Universidade Federal Do Ceará Centro De Ciências Agrárias Departamento De Fitotecnia Programa De Pós-Graduação Em Agronomia/Fitotecnia

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Federal Do Ceará Centro De Ciências Agrárias Departamento De Fitotecnia Programa De Pós-Graduação Em Agronomia/Fitotecnia UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA/FITOTECNIA DOMINGOS FERREIRA DE MÉLO NETO ANÁLISE PROTEÔMICA DE SEMENTES EM DESENVOLVIMENTO DE AÇAÍ (Euterpe oleracea Mart.) FORTALEZA 2018 DOMINGOS FERREIRA DE MÉLO NETO ANÁLISE PROTEÔMICA DE SEMENTES EM DESENVOLVIMENTO DE AÇAÍ (Euterpe oleracea Mart.) Dissertação apresentada ao Programa de Pós- Graduação em Agronomia/Fitotecnia da UFC, como parte dos requisitos para obtenção do título de Mestre em Agronomia/Fitotecnia. Área de concentração: Fisiologia, Bioquímica e Biotecnologia Vegetal. Orientador: Prof. Francisco de Assis de Paiva Campos Coorientador: Prof. Fábio César Sousa Nogueira FORTALEZA 2018 DOMINGOS FERREIRA DE MÉLO NETO ANÁLISE PROTEÔMICA DE SEMENTES EM DESENVOLVIMENTO DE AÇAÍ (Euterpe oleracea Mart.) Dissertação apresentada ao Programa de Pós- Graduação em Agronomia/Fitotecnia da UFC, como parte dos requisitos para obtenção do título de Mestre em Agronomia/Fitotecnia. Área de concentração: Fisiologia, Bioquímica e Biotecnologia Vegetal. Aprovada em: 29/03/ 2018. BANCA EXAMINADORA _____________________________________________ Prof. Francisco de Assis de Paiva Campos (Orientador) Departamento de Bioquímica e Biologia Molecular Universidade Federal do Ceará (UFC) _____________________________________________ Prof. Fábio César Sousa Nogueira (Coorientador) Instituto de Química (IQ) Universidade Federal do Rio de Janeiro (UFRJ) _____________________________________________ Dra. Emanoella Lima Soares Plant Genetics Department University of Liège, Belgium Aos meus pais, Vanaldi e Lourinaldo, a minha irmã Alaídes Priscila, e a minha avó Alaíde! AGRADECIMENTOS À Deus pela Vida. Ao professor Francisco A. P. Campos pela oportunidade de realizar esse curso de mestrado sob sua orientação, pelos ensinamentos, treinamento e confiança. Ao professor Fábio C. S. Nogueira pela disponibilidade em participar da avaliação desse trabalho e, sobretudo pelo treinamento em espectrometria de massas e proteômica. A Dra Emanoella L. Soares (Manu) pela disponibilidade em participar da avaliação desse trabalho, como também pelas orientações e ajuda na definição e coleta dos frutos utilizados nesse estudo. Ao professor Gilberto B. Domont pela receptividade e por todo entusiasmo com a proteômica. À professora Rosilene Mesquita pelas contribuições no projeto de qualificação. Ao Fabiano pelas contribuições no projeto de qualificação e revisão dos textos dessa dissertação, além da amizade. Aos integrantes do Laboratório de Biologia Molecular de Plantas, João, Magda, Jessica, Thais e Evanildo, pelo companheirismo e ajuda no processamento do material vegetal. Ao Moab, meu amigo desde a graduação, o qual tive a honra de compartilhar praticamente todos os momentos ao longo desse curso de mestrado. Ao Roberto, por ter sido desde o início bastante atencioso, tanto nas orientações laboratorias, como pela ajuda nas disciplinas e, sobretudo, pela amizade construída. A Raquel por ter sido uma verdadeira guia nos experimentos na Unidade Proteômica. Ao Daniel, também meu amigo desde a gradução, um cara que admiro muito. Ao Sr. Erivan pela ajuda na coleta dos frutos. Ao pessoal dos laboratórios de Defesa de Plantas e Toxinas Vegetais da UFC, Lucas, Helen, Thiago, Del e Raissa pela ajuda na liofilização dos frutos. Ao pessoal do Laboratório de Fisiologia Vegetal da UFC, Ana Carla, Fabrício e Elieser, por também ajudarem na liofilização dos frutos e fornecerem inibidor de protease. Aos integrantes da Unidade Proteômica do Instituto de Química da UFRJ, Prof. Magno, Natália, Larissa, Vinícius, Yara, Michely, Mariana, Isis, Liege, Simone, Lidiane, Renata, Ana Beatriz, Rafael, em especial a Erika. Aos professores do curso de Pós-Graduação em Agronomia/Fitotecnia. Aos meus pais, Vanaldi e Lourinaldo, e a minha irmã Alaídes, por todo amor, carinho, confiança e, sobretudo pela base educacional que me deram. À minha namorada Aisla pelo amor, carinho, paciência e palavras de conforto nos momentos mais difíceis desse curso. Aos órgãos e instituições financiadores dessa pesquisa: CNPq, UFC e UFRJ A todos que de alguma maneira contribuíram na realização desse trabalho. RESUMO O açaí (Euterpe oleracea Mart) pertence à família Arecaceae e