Literaturverzeichnis

Total Page:16

File Type:pdf, Size:1020Kb

Literaturverzeichnis Literaturverzeichnis Adam-Müller, A. F. A. (1997): Merkmale und Einsatz exotischer Optionen, in: Sonderheft 38 der Zeitschrift für betriebswirtschaftliche Forschung, hrsg. von G. Franke, Düssel- dorf et al., S. 89-125. Adam-Müller, A. F. A. / Schäfer, K. (2001): Exotic Options, in: Handbuch Corporate Fi- nance, hrsg. von A.-K. Achleitner und G. Thoma, Loseblattwerk, Köln, Kap. 8.4.3. Adams, P. D. / Wyatt, S. B. (1987): On the Pricing of European and American Foreign Cur- rency Call Options, in: Journal of International Money and Finance, Vol. 6, No. 3, S. 315-338. Adler, M. / Dumas, B. (1984): Exposure to Currency Risk: Definition and Measurement, in: Financial Management, Vol. 13, No. 2, S. 41-50. Albrecht, P. / Maurer, R. (2008): Investment- und Risikomanagement, 3. Aufl., Stuttgart. Ammann, M. / Herriger, S. (2002): Relative Implied-Volatility Arbitrage with Index Op- tions, in: Financial Analysts Journal, Vol. 58, No. 6, S. 42-55. Ball, C. A. / Roma, A. (1994): Stochastic Volatility Option Pricing, in: Journal of Financial and Quantitative Analysis, Vol. 29, No. 4, S. 589-607. Ball, C. A. / Touros, W. N. (1985): On Jumps in Common Stock Prices and Their Impact on Call Option Pricing, in: Journal of Finance, Vol. 40, No. 1, S. 155-173. Bamberg, G. / Röder, K. (1994): Arbitrage institutioneller Anleger am DAX-Futures Markt unter Berücksichtigung von Körperschaftsteuern und Dividenden, in: Zeitschrift für Betriebswirtschaft, 64. Jg., Nr. 12, S. 1533-1566. Bartram, M. (1999): Corporate Risk Management, Bad Soden/Ts. Bates, D. (1996): Testing Option Pricing Models, in: Handbook of Statistics 14: Statistical Methods in Finance, hrsg. von G. Maddala und C. Rao, Amsterdam et al., S. 567-611. Baule, R. / Scholz, H. / Wilkens, M. (2004): Short-Zertifikate auf Indizes – Bewertung und Analyse eines innovativen Retail-Produktes für Baissephasen, in : Zeitschrift für Be- triebswirtschaft, 74. Jg., Nr. 4, S. 315-338. Baule, R. / Entrop, O. / Wilkens, M. (2008): Credit Risk and Bank Margins in Structured Financial Products: Evidence from the German Secondary Market for Discount Cer- tificates, in: Journal of Futures Markets, Vol. 28, No. 4, S. 376–397. Baxter, M. / Rennie, A. (1996): Financial Calculus, Cambridge. Becker, H. / Bracht, A. (1999): Katastrophen- und Wetterderivate. Finanzinnovationen auf der Basis von Naturkatastrophen und Wettererscheinungen, Wien. Beckers, S. (1980): The Constant Elasticity of Variance Model and Its Implications for Op- tion Pricing, in: Journal of Finance, Vol. 35, No. 3, S. 661-673. Berendes, M. / Bühler, W. (1994): Analyse der Preisunterschiede von Zinsforward und Zinsfuture, in: Zeitschrift für betriebswirtschaftliche Forschung, 46. Jg., Nr. 12, S. 987- 1020. Bergman, Y. Z. (1985): Pricing Path Contingent Claims, in: Research in Finance, Vol. 5, S. 229-241. 394 Literaturverzeichnis Bessembinder, H. / Lemmon, M. L. (2002): Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets, in: Journal of Finance, Vol. 57, No. 3, S. 1347-1382. Bharadwaj, A. / Wiggins, J. B. (2001): Box Spread and Put-Call Parity Tests for the S&P 500 Index LEAPS Market, in: Journal of Derivatives, Vol. 8, No. 4, S. 62-71. Bhattacharya, M. (1983): Transaction Data Tests of Efficiency of the Chicago Board Op- tions Exchange, in: Journal of Financial Economics, Vol. 12, No. 2, S. 161-185. Black, F. (1976): The