Myasthenia Gravis Patients Human Thymus and Thymomas from And

Total Page:16

File Type:pdf, Size:1020Kb

Myasthenia