sua importância econômica está centrada basicamente na colheita do fruto para produção de polpa. Nos últimos anos, a demanda pela polpa de açaí aumentou de forma significativa, em função principalmente do apelo funcional. No entanto, a maior parte da colheita corresponde à semente (caroço), normalmente descartada como resíduo durante o processo produtivo, não havendo, pois, alternativas viáveis para o seu aproveitamento em larga escala. Diante desse problema, entende-se que estudos básicos, possam fornecer subsídios capazes de melhor direcionar sua utilização. Nessa perspectiva, realizou-se uma análise proteômica livre de marcação de sementes de E. oleracea em quatro estádios de desenvolvimento, designados E3, E6, E9 e E11, o que resultou na identificação de 758, 897, 285 e 69 proteínas, respectivamente, e um total de 1.080 proteínas. A categorização funcional dessas proteínas nos mostrou que a maioria integra as classes de metabolismo de carboidrato, metabolismo de aminoácidos, síntese de proteínas, parede celular, metabolismo secundário, metabolismo de lipídeos, transportadores e metabolismo de EROS. Já, na quantificação relativa, realizada com base na intensidade do íon precursor, foram identificadas 21, 43, 14, 37, 14 e 3 proteínas diferencialmente expressas pelo teste t (p ˂ 0,05), nos contrastes E6/E3, E9/E3, E11/E3, E9/E6, E11/E6 e E11/E9, respectivamente. As proteínas com padrão de expressão semelhante foram agrupadas em seis grupos distintos. A abundância relativa das enzimas sacarose sintase, UTP-glucose-1-fosfato-uridilitransferase, α-galactosidase, manose-1-fosfato- guanililtranferase e peroxidase 72 foi aumentada no E6, sugerindo que nessa fase do desenvolvimento, ocorrem simultaneamente os processos de deposição e modificação dos polissacarídeos da parede celular e, indica a formação de polissacarídeos a base de manose, que devem constituir a fração hemicelulósica. Proteínas de reserva do tipo globulina 63 KDa e globulina 7S foram acumuladas até a maturidade, a partir do E6. Essa análise proteômica de sementes em desenvolvimento de açaí, focou alguns aspectos da formação das paredes celulares, ja que essas são o principal repositório de substâncias de reserva nas sementes dessa espécie, como também, trata das principais proteínas de armazenamento, de modo a fornecer conhecimento básico que ajude a melhor direcionar a utilização da semente de açaí. Palavras-chave: Euterpe oleracea. Formação de semente. Paredes celulares. Proteínas de armazenamento. Proteoma. ABSTRACT Açaí (Euterpe oleracea Mart) belongs to the family Arecaceae and its economic importance is centered mainly on fruit harvesting for pulp production. In recent years, the demand for açaí pulp increased significantly, mainly due to the functional appeal. However, most of the harvest corresponds to the seed, normally discarded as waste during the production process, once there are no viable alternatives for its use on a large scale. Considering such problem, it is understood that basic studies, can provide subsidies capable of improving seed use. In this perspective, a label-free proteomic analysis of E. oleracea seed was carried out at four developmental stages, designated E3, E6, E9 and E11, which resulted in the identification of 758, 897, 285 and 69 proteins respectively, and a total of 1,080 proteins. The functional categorization of these proteins, showed that most of them integrated the classes of carbohydrate metabolism, amino acid metabolism, protein synthesis, cell wall, secondary metabolism, lipid metabolism, transporters and EROS metabolism. Already, in the relative quantification using precursor ion intensity, 21, 43, 14, 37, 14 and 3 proteins were identified as differentially expressed by the test t (p ˂ 0,05), in the contrasts E6/E3, E9/E3, E11/E3, E9/E6, E11/E6 and E11/E9, respectively. Proteins with similar expression pattern were grouped into six distinct groups. The relative abundance of the enzymes sucrose synthase, UTP-glucose-1- phosphate-uridyl transferase, α-galactosidase, mannose-1-phosphate guanyliltranferase and peroxidase 72 was increased at E6, suggesting that at this developmental stage both deposition and modification of cell wall polysaccharides and indicates the formation of polysaccharides based on mannose, which should constitute the hemicellulosic fraction. Storage proteins type 63 KDa globulin like protein and 7S globulin were accumulated in seed until maturity starting at E6. These proteomic analysis the seed in development of açaí, focusing on some aspects of cell wall formation, since it is the main repository of reserve substances in the seeds of this species, as well as the main storage proteins, in order to provide basic knowledge that helps to better target the use of the acai seed. Key words: Euterpe oleracea. Seed formation. Storage proteins. Cell wall. Proteome. LISTA DE FIGURAS Figura 1 - Euterpe oleracea Mart. (açaí do Pará). A - Imagem da palmeira multicaule E. oleracea Mart. B – Inflorescência tipo raque de E. oleracea localizada abaixo das folhas e com frutos maduros de coloração roxo púrpura. C – Fruto e semente de E. oleracea em corte transversal .................................... 