr Eulalee Nderu-Boddington Ph.D. Education Assistant Professor at Prince Sultan University Riyadh Saudi Arabia May 26th 2008 ABSTRACT This paper examines how Piaget, Werner, and Gardner differ regarding the roles of cognition, intelligence, and learning in the developmental process. Piaget believes in the predominance of genetic factors. Werner stresses the influence of biological factors, while Gardner proposes that the environment plays a greater influence in how intelligence and learning are acquired. This paper also surveys research on achievement and learning strategies and their role in student motivation. The development of conceptual understanding is related to prior knowledge, interest, learning goals, and achievement goals. Introduction This paper focuses on the developmental theories of Werner, Gardner, and Piaget, all of whom have significantly influenced the field of education through their differing understandings of how students learn from childhood to adulthood. Most researchers agree that a combination of biology and environment affects personality and intelligence, but they differ in assigning relative importance to these two influences. Although poor nutrition, poor health care, and head injuries have been linked to poor IQ scores, for the most part environmental variables have not been found to account for a substantial portion of observed variations in human intelligence. Therefore, some psychologists believe heredity is the dominant influence on intelligence. They base their views on research that concentrates on variations among people in general cognitive ability or IQ. Others believe that such research overemphasizes the concept of IQ and gives too much credit to genetics (Azar, 1995).
    [Show full text]
  • Human Intelligence Differences: a Recent History Ian J
    Forum TRENDS in Cognitive Sciences Vol.5 No.3 March 2001 127 Historical Perspective Human intelligence differences: a recent history Ian J. Deary Differences among humans in their mental important5. As a result of The Bell Curve’s that it does not emerge (Guilford, abilities are prominent, important, and controversies, the APA put together a task Thurstone, Gardner, Cattell and Horn); that controversial. In part, the controversy force of 11 people to write a report on there is a hierarchy of mental abilities from arises from over-uses and abuses of mental ‘Intelligence: Knowns and Unknowns’. The the general factor through broad ability tests, from insalubrious events in the individuals concerned came from different factors to very specific, narrow abilities history of mental test research, and from research traditions within and outside (Burt, Vernon) or that there is merely a lack of knowledge about what is and is not intelligence and were known to hold very range of uncorrelated narrow abilities currently known concerning human different views on the topic. Yet, they (Guilford)10,11. The resolution of these intelligence. In this article, some of the managed to produce a wide-ranging review debates was available from the 1940s, but well-attested facts about human intelligence article that all contributors signed. It not widely recognized. By 1939, Eysenck differences are summarized. A striking remains a touchstone for disinterested and showed that even Thurstone’s own data limitation of this body of research is that, authoritative information about intelligence contained a general factor that refuted his whereas much is known about the taxonomy differences.
    [Show full text]
  • Relationship Between Spirituality, Religion and Spiritual Intelligence
    Relationship between Spirituality, Religion and Spiritual Intelligence: Intelligence of the 21stcentury (A Comparative Analysis) Sharmila Dhote Introduction: For long, the world gave much importance to Intelligence Quotient. The higher the figure, the belief went, the greater the intelligence. This attitude is a legacy of the early 20th century when psychologists devised tests to measure intelligence. These tests primarily measured intellectual or rational intelligence (used to solve logical problems). In mid-1990s, Daniel Goleman revealed findings in neuroscience and psychology that stressed the importance of Emotional Quotient (EQ). This makes us aware of our feelings and that of others. Goleman argued that EQ was a basic requirement for the use of IQ. If the areas of our brain that feel are damaged, our ability to think effectively is diminished. In 2000, however, authors Dana Zohar and Ian Marshall introduced a new dimension to human intelligence namely, SpiritualQuotient (or SQ), the ultimate intelligence. This is the intelligence used to solve problems of meaning and value. “Is my job giving me the fulfillment I seek?” “Am I relating to the people in my life in a way that contributes to their happiness and mine?” Answers to these questions determine whether we will find happiness or not. IQ and EQ are inadequate in such issues. IQ and EQ give way to spiritual intelligence, the ultimate intelligence that can add value and meaning to your life. Definitions Of Spiritual Intelligence Definitions of spiritual intelligence rely on the concept of spirituality as being distinct from religiosity. 55 Danah Zohar defined 12 principles underlying spiritual intelligence: Self-awareness: Knowing what I believe in and value, and what deeply motivates me.