Pricing of Commodity Contracts, in: Journal of Financial Economics, Vol. 3, No. 1-2, S. 167-179. Black, F. (1989): How to Use the Holes in Black-Scholes, in: Journal of Applied Corporate Finance, Vol. 1, No. 4, S. 67-73. Black, F. / Scholes, M. (1973): The Pricing of Options and Corporate Liabilities, in: Journal of Political Economy, Vol. 81, No. 3, S. 637-654. Bloss, M. / Eil, N. / Ernst, D. / Fritsche, H. / Häcker, J. (2009): Währungsderivate. Praxis- leitfaden für ein effizientes Management von Währungsrisiken, München. Bodnar, G. M. / Gebhardt, G. (1999): Derivatives Usage in Risk Management by US and German Non-Financial Firms: A Comparative Survey, in: Journal of International Fi- nancial Management and Accounting, Vol. 10, No. 3, S. 153-187. Bodurtha, J. N. / Courtadon, G. R. (1987): The Pricing of Foreign Currency Options, Monograph Series in Finance and Economics, No. 4/5, New York University. Boyle, P. P. (1977): Options: A Monte Carlo Approach, in: Journal of Financial Econom- ics, Vol. 4, No. 3, S. 323-338. Branger, N. / Schlag, C. (2004a): Zinsderivate, Berlin et al. Branger, N. / Schlag, C. (2004b): Why Is the Index Smile so Steep?, in: Review of Finance, Vol. 8, No. 1, S. 109-127. Branger, N. / Schlag, C. (2009): Can Tests Based on Option Hedging Errors Correctly Iden- tify Volatility Risk Premia?, in: Journal of Financial and Quantitative Analysis, Vol. 44, No. 1, S. 1055-1090. Brennan, M. J. (1991): The Price of Convenience and the Valuation of Commodity Contin- gent Claims, in: Stochastic Models and Option Values, hrsg. von D. Lund und B. Oksendal, North-Holland, S. 33-71. Brenner, M. / Courtadon, G. / Subrahmanyam, M. (1985): Options on the Spot and Options on Futures, in: Journal of Finance, Vol. 40, No. 5, S. 1303-1317. Brenner, M. / Subrahmanyam, M. G. (1988): A Simple Formula to Compute the Implied Standard Deviation, in: Financial Analysts Journal, Vol. 44, No. 5, S. 80-83. Brenner, M. / Subrahmanyam, M. G. (1994): A Simple Approach to Option Valuation and Hedging in the Black-Scholes Model, in: Financial Analysts Journal, Vol. 50, No. 1, S. 25-28. Breuer, W. (1998): Zinsswaps als Instrument der Unternehmensfinanzierung, in: Unter- nehmensführung und Kapitalmarkt, hrsg. von G. Franke und H. Laux, Berlin et al., S 1-34. Breuer, W. (2000): Unternehmerisches Währungsmanagement, Wiesbaden. Brigo, D. / Mercurio, F. (2001): Interest Rate Models, Berlin et al. Brink, H.-J. (1989): Rohstoffmärkte, in: Handwörterbuch Export und Unternehmung, hrsg. von K. Macharzina und M. Welge, Stuttgart, Sp. 1865-1876. Broll, U. / Wahl, J. (1995): Export Decision and Risk Sharing Markets, in: Zeitschrift für Wirtschafts- und Sozialwissenschaften, 115. Jg., Nr. 1, S. 27-36. Brummer, M. / Pfennig, M. / Schäfer, K. (1999): Preisrisiken in liberalisierten Strommärk- ten, in Solutions, Vol. 3, No. 3-4, S. 7-26. Literaturverzeichnis 395 Bühler, W. (1988): Rationale Bewertung von Optionsrechten auf Anleihen, in: Zeitschrift für betriebswirtschaftliche Forschung, 40. Jg., Nr. 10, S. 851-883. Bühler, W. / Kempf, A. (1993): Der DAX-Future: Kursverhalten und Arbitragemöglichkei- ten, in: Kredit und Kapital, 26. Jg., Nr. 4, S. 533-574. Bühler, W. / Korn, O. (2000): Absicherung langfristiger Lieferverpflichtungen mit kurzfris- tigen Futures: Möglich oder unmöglich?, in: Zeitschrift für betriebswirtschaftliche For- schung, 52. Jg., Nr. 4, S. 315-347. Bühler, W. / Uhrig, M. / Walter, U. / Weber, T. (1997): Erfahrungen bei dem Einsatz von Modellen zur Bewertung von Zinsoptionen – eine empirische Studie, in: Sonderheft 38 der Zeitschrift für betriebswirtschaftliche Forschung, hrsg. von G. Franke, Düsseldorf et al., S. 1-42. Büschgen, H. (1997): Internationales Finanzmanagement, Frankfurt am Main. Burghof, H.