16 Figura 2 - Importância econômica do açaí (Euterpe oleracea Mart.) no Brasil. A - Produção histórica anual
Recommended publications
  • Itraq-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves
    Article iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves Fang Dong 1,2, Yuanzhi Shi 1,2, Meiya Liu 1,2, Kai Fan 1,2, Qunfeng Zhang 1,2,* and Jianyun Ruan 1,2 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (F.D.); [email protected] (Y.S.); [email protected] (M.L.); [email protected] (K.F.); [email protected] (J.R.) 2 Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310008, China * Correspondence: [email protected]; Tel.: +86-571-8527-0665 Received: 7 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 Abstract: To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism.
    [Show full text]
  • Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus Tazetta Var
    International Journal of Molecular Sciences Article Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai Yujun Ren † ID , Jingwen Yang †, Bingguo Lu, Yaping Jiang, Haiyang Chen, Yuwei Hong, Binghua Wu and Ying Miao * Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Y.R.); [email protected] (J.Y.); [email protected] (B.L.); [email protected] (Y.J.); [email protected] (H.C.); [email protected] (Y.H.); [email protected] (B.W.) * Correspondence: [email protected]; Tel.:/Fax: +86-591-8639-2987 † These authors contributed equally to this work. Received: 7 August 2017; Accepted: 4 September 2017; Published: 8 September 2017 Abstract: Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes.
    [Show full text]
  • Reductase from Populus Trichocarpa
    Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa Lijun Wang1,2., Yuanzhong Jiang1., Li Yuan1., Wanxiang Lu2,3, Li Yang1, Abdul Karim1, Keming Luo1,2,3* 1 Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China, 2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China, 3 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China Abstract Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (2)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content.
    [Show full text]
  • Downloaded from Uniprotkb/Swiss-Prot ( and Concatenated with the Reverse One
    International Journal of Molecular Sciences Article Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress Bhakti Prinsi , Osvaldo Failla , Attilio Scienza and Luca Espen * Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; [email protected] (B.P.); [email protected] (O.F.); [email protected] (A.S.) * Correspondence: [email protected]; Tel.: +39-02-503-16610 Received: 21 December 2019; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: Salinity represents a very limiting factor that affects the fertility of agricultural soils. Although grapevine is moderately susceptible to salinity, both natural causes and agricultural practices could worsen the impact of this abiotic stress. A promising possibility to reduce this problem in vineyards is the use of appropriate graft combinations. The responses of grapevine rootstocks to this abiotic stress at the root level still remain poorly investigated. In order to obtain further information on the multifaceted responses induced by salt stress at the biochemical level, in the present work we analyzed the changes that occurred under control and salt conditions in the root proteomes of two grapevine rootstock genotypes, M4 and 101.14. Moreover, we compared the results considering that M4 and 101.14 were previously described to have lower and higher susceptibility to salt stress, respectively. This study highlighted the greater capability of M4 to maintain and adapt energy metabolism (i.e., synthesis of ATP and NAD(P)H) and to sustain the activation of salt-protective mechanisms (i.e., Na sequestration into the vacuole and synthesis of osmoprotectant compounds).