    [Show full text]
  • The Dual-Process Theory of Human Intelligence
    The Dual-Process (DP) Theory of Human Intelligence The Dual-Process (DP) theory of human intelligence (Davidson &Kemp, 2011; S.B. Kaufman, 2009, 2011, 2013) incorporates modern dual-process theories of cognition (see Epstein, 1994; Evans, 2008, 2010; Evans & Frankish, 2009; Kahneman, 2011; Kahneman & Frederick, 2002, 2005; Stanovich, 2004, 2011— but also see Keren & Schul, 2009; Kruglanski & Grigerezner, 2011; Osman, 2004) into a theory of human intelligence. By doing so, the Dual-Process theory organizes many constructs relating to both explicit and implicit cognition that are at least partially separable and are meaningfully related to a wide range of socially valued intelligent behaviors. In particular, performance across a wide range of intelligent behaviors—across the arts and sciences—are predicted by a hierarchical structure of goal-directed and spontaneous cognitive processes. Goal-directed processes consume limited attentional resources, whereas spontaneous processes are not dependent on input from higher-level control processes (see Stanovich & Toplak, 2012). The theory has a few key tenets. The first tenet is that there are meaningful and adaptive individual differences in both goal-directed and spontaneous cognitive processes. The second tenet is that both goal-directed and spontaneous cognitive processes jointly determine all intelligent behaviors, although in varying degrees depending on the behavior. A third tenet is that neither mode of thought is more “intelligent” than any other across the board, but what is important is the ability to flexibly switch mode of thought depending on the situation (for applications of this idea to creativity, see Gabora, 2003, 2010; Gabora & S. B. Kaufman, 2010; Howard-Jones & Murray, 2003; Martindale, 1995, Vartanian, 2009).
    [Show full text]
  • Intelligence As a Developing Function: a Neuroconstructivist Approach
    Journal of Intelligence Article Intelligence as a Developing Function: A Neuroconstructivist Approach Luca Rinaldi 1,2,* and Annette Karmiloff-Smith 3 1 Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy 2 Milan Center for Neuroscience, Milano 20126, Italy 3 Centre for Brain and Cognitive Development, Birkbeck, London WC1E 7HX, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-02-6448-3775 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 December 2016; Accepted: 27 April 2017; Published: 29 April 2017 Abstract: The concept of intelligence encompasses the mental abilities necessary to survival and advancement in any environmental context. Attempts to grasp this multifaceted concept through a relatively simple operationalization have fostered the notion that individual differences in intelligence can often be expressed by a single score. This predominant position has contributed to expect intelligence profiles to remain substantially stable over the course of ontogenetic development and, more generally, across the life-span. These tendencies, however, are biased by the still limited number of empirical reports taking a developmental perspective on intelligence. Viewing intelligence as a dynamic concept, indeed, implies the need to identify full developmental trajectories, to assess how genes, brain, cognition, and environment interact with each other. In the present paper, we describe how a neuroconstructivist approach better explains why intelligence can rise or fall over development, as a result of a fluctuating interaction between the developing system itself and the environmental factors involved at different times across ontogenesis. Keywords: intelligence; individual differences; development; neuroconstructivism; emergent structure; developmental trajectory 1.
    [Show full text]
  • Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation
    The Spanish Journal of Psychology (2016), 19, e94, 1–7. © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid doi:10.1017/sjp.2016.89 Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation Emiliano Santarnecchi1 and Simone Rossi2,3 1 Berenson-Allen Center for Non-Invasive Brain Stimulation, Harvard Medical School, Boston (USA) 2 Department of Medicine, Surgery and Neuroscience, Brain Investigation and Neuromodulation (SiBIN) Lab, University of Siena 3 Deptartment of Medicine, Surgery and Neuroscience, Human Physiology section, University of Siena Abstract. Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of “system level brain plasticity”: tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic “lesions” of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alter- nating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relation- ship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence Received 10 June 2016; Revised 21 October 2016; Accepted 24 October 2016 Keywords: intelligence, Gf, non-invasive brain stimulation, plasticity, perturbation.