-P. / Henke, S. / Rudolph, B. / Schönbucher, P. / Sommer, D. (Hrsg.) (2005): Kreditderivate. Handbuch für die Bank- und Anlagepraxis, 2. Aufl., Stuttgart. Cartea, Á. /Villaplana, P. (2008): Spot Price Modeling and the Valuation of Electricity Forward Contracts: The Role of Demand and Capacity, in: Journal of Banking & Fi- nance, Vol. 32, No. 12, S. 2502-2519. Pirrong, C. / Jermakyan, M. (2008): The Price of Power: The Valuation of Power and Weather Derivatives, in: Journal of Banking & Finance, Vol. 32, No. 12, S. 2520- 2529. Cecchetti, S. G. / Gyntelberg, J. / Hollanders, M. (2009): Central Counterparties for Over- the-Counter Derivatives, in: BIS Quarterly Review, September, S. 45-58. Chance, D. M. / Brooks, R. (2008): An Introduction to Derivatives and Risk Management, 7th Intern. Ed., Mason, Ohio. Christoffersen, P. / Jacobs, K. / Ornthanalai, C. / Wang, Y. (2008): Option Valuation with Long-Run and Short-Run Volatility Components, in: Journal of Financial Economics, Vol. 90, No. 3, S. 272-297. Clewlow, L. / Strickland, C. (2000): Energy Derivatives, London. Choi, J. W. / Longstaff, F. A. (1985): Pricing Options on Agricultural Futures: An Applica- tion of the Constant Elasticity of Variance Option Pricing Model, in: Journal of Fu- tures Markets, Vol. 5, No. 2, S. 247-258. Copeland, L. (2000): Exchange Rates and International Finance, Essex. Corrado, C. J. / Miller, T. W. (1996): A Note on a Simple, Accurate Formula to Compute Implied Standard Deviations, in: Journal of Banking & Finance, Vol. 20, No. 3, S. 595-603. Courtadon, G. (1990): An Introduction to Numerical Methods in Option Pricing, in: Finan- cial Options: From Theory to Practice, hrsg. von S. Figlewski, W. L. Silber und M. G. Subrahmanyam, New York, S. 538-573. Cox, J. C. (1975): Notes on Option Pricing I: Constant Elasticity of Variance Diffusions, Working Paper, Stanford University, (reprinted in: Journal of Portfolio Management 1996, Vol. 22, No. 2, S. 15-17). Cox, J. C. / Huang, C. (1989): Option Pricing Theory and Its Applications, in: Theory of Valuation, hrsg. von M. Bhattacharya und G. M. Constantinides, New Jersey, S. 272- 288. Cox, J. C. / Ingersoll, J. E. / Ross, S. A. (1981): The Relation Between Forward and Futures Prices, in: Journal of Financial Economics, Vol. 9, No. 4, S. 321-346. Cox, J. C. / Ross, S. A. (1976): The Valuation of Options for Alternative Stochastic Proc- esses, in: Journal of Financial Economics, Vol. 3, No. 1-2, S. 145-166. 396 Literaturverzeichnis Cox, J. C. / Ross, S. A. / Rubinstein, M. (1979): Option Pricing: A Simplified Approach, in: Journal of Financial Economics, Vol. 7, No. 3, S. 229-263. Cox, J. C. / Rubinstein, M. (1985): Options Markets, Englewood Cliffs, New Jersey. Crouhy, M. / Galai, D. / Mark, R. (2001): Risk Management, New York. Culp, C. L. / Miller, M. H. (1995): Metallgesellschaft and the Economics of Synthetic Stor- age, in: Journal of Applied Corporate Finance, Vol. 7, No. 4, S. 62-76. Dempster, M. A. H. / Medova, E. / Tang, K. (2008): Long Term Spread Option Valuation and Hedging, in: Journal of Banking & Finance, Vol.
