Rapid Evolution at the Telomere: Transposable Element Dynamics at an Intrinsically Unstable Locus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Utility of Subtelomeric Fluorescent DNA Probes for Detection of Chromosome Anomalies in 425 Patients Syed M
article January/February 2003 ⅐ Vol. 5 ⅐ No. 1 Utility of subtelomeric fluorescent DNA probes for detection of chromosome anomalies in 425 patients Syed M. Jalal, PhD1, Aaron R. Harwood1, Gurbax S. Sekhon, PhD3, Cindy Pham Lorentz, MS1, Rhett P. Ketterling, MD1, Dusica Babovic-Vuksanovic, MD2, Reid G. Meyer1, Regina Ensenauer, MD2, Marvin H. Anderson, Jr1, and Virginia V. Michels, MD2 Purpose: A complete set of subtelomeric fluorescent DNA probes, except the acrocentric p-arms, was developed in 1996, was optimized in 1998, and is commercially available. These and other fluorescence in situ hybridization (FISH) probes have been used to detect anomalies of the subtelomere regions among groups of patients with idiopathic mental retardation (MR), developmental delay (DD), and/or nonspecific dysmorphic features (NDF), and individuals with multiple miscarriages (MM) who were karyotypically normal by standard G-banding techniques. Methods: A total of 425 patients were analyzed, of whom 372 had idiopathic MR/DD/NDF and 53 were involved in MM. An effort was made to select individuals for this study who were either normal karyotypically or who had subtle chromosomal anomalies that were inconclusive by banded chromosome analysis, although this was not always possible. Results: Anomalies involving the subtelomere regions were detected at a frequency of 6.8% in the MR/DD/NDF group. The cryptic or subtle anomalies are estimated to be about 3.4%. It was necessary to use M-FISH, chromosome, and locus specific FISH probes to clarify some of the abnormalities. No abnormalities were detected in the MM group. Deletion variants were present for 2qter, 7pter, and Xpter/Ypter subtelomeric regions ranging from Ͻ1 to 9.6%. -
Copy Number of P Elements, KP/Full-Sized P Element Ratio and Their Relationships with Environmental Factors in Brazilian Drosophila Melanogaster Populations
Heredity (2003) 91, 570–576 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Copy number of P elements, KP/full-sized P element ratio and their relationships with environmental factors in Brazilian Drosophila melanogaster populations MT Ruiz and CMA Carareto Departamento de Biologia, IBILCE, Universidade Estadual Paulista, Rua Cristo´va˜o Colombo, 2265, Jardim Nazare´,Sa˜o Jose´ do Rio Preto 15054-000, SP, Brazil The P transposable element copy numbers and the KP/full- and the strains from less extreme latitudes had many sized P element ratios were determined in eight Brazilian more full-sized P than KP elements. However, no clinal strains of Drosophila melanogaster. Strains from tropical variation was observed. Strains from different localities, regions showed lower overall P element copy numbers previously classified as having P cytotype, displayed a higher than did strains from temperate regions. Variable numbers of or a lower proportion of KP elements than of full-sized full-sized and defective elements were detected, but the P elements, as well as an equal number of the two element full-sized P and KP elements were the predominant classes types, showing that the same phenotype may be produced of elements in all strains. The full-sized P and KP element by different underlying genomic components of the P–M ratios were calculated and compared with latitude. The system. northernmost and southernmost Brazilian strains showed Heredity (2003) 91, 570–576, advance online publication, fewer full-sized elements than KP elements per genome, 17 September 2003; doi:10.1038/sj.hdy.6800360 Keywords: P transposable elements; KP elements; KP/full-sized P elements; P–M systems; Drosophila melanogaster Introduction elements, allows P element transposition (Engels, 1983). -
Interspecific DNA Transformation in Drosophila (Drosophila Melanogaster/Drosophila Simulans/Rosy Gene/P Element/Transposable Element) NANCY J
Proc. Nati. Acad. Sci. USA Vol. 81, pp. 7515-7519, December 1984 Genetics Interspecific DNA transformation in Drosophila (Drosophila melanogaster/Drosophila simulans/rosy gene/P element/transposable element) NANCY J. SCAVARDA AND DANIEL L. HARTL Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110 Communicated by Peter H. Raven, August 7, 1984 ABSTRACT A DNA fragment that includes the wild-type (4). Use of an average rate of synonymous substitutions in rosy (ry+) gene of Drosophila melanogaster has been intro- coding regions of 5.1 + 0.3 x 10-9 per nucleotide site per yr duced by microinjection into the germ line of the reproductive- (9, 10) results in an estimated time since separation of 4.1 + ly isolated species Drosophila simulans and incorporated into 0.2 million yr, but analogous estimates based on rates of nu- the D. simulans genome. Transformation was mediated by the cleotide substitution in intervening sequences range from 3.8 transposable element P, which occurs in the genome of most to 6.8 million yr. These estimates are uncertain because av- natural populations ofD. melanogaster but not in D. simulans. erage rates of substitution in other organisms may have little Rubin and Spradling [Rubin, G. M. & Spradling, A. C. relevance to insects, and because evolutionary change in the (1982) Science 218, 348-353] have previously shown that the gene coding for alcohol dehydrogenase may be atypical. ry' DNA fragment, which is flanked by recognition sequences Although D. melanogaster and D. simulans are reproduc- of P element, can transform the germ line ofD. -