    [Show full text]
  • Proanthocyanidin Synthesis in Theobroma Cacao: Genes Encoding
    Liu et al. BMC Plant Biology 2013, 13:202 http://www.biomedcentral.com/1471-2229/13/202 RESEARCH ARTICLE Open Access Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase Yi Liu1,4, Zi Shi1, Siela Maximova2, Mark J Payne3 and Mark J Guiltinan2* Abstract Background: The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results: To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin.
    [Show full text]
  • European Patent Office U.S. Patent and Trademark Office
    EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302
    [Show full text]
  • The Plant Short-Chain Dehydrogenase (SDR) Superfamily: Genome-Wide Inventory and Diversification Patterns
    Moummou et al. BMC Plant Biology 2012, 12:219 http://www.biomedcentral.com/1471-2229/12/219 RESEARCH ARTICLE Open Access The Plant Short-Chain Dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns Hanane Moummou1,2, Yvonne Kallberg3, Libert Brice Tonfack1,4, Bengt Persson5,6 and Benoît van der Rest1,7* Abstract Background: Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results: Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types —‘classical’, ‘extended’ and ‘divergent’—but a minority (10% of the predicted SDRs) could not be classified into these general types (‘unknown’ or ‘atypical’ types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C), ‘ABA2-like’-NAD dehydrogenase (SDR110C), ‘salutaridine/menthone-reductase-like’ proteins (SDR114C), ‘dihydroflavonol 4-reductase’-like proteins (SDR108E) and ‘isoflavone-reductase-like’ (SDR460A) proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes.
    [Show full text]
  • Molecular Profiling of Pierce's Disease Outlines the Response Circuitry Of
    fpls-09-00771 June 6, 2018 Time: 16:19 # 1 ORIGINAL RESEARCH published: 08 June 2018 doi: 10.3389/fpls.2018.00771 Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection Paulo A. Zaini1†, Rafael Nascimento2†, Hossein Gouran1, Dario Cantu3, Sandeep Chakraborty1, My Phu1, Luiz R. Goulart2 and Abhaya M. Dandekar1* 1 Department of Plant Sciences, University of California, Davis, Davis, CA, United States, 2 Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil, 3 Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States Pierce’s disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during Edited by: disease can foster the development of novel therapeutic strategies aimed at reducing Glória Catarina Pinto, the pathogen fitness and increasing plant health. To this end, we investigated University of Aveiro, Portugal the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera Reviewed by: compared to healthy plants. We found that several antioxidant strategies were induced, Jorge Martin-Garcia, University of Valladolid, Spain including the accumulation of gamma-aminobutyric acid (GABA) and polyamine Mónica Meijón, metabolism, as well as iron and copper chelation, but these were insufficient to protect Universidad de Oviedo, Spain the plant from chronic oxidative stress and disease symptom development.
    [Show full text]
  • Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver Somniferum)
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-03-16 Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) Beaudoin, Guillaume Arthur Welch Beaudoin, G. A. (2015). Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25284 http://hdl.handle.net/11023/2115 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) by Guillaume Arthur Welch Beaudoin A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA MARCH, 2015 © Guillaume Arthur Welch Beaudoin 2015 Abstract Benzylisoquinoline alkaloids (BIAs) are a large group of nitrogen-containing specialized metabolites. Opium poppy (Papaver somniferum) is an important pharmaceutical plant and has been cultivated for thousands of years for its analgesic constituents: the morphinan BIAs codeine and morphine. In addition, opium poppy produces other BIAs with biological activities, such as the vasodilator papaverine, the potential anti-cancer drug noscapine and the antimicrobial agent sanguinarine.