    [Show full text]
  • Executive Functions and High Intellectual Capacity in School-Age: Completely Overlap?
    int.j.psychol.res, Vol. 11 (1) 19-32, 2018 DOI: 10.21500/20112084.3239 Executive Functions and High Intellectual Capacity in School-Age: Completely Overlap? Funciones ejecutivas y alta capacidad intelectual en niños en edad escolar: ¿se superponen por completo? David Andrés Montoya-Arenas1, Daniel Camilo Aguirre-Acevedo1 2, Cecilia María Díaz Soto3, David Antonio Pineda Salazar1 Abstract: Objective: To analyze the relationship between the dimensions of the executive function and intellectual capacity in children with high academic performance. Method: an analytical, observational, prospective study with a non-random sample of 104 children between 7 and 11 years of age, belonging to educational institutions in Medellín, Colombia, divided into groups according to the measure of Total Intellectual Capacity (TIC): 1. Those with an average TIC of between 85-115. 2. Children with higher IC or those with scores ranging from 116-129 and 3. Children with TIC of ≥ 130, known as exceptional talents. They are provided executive function tests that are in compliance with bioethical conditions. Results and conclusions: The Intellectual Capacity is not a concept analogous or synonymous to executive function. This study demonstrates that the common element among all participants is high academic performance and an absence of alteration of the executive function. Finally, an adequate executive functioning makes high academic performance possible. Resumen Objetivo: Analizar la relación entre las dimensiones de la función ejecutiva y capacidad intelectual en niños escolarizados con alto rendimiento académico. Método: investigación de tipo analítica, observacional, prospectiva, con muestra no aleatoria de 104 niños entre los 7 y 11 años de edad pertenecientes a instituciones educativas de Medellín-Colombia, dividida en tres grupos de acuerdo con la medida de Capacidad Intelectual Total (CIT).
    [Show full text]
  • The General Intelligence Factor Exploring Intelligence 25 Copyright 1998 Scientific American, Inc
    Despite some popular The General assertions, a single factor for intelligence, called g, can be measured with IQ Intelligence tests and does predict Factor success in life by Linda S. Gottfredson No subject in psychology has pro- downplayed or ignored. This misrepresen- mental tests are often designed to mea- voked more intense public controversy tation reflects a clash between a deeply sure specific domains of cognition—ver- than the study of human intelligence. felt ideal and a stubborn reality. The ideal, bal fluency, say, or mathematical skill, From its beginning, research on how implicit in many popular critiques of spatial visualization or memory—people and why people differ in overall mental intelligence research, is that all people are who do well on one kind of test tend to ability has fallen prey to political and born equally able and that social inequali- do well on the others, and people who social agendas that obscure or distort ty results only from the exercise of unjust do poorly generally do so across the even the most well-established scientific privilege. The reality is that Mother board. This overlap, or intercorrelation, findings. Journalists, too, often present a Nature is no egalitarian. People are in fact suggests that all such tests measure view of intelligence research that is unequal in intellectual potential—and some global element of intellectual abil- exactly the opposite of what most intel- they are born that way, just as they are ity as well as specific cognitive skills. In ligence experts believe. For these and born with different potentials for height, recent decades, psychologists have other reasons, public understanding of physical attractiveness, artistic flair, ath- devoted much effort to isolating that intelligence falls far short of public con- letic prowess and other traits.
    [Show full text]
  • 4. INTELLEGENCE 4.1 CONCEPTS and DEFINITIONS: Intelligence
    SEC 4 Page 1 of 7 4. INTELLEGENCE 4.1 CONCEPTS AND DEFINITIONS: Intelligence has been defined in many different ways such as in terms of one's capacity for logic, abstract thought, understanding, self-awareness, communication, learning, emotional knowledge, memory, planning, creativity and problem solving. Intelligence is most widely studied in humans, but has also been observed in animals and in plants. Artificial intelligence is the simulation of intelligence in machines. Within the discipline of psychology, various approaches to human intelligence have been adopted. The psychometric approach is especially familiar to the general public, as well as being the most researched and by far the most widely used in practical settings. Intelligence derives from the Latin verb intelligere, to comprehend or perceive. A form of this verb, intellectus, became the medieval technical term for understanding, and a translation for the Greek philosophical term nous. This term was however strongly linked to the metaphysical and cosmological theories of teleological scholasticism, including theories of the immortality of the soul, and the concept of the Active Intellect (also known as the Active Intelligence). This entire approach to the study of nature was strongly rejected by the early modern philosophers such as Francis Bacon, Thomas Hobbes, John Locke, and David Hume, all of whom preferred the word "understanding" in their English philosophical works. Hobbes for example, in his Latin De Corpore, used "intellectus intelligit" (translated in the English version as "the understanding understandeth") as a typical example of a logical absurdity. The term "intelligence" has therefore become less common in English language philosophy, but it has later been taken up (with the scholastic theories which it now implies) in more contemporary psychology.