Evolution of Pogo, a Separate Superfamily of IS630-Tc1-Mariner
Gao et al. Mobile DNA (2020) 11:25 https://doi.org/10.1186/s13100-020-00220-0 RESEARCH Open Access Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates Bo Gao, Yali Wang, Mohamed Diaby, Wencheng Zong, Dan Shen, Saisai Wang, Cai Chen, Xiaoyan Wang and Chengyi Song* Abstracts Background: Tc1/mariner and Zator, as two superfamilies of IS630-Tc1-mariner (ITm) group, have been well-defined. However, the molecular evolution and domestication of pogo transposons, once designated as an important family of the Tc1/mariner superfamily, are still poorly understood. Results: Here, phylogenetic analysis show that pogo transposases, together with Tc1/mariner,DD34E/Gambol,and Zator transposases form four distinct monophyletic clades with high bootstrap supports (> = 74%), suggesting that they are separate superfamilies of ITm group. The pogo superfamily represents high diversity with six distinct families (Passer, Tigger, pogoR, Lemi, Mover,andFot/Fot-like) and wide distribution with an expansion spanning across all the kingdoms of eukaryotes. It shows widespread occurrences in animals and fungi, but restricted taxonomic distribution in land plants. It has invaded almost all lineages of animals—even mammals—and has been domesticated repeatedly in vertebrates, with 12 genes, including centromere-associated protein B (CENPB), CENPB DNA-binding domain containing 1 (CENPBD1), Jrk helix–turn–helix protein (JRK), JRK like (JRKL), pogo transposable element derived with KRAB domain (POGK), and with ZNF domain (POGZ), and Tigger transposable element-derived 2 to 7 (TIGD2–7), deduced as originating from this superfamily. Two of them (JRKL and TIGD2) seem to have been co-domesticated, and the others represent independent domestication events. -
Harnessing Single-Molecule Sequencing to Characterize the Fast-Evolving Drosophila Subtelomere Xander M
Harnessing single-molecule sequencing to characterize the fast-evolving Drosophila subtelomere Xander M. Gottfried, COL 2021 Mia T. Levine, College of Arts and Sciences Department of Biology Abstract ORF polymorphism is concentrated closer to telomere The telomere and subtelomere are repetitive sequences at the ends of chromosomes Use genome BLAST to find subtelomeric genes required for chromosome length preservation. In Drosophila, telomere and subtelomere are highly plastic; each of them varies in copy number and sequence both within and across species. In addition, there is evidence of functional crosstalk between telomere and subtelomere, suggesting that the two regions may co-evolve to maintain system fidelity. However, without characterizing the sequence of the subtelomere, we cannot investigate whether subtelomere evolution affects telomere function. This characterization has recently been made possible due to the advent of single-molecule sequencing, which can be used to assemble repetitive regions using long, 100 kilobase reads. Here, we begin to characterize the composition and variability of subtelomeric genes, focusing on exon duplications, intergenic distance variability, and functional open reading frame polymorphism. The Drosophila Subtelomere • Highly variable in copy number and sequence within species • Rapidly evolving Exon fragment duplications are more common closer across species to the telomere • Pervasive terminal Chromosome 2L Average # Exon Fragment Duplications Across Genomes 12 deletions • Functional Experimental Validation: crosstalk with 8 • PCR: primers to absent genes, primers to unorthodox telomere has break points, primers across gaps implications for • Cell biology: DNA FISH to gene sequences, IF to 4 genome integrity proteins RNAseq to dysfunctional ORFs Average # ofExon FragmentDuplications # Average 0 References: Anderson, J.A., Song, Y.S., and Langley, C.H. -
Genome of Drosophila Guanche WOLFGANG J
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 4018-4022, May 1992 Genetics P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche WOLFGANG J. MILLER*, SYLVIA HAGEMANNt, ELEONORE REITERt, AND WILHELM PINSKERtt *Institut fur Botanik, Abteilung Cytologie und Genetik, Rennweg 14, A-1030 Vienna, Austria; and tInstitut fur Allgemeine Biologie, Abteilung Genetik, Wahringerstrasse 17, A-1090 Vienna, Austria Communicated by Bruce Wallace, December 23, 1991 ABSTRACT In Drosophila guanche, P-homologous se- In germ-line cells, the copy number of P elements is quences were found to be located in a tandem repetitive array genetically regulated by a complex mixture of chromosomal (copy number: 20-50) at a single genomic site. The cytological and cytoplasmic factors (11). At least two