Recommended publications
  • Up to EUR 3,500,000.00 7% Fixed Rate Bonds Due 6 April 2026 ISIN
    Up to EUR 3,500,000.00 7% Fixed Rate Bonds due 6 April 2026 ISIN IT0005440976 Terms and Conditions Executed by EPizza S.p.A. 4126-6190-7500.7 This Terms and Conditions are dated 6 April 2021. EPizza S.p.A., a company limited by shares incorporated in Italy as a società per azioni, whose registered office is at Piazza Castello n. 19, 20123 Milan, Italy, enrolled with the companies’ register of Milan-Monza-Brianza- Lodi under No. and fiscal code No. 08950850969, VAT No. 08950850969 (the “Issuer”). *** The issue of up to EUR 3,500,000.00 (three million and five hundred thousand /00) 7% (seven per cent.) fixed rate bonds due 6 April 2026 (the “Bonds”) was authorised by the Board of Directors of the Issuer, by exercising the powers conferred to it by the Articles (as defined below), through a resolution passed on 26 March 2021. The Bonds shall be issued and held subject to and with the benefit of the provisions of this Terms and Conditions. All such provisions shall be binding on the Issuer, the Bondholders (and their successors in title) and all Persons claiming through or under them and shall endure for the benefit of the Bondholders (and their successors in title). The Bondholders (and their successors in title) are deemed to have notice of all the provisions of this Terms and Conditions and the Articles. Copies of each of the Articles and this Terms and Conditions are available for inspection during normal business hours at the registered office for the time being of the Issuer being, as at the date of this Terms and Conditions, at Piazza Castello n.
    [Show full text]
  • (NSE), India, Using Box Spread Arbitrage Strategy
    Gadjah Mada International Journal of Business - September-December, Vol. 15, No. 3, 2013 Gadjah Mada International Journal of Business Vol. 15, No. 3 (September - December 2013): 269 - 285 Efficiency of S&P CNX Nifty Index Option of the National Stock Exchange (NSE), India, using Box Spread Arbitrage Strategy G. P. Girish,a and Nikhil Rastogib a IBS Hyderabad, ICFAI Foundation For Higher Education (IFHE) University, Andhra Pradesh, India b Institute of Management Technology (IMT) Hyderabad, India Abstract: Box spread is a trading strategy in which one simultaneously buys and sells options having the same underlying asset and time to expiration, but different exercise prices. This study examined the effi- ciency of European style S&P CNX Nifty Index options of National Stock Exchange, (NSE) India by making use of high-frequency data on put and call options written on Nifty (Time-stamped transactions data) for the time period between 1st January 2002 and 31st December 2005 using box-spread arbitrage strategy. The advantages of box-spreads include reduced joint hypothesis problem since there is no consideration of pricing model or market equilibrium, no consideration of inter-market non-synchronicity since trading box spreads involve only one market, computational simplicity with less chances of mis- specification error, estimation error and the fact that buying and selling box spreads more or less repli- cates risk-free lending and borrowing. One thousand three hundreds and fifty eight exercisable box- spreads were found for the time period considered of which 78 Box spreads were found to be profit- able after incorporating transaction costs (32 profitable box spreads were identified for the year 2002, 19 in 2003, 14 in 2004 and 13 in 2005) The results of our study suggest that internal option market efficiency has improved over the years for S&P CNX Nifty Index options of NSE India.