    [Show full text]
  • Characterization of Natural Product Biological Imprints for Computer-Aided Drug Design Applications Noe Sturm
    Characterization of natural product biological imprints for computer-aided drug design applications Noe Sturm To cite this version: Noe Sturm. Characterization of natural product biological imprints for computer-aided drug design applications. Cheminformatics. Université de Strasbourg, 2015. English. NNT : 2015STRAF059. tel-01300872 HAL Id: tel-01300872 https://tel.archives-ouvertes.fr/tel-01300872 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Laboratoire d’Innovation Thérapeutique, UMR 7200 en cotutelle avec Eskitis Institute for Drug Discovery, Griffith University THÈSE présentée par Noé STURM soutenue le : 8 Décembre 2015 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/Spécialité : Chimie/Chémoinformatique Caractérisation de l’empreinte biologique des produits naturels pour des applications de conception rationnelle de médicament assistée par ordinateur THÈSE dirigée par : KELLENBERGER Esther Professeur, Université de Strasbourg QUINN Ronald Professeur, Université de Griffith, Brisbane, Australie RAPPORTEURS : IORGA Bogdan Chargé de recherche HDR, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette GÜNTHER Stefan Professeur, Université Albert Ludwigs, Fribourg, Allemagne Acknowledgments First of all, I would like to thank my two supervisors Professor Kellenberger Esther and Professor Quinn Ronald for their excellent assistance, both academic and personal in nature.
    [Show full text]
  • Investigations Into Nutritional Quality, Commercial Productivity, and Genetic Purity of Maize Grain for Organic Production Systems Ryan Huffman Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Investigations into nutritional quality, commercial productivity, and genetic purity of maize grain for organic production systems Ryan Huffman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Huffman, Ryan, "Investigations into nutritional quality, commercial productivity, and genetic purity of maize grain for organic production systems" (2017). Graduate Theses and Dissertations. 15322. https://lib.dr.iastate.edu/etd/15322 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigations into nutritional quality, commercial productivity, and genetic purity of maize grain for organic production systems by Ryan D. Huffman A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular, and Developmental Biology Program of Study Committee: M. Paul Scott, Co-Major Professor Phil Becraft, Co-Major Professor Marna D. Nelson Jode W. Edwards Alan Myers The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred.
    [Show full text]
  • A New Buckwheat Dihydroflavonol 4-Reductase (DFR), with a Unique
    Katsu et al. BMC Plant Biology (2017) 17:239 DOI 10.1186/s12870-017-1200-6 RESEARCH ARTICLE Open Access A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity Kenjiro Katsu1, Rintaro Suzuki2, Wataru Tsuchiya2, Noritoshi Inagaki2, Toshimasa Yamazaki2, Tomomi Hisano1, Yasuo Yasui3, Toshiyuki Komori4, Motoyuki Koshio4, Seiji Kubota4, Amanda R. Walker5, Kiyoshi Furukawa4 and Katsuhiro Matsui1,6* Abstract Background: Dihydroflavonol 4-reductase (DFR) is the key enzyme committed to anthocyanin and proanthocyanidin biosynthesis in the flavonoid biosynthetic pathway. DFR proteins can catalyse mainly the three substrates (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), and show different substrate preferences. Although relationships between the substrate preference and amino acids in the region responsible for substrate specificity have been investigated in several plant species, the molecular basis of the substrate preference of DFR is not yet fully understood. Results: By using degenerate primers in a PCR, we isolated two cDNA clones that encoded DFR in buckwheat (Fagopyrum esculentum). Based on sequence similarity, one cDNA clone (FeDFR1a)wasidenticaltotheFeDFR in DNA databases (DDBJ/Gen Bank/EMBL). The other cDNA clone, FeDFR2, had a similar sequence to FeDFR1a,buta different exon-intron structure. Linkage analysis in an F2 segregating population showed that the two loci were linked. Unlike common DFR proteins in other plant species, FeDFR2 contained a valine instead of the typical asparagine at the third position and an extra glycine between sites 6 and 7 in the region that determines substrate specificity, and showed less activity against dihydrokaempferol than did FeDFR1a with an asparagine at the third position.
    [Show full text]