mechanisms can be position on the polytene chromosomes was determined by in situ distinguished: the maternally transmitted cytotype (12) and a hybridization (chromosome 0: 85C). Sequencing of one com- chromosomally inherited control system (13). In the P cyto- plete repeat unit (3.25 kilobases) revealed high sequence simi- type, the cytoplasmic state of P-strain individuals, transpo- larity between the central coding region comprising exons 0 to sition is repressed in somatic cells and in the germ line. In 2 and the corresponding section of the Drosophila melanogaster general the P cytotype develops gradually as a result of the P element. The rest of the sequence has diverged considerably. increasing number of P-element copies. M-strains, on the Exon 3 has no coding function and the inverted repeats have other hand, have genomes devoid of P elements. -
History to the Rescue Pseudogenes Get Some Respect Flyin' Pain Free
RESEARCH NOTES Pseudogenes get some respect adenoviral entry is mediated by interaction between RGD motifs and integrins, they went on to engineer a virus with an RGD peptide. This Pseudogenes are the non-functional remnants of genes that have version of the modified virus specifically infected tumor cells and repli- been thought to do nothing more than take up space. A new cated more effectively than Delta-24. When injected directly into report by Shinji Hirotsune and colleagues provides evidence that human gliomas xenografted into mice, Delta-24-RGD allowed signifi- at least one such pseudogene has an essential role as a regulator of cantly longer survival than did Delta-24 or an inactivated virus control. gene expression (Nature 423, 91–96; 2003). A fortuitous insertion More impressively, 60% of mice treated with Delta-24-RGD were long- of a transgene into the Makorin1-p1 locus generated a mouse term survivors (compared with 15% of those treated with Delta-24 with a bone deformity and polycystic kidneys. Makorin1-p1 is a characterized by complete tumor regression). MH pseudogene that is normally transcribed, although no functional protein product can be produced. Strikingly, the transgene insertion reduced not only the transcription of Makorin1-p1, but RNAi on or off target? that of its functional homolog, Makorin1, as well. In vitro Two new reports examine the specificity of RNA interference (RNAi) in experiments show that an intact Makorin1-p1 locus stabilizes the human cells using genome-wide expression profiling. Targeting exoge- Makorin1 mRNA, and a rescue of the original transgenic mouse nous GFP in human embryonic kidney cells, Jen-Tsan Chi and col- with Makorin1-p1 proves that the pseudogene is required for leagues report efficient and specific knockdown using two different normal expression of Makorin1. -
Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using White Co-Conversion
G3: Genes|Genomes|Genetics Early Online, published on August 26, 2016 as doi:10.1534/g3.116.032557 Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Co-Conversion Daniel Tianfang Ge*,†,1, Cindy Tipping*,‡,1, Michael H. Brodsky§, Phillip D. Zamore*,‡,**,2 *RNA Therapeutics Institute, †Interdisciplinary Graduate Program, ‡Howard Hughes Medical Institute, §Department of Molecular, Cell and Cancer Biology, **Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA 1These authors contributed equally to this work. 2To whom correspondence should be addressed. 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: Rapid Screening for CRISPR Editing Keywords: Cas9; Co-Conversion; Genetic Screen; Microhomology-Mediated End Joining; Homologous Recombination Corresponding author: Phillip D. Zamore Address: 368 Plantation Street, AS4-2053, Worcester, MA 01605 Tel.: 508-856-2191 E-mail: [email protected] 2 1 ABSTRACT 2 Adoption of a streamlined version of the bacterial CRISPR/Cas9 defense system has 3 accelerated targeted genome engineering. The Streptococcus pyogenes Cas9 protein, 4 directed by a simplified, CRISPR-like single guide RNA, catalyzes a double-stranded 5 DNA break at a specific genomic site; subsequent repair by end joining can introduce 6 mutagenic insertions or deletions, while repair by homologous recombination using an 7 exogenous DNA template can incorporate new sequence at the target locus. However, 8 the efficiency of Cas9-directed mutagenesis is low in Drosophila melanogaster. Here, we 9 describe a strategy that reduces the time and effort required to identify flies with 10 targeted genomic changes. -
Epigenetic Characteristics of Human Subtelomeres Vary in Cells Utilizing the Alternative Lengthening of Telomeres (ALT) Pathway