    [Show full text]
  • Decreto Del Direttore Amministrativo N
    Corso di Laurea magistrale (ordinamento ex D.M. 270/2004) in Economia e Finanza Tesi di Laurea Gli strumenti derivati ed il loro utilizzo in azienda: l’importanza di gestirne i vantaggi e le complessità Relatore Prof. Guido Massimiliano Mantovani Laureando Ambra Moschini Matricola:835318 Anno Accademico 2013 / 2014 Sessione straordinaria 2 Indice Indice delle Figure ....................................................................................................................... 6 Indice delle Tavole ...................................................................................................................... 7 Introduzione ................................................................................................................................. 8 Capitolo 1 - Il concetto di rischio ............................................................................................. 11 1.1. Definizione .................................................................................................................. 12 1.2. La percezione del rischio in azienda ........................................................................... 16 1.3. Identificazione delle categorie di rischio .................................................................... 24 1.3.1. Rischi finanziari .................................................................................................. 26 1.3.1.1. Rischio di mercato ............................................................................................... 28 1.3.1.1.1. Rischio di
    [Show full text]
  • Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options Under Uncertainty
    Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options under Uncertainty A Thesis submitted to the University of Manchester for the Degree of Doctor of Business Administration in the Faculty of Humanities 2010 Jörg Dockendorf Manchester Business School Contents LIST OF TABLES ....................................................................................................... 4 LIST OF FIGURES ..................................................................................................... 4 ABSTRACT .................................................................................................................. 5 DECLARATION .......................................................................................................... 6 COPYRIGHT STATEMENT ..................................................................................... 7 ACKNOWLEDGEMENTS ......................................................................................... 8 1 INTRODUCTION ................................................................................................ 9 1.1 Research Objectives and Questions ............................................................. 11 1.2 Contributions to Knowledge ........................................................................ 12 1.3 Thesis Overview........................................................................................... 13 2 REVIEW OF RAINBOW OPTIONS AND THE COMMODITY CONTEXT .................................................................................................................
    [Show full text]
  • Options Slide Deck Updated Version
    www.levelupbootcamps.com 4/4/21 Derivatives Option Strategies 4/4/21 LevelUp, LLC©2021 All rights reserved 1 1 Derivatives & Currency Management Option Strategies 4/4/21 LevelUp, LLC©2021 All rights reserved 2 2 Level Up, LLC©2021 All rights reserved 1 www.levelupbootcamps.com 4/4/21 Risk Management with Options Synthetic Positions • Synthetic Long & Short Forward Option Strategies • Synthetic Puts & Calls Multiple Option Strategies Single Option + Underlying Single Option Directionless Volatility Long U/L Risk Reduction Writing Puts • Long Straddle = LC + LP Covered Call = U/L + SC • Lower purchase cost • Short Straddle = SC + SP • Income enhancement • Fiduciary put = SP + Money Spreads • Reduce at favorable price cash to cover (ftn 13) “Small Moves Up or Down” • Target price realization The Greeks • Bull & Bear Call Spreads • Manza Case 1. Delta + & - • Bear & Bull Put Spreads Protective Put = U/L + LP 2. Gamma + • Insurance Calendar Spreads 3. Theta (time) - Collar = U/L + LP + SC Short “Its all about Theta” 4. Vega (Implied Vol) + • Risk Reversal • Long Calendar Spread Portfolio Mgt • Short Calendar Spread Short U/L Risk Reduction 1. Strategies using • Short U/L + Long Call volatility & market view • Short U/L + Short Put 2. Adjusting risk exposure 4/4/21 LevelUp, LLC©2021 All rights reserved 3 3 Single Option Strategies Refresher . just in case + + X S Long Call – LC S Short Call – SC - - X “writing” Want U/L up – bullish Want U/L down – bearish Right to buy at strike price X Obligated to sell at strike price X Max gain = ∞ when S
    [Show full text]
  • 11 Option Payoffs and Option Strategies
    11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expira- tion for various stock prices. 73 74 CHAPTER 11 OPTION PAYOFFS AND OPTION STRATEGIES 2. Consider a put option with an exercise price of $80 and a cost of $4. Graph the profits and losses at expiration for various stock prices. ANSWERS TO QUESTIONS AND PROBLEMS 75 3. For the call and put in questions 1 and 2, graph the profits and losses at expiration for a straddle comprising these two options. If the stock price is $80 at expiration, what will be the profit or loss? At what stock price (or prices) will the straddle have a zero profit? With a stock price at $80 at expiration, neither the call nor the put can be exercised. Both expire worthless, giving a total loss of $9. The straddle breaks even (has a zero profit) if the stock price is either $71 or $89. 4. A call option has an exercise price of $70 and is at expiration. The option costs $4, and the underlying stock trades for $75. Assuming a perfect market, how would you respond if the call is an American option? State exactly how you might transact. How does your answer differ if the option is European? With these prices, an arbitrage opportunity exists because the call price does not equal the maximum of zero or the stock price minus the exercise price. To exploit this mispricing, a trader should buy the call and exercise it for a total out-of-pocket cost of $74.