    [Show full text]
  • Psychotherapy in the Era of Artificial Intelligence: Therapist Panoptes
    Homo Virtualis 2(1): 68-78, 2019 ISSN 2585-3899 ∫ doi.org/10.12681/homvir.20197 Psychotherapy in the era of artificial intelligence: Therapist Panoptes Brailas Alexios1 Abstract: “What will happen when an artificial intelligence entity has access to all the information stored about me online, with the ability to process my information efficiently and flawlessly? Will such an entity not be, in fact, my ideal therapist?” Would there ever come a point at which you would put your trust in an omniscient, apperceptive, and ultra- intelligent robotic therapist? There is a horizon beyond which we can neither see nor even imagine; this is the technological singularity moment for psychotherapy. If human intelligence is capable of creating an artificial intelligence that surpasses its creators, then this intelligence would, in turn, be able to create an even superior next-generation intelligence. An inevitable positive feedback loop would lead to an exponential intelligence growth rate. In the present paper, we introduce the term Therapist Panoptes as a working hypothesis to investigate the implications for psychotherapy of an artificial therapeutic agent: one that is able to access all available data for a potential client and process these with an inconceivably superior intelligence. Although this opens a new perspective on the future of psychotherapy, the sensitive dependence of complex techno-social systems on their initial conditions renders any prediction impossible. Artificial intelligence and humans form a bio-techno-social system, and the evolution of the participating actors in this complex super-organism depends upon their individual action, as well as upon each actor being a coevolving part of a self-organized whole.
    [Show full text]
  • Fm 2-22.3 (Fm 34-52)
    FM 2-22.3 (FM 34-52) HUMAN INTELLIGENCE COLLECTOR OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY September 2006 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. NOTE: All previous versions of this manual are obsolete. This document is identical in content to the version dated 6 September 2006. All previous versions of this manual should be destroyed in accordance with appropriate Army policies and regulations. This publication is available at Army Knowledge Online (www.us.army.mil) and General Dennis J. Reimer Training and Doctrine Digital Library at (www.train.army.mil). *FM 2-22.3 (FM 34-52) Field Manual Headquarters No. 2-22.3 Department of the Army Washington, DC, 6 September 2006 Human Intelligence Collector Operations Contents Page PREFACE ............................................................................................................... vi PART ONE HUMINT SUPPORT, PLANNING, AND MANAGEMENT Chapter 1 INTRODUCTION...................................................................................................1-1 Intelligence Battlefield Operating System .............................................................1-1 Intelligence Process..............................................................................................1-1 Human Intelligence ...............................................................................................1-4 HUMINT Source....................................................................................................1-4 HUMINT Collection and
    [Show full text]
  • Ethics of Human Intelligence Operati'ons: ~F MICE and Men Donald A
    Ethics of Human Intelligence Operati'ons: ~f MICE and Men Donald A. Petkus . Recent debates on the ethics of espionage seem to center on questions of technical data collection and privacy rights, interrogation, covert intervention in foreign affairs (e.g., regime change), renditions, and conflicts of interest, but seldom .on the recruitment and management of agents. One issue that arises from the current espionage and ter­ rorism environment concerns standards for ethical decision making. For compelling reasons, members of the intelligence community must address the ethical issues Specific to human intelligence (HUMINT) . operatIOns. For those outside the intelligence community, the term "espionage ethics" may seem oxymoronic. With few exceptions, intelligence col­ lection overseas violates the target country's laws. Being expected to break a foreign country's laws and manipulate its citizens is part of the job for an intelligence officer, yet she or he is expected to scru­ pulously adhere to her or his own country's laws and professional standards. To some, the idea of espionage is itself distasteful. Prior to World War I, some of Great Britain's military attaches took the view that actual spying on the host country was ungentlemanly conduct for a "guest." For others, operational work with agents seemed to grate against their sensibilities, as in the case of an officer assigned to Ber­ lin just prior to World War I: With war now inevitable, Sir William Everett, the British military at­ tache in Berlin was asked by the Intelligence Branch to continue in secret service after leaving Germany. He declined, saying: "You will not have forgotten when we talked this matter over some months ago, that I mentioned how distasteful it would be to me when it no longer formed a necessary part of my duties.
    [Show full text]