life Article Epigenetic Characteristics of Human Subtelomeres Vary in Cells Utilizing the Alternative Lengthening of Telomeres (ALT) Pathway Shir Toubiana 1,† , Aya Tzur-Gilat 1,† and Sara Selig 1,2,* 1 Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; [email protected] (S.T.); [email protected] (A.T.-G.) 2 Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel * Correspondence: [email protected] † Both authors contributed equally. Abstract: Most human cancers circumvent senescence by activating a telomere length maintenance mechanism, most commonly involving telomerase activation. A minority of cancers utilize the recombination-based alternative lengthening of telomeres (ALT) pathway. The exact requirements for unleashing normally repressed recombination at telomeres are yet unclear. Epigenetic modifications at telomeric regions were suggested to be pivotal for activating ALT; however, conflicting data exist regarding their exact nature and necessity. To uncover common ALT-positive epigenetic characteristics, we performed a comprehensive analysis of subtelomeric DNA methylation, histone modifications, and TERRA expression in several ALT-positive and ALT-negative cell lines. We found that subtelomeric DNA methylation does not differentiate between the ALT-positive and ALT- negative groups, and most of the analyzed subtelomeres within each group do not share common Citation: Toubiana, S.; Tzur-Gilat, A.; DNA methylation patterns. Additionally, similar TERRA levels were measured in the ALT-positive Selig, S. Epigenetic Characteristics of and ALT-negative groups, and TERRA levels varied significantly among the members of the ALT- Human Subtelomeres Vary in Cells positive group. Subtelomeric H3K4 and H3K9 trimethylation also differed significantly between Utilizing the Alternative Lengthening samples in the ALT-positive group. -
Evaluating the Probability of CRISPR-Based Gene Drive Contaminating Another Species
bioRxiv preprint doi: https://doi.org/10.1101/776609; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Evaluating the Probability of CRISPR-based Gene Drive Contaminating Another Species 1 2 3 4 Virginie Courtier-Orgogozo , Antoine Danchin , Pierre-Henri Gouyon and Christophe Boëte 1 I nstitut Jacques Monod, CNRS, UMR 7592, Université de Paris, Paris, France 2 I nstitut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris Descartes, Paris, France 3 I nstitut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France 4 I SEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France Abstract The probability D that a given CRISPR-based gene drive element contaminates another, non-target species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = (hyb+transf).express.cut.flank.immune.nonextinct with hyb = probability of hybridization between the target species and a non-target species transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a non-target species (with no hybridization) express = probability that the Cas9 and guide RNA genes are expressed cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host flank = probability that the gene drive cassette inserts at the cut site immune = probability that the immune system does not reject Cas9-expressing cells nonextinct = probability of invasion of the drive within the population We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. -
A Review on the Population Genomics of Transposable Elements
G C A T T A C G G C A T genes Review On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements Yann Bourgeois and Stéphane Boissinot * New York University Abu Dhabi, P.O. 129188 Saadiyat Island, Abu Dhabi, UAE; [email protected] * Correspondence: [email protected] Received: 4 April 2019; Accepted: 21 May 2019; Published: 30 May 2019 Abstract: Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes. Keywords: transposable elements; population genetics; selection; drift; coevolution 1. Introduction Transposable elements (TEs) are repetitive DNA sequences that are ubiquitous in the living world and have the ability to replicate and multiply within genomes. -
The Evolutionary Life History of P Transposons: from Horizontal Invaders to Domesticated Neogenes
Chromosoma (2001) 110:148–158 DOI 10.1007/s004120100144 CHROMOSOMA FOCUS Wilhelm Pinsker · Elisabeth Haring Sylvia Hagemann · Wolfgang J. Miller The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes Received: 5 February 2001 / In revised form: 15 March 2001 / Accepted: 15 March 2001 / Published online: 3 May 2001 © Springer-Verlag 2001 Abstract P elements, a family of DNA transposons, are uct of their self-propagating lifestyle. One of the most known as aggressive intruders into the hitherto uninfected intensively studied examples is the P element of Dro- gene pool of Drosophila melanogaster. Invading through sophila, a family of DNA transposons that has proved horizontal transmission from an external source they useful not only as a genetic tool (e.g., transposon tag- managed to spread rapidly through natural populations ging, germline transformation vector), but also as a model within a few decades. Owing to their propensity for rapid system for investigating general features of the evolu- propagation within genomes as well as within popula- tionary behavior of mobile DNA (Kidwell 1994). P ele- tions, they are considered as the classic example of self- ments were first discovered as the causative agent of hy- ish DNA, causing havoc in a genomic environment per- brid dysgenesis in Drosophila melanogaster (Kidwell et missive for transpositional activity. Tracing the fate of P al. 1977) and were later characterized as a family of transposons on an evolutionary scale we describe differ- DNA transposons