    [Show full text]
  • The Forward Smile in Stochastic Local Volatility Models
    The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S.
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • New Frontiers in Practical Risk Management
    New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark.
    [Show full text]
  • OPTION-BASED EQUITY STRATEGIES Roberto Obregon
    MEKETA INVESTMENT GROUP BOSTON MA CHICAGO IL MIAMI FL PORTLAND OR SAN DIEGO CA LONDON UK OPTION-BASED EQUITY STRATEGIES Roberto Obregon MEKETA INVESTMENT GROUP 100 Lowder Brook Drive, Suite 1100 Westwood, MA 02090 meketagroup.com February 2018 MEKETA INVESTMENT GROUP 100 LOWDER BROOK DRIVE SUITE 1100 WESTWOOD MA 02090 781 471 3500 fax 781 471 3411 www.meketagroup.com MEKETA INVESTMENT GROUP OPTION-BASED EQUITY STRATEGIES ABSTRACT Options are derivatives contracts that provide investors the flexibility of constructing expected payoffs for their investment strategies. Option-based equity strategies incorporate the use of options with long positions in equities to achieve objectives such as drawdown protection and higher income. While the range of strategies available is wide, most strategies can be classified as insurance buying (net long options/volatility) or insurance selling (net short options/volatility). The existence of the Volatility Risk Premium, a market anomaly that causes put options to be overpriced relative to what an efficient pricing model expects, has led to an empirical outperformance of insurance selling strategies relative to insurance buying strategies. This paper explores whether, and to what extent, option-based equity strategies should be considered within the long-only equity investing toolkit, given that equity risk is still the main driver of returns for most of these strategies. It is important to note that while option-based strategies seek to design favorable payoffs, all such strategies involve trade-offs between expected payoffs and cost. BACKGROUND Options are derivatives1 contracts that give the holder the right, but not the obligation, to buy or sell an asset at a given point in time and at a pre-determined price.
    [Show full text]
  • Options Trading Strategies: Complete Guide to Getting Started and Making Money with Stock Options
    Options Trading Strategies Complete Guide to Getting Started and Making Money with Stock Options Scott J. Danes Dylanna Publishing Copyright © 2014 by Scott J. Danes All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Dylanna Publishing First edition: 2014 Disclaimer This book is for informational purposes only. The views expressed are those of the author alone, and should not be taken as expert, legal, or medical advice. The reader is responsible for his or her own actions. Every attempt has been made to verify the accuracy of the information in this publication. However, neither the author nor the publisher assumes any responsibility for errors, omissions, or contrary interpretation of the material contained herein. Neither the author or the publisher assumes any responsibility or liability whatsoever on the behalf of the reader or purchaser of this material. Contents Introduction Options 101 What Are Options? Buying and Selling Options Advantages of Options Trading Leverage Risk Limitation—Hedging Disadvantages of Options Trading Levels of Risk Intrinsic Value Time Decay Taxes Types and Styles of Options Call Options Put Options Using Call and Put Options to Make a Profit Styles of Options American Options European Options Exotic Options LEAPS Index Options Option Prices and Valuation In-The-Money (ITM) At-The-Money (ATM) Out-of-The-Money (OTM) Intrinsic Value versus
    [Show full text]
  • Regulatory Circular RG16-044
    Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value.
    [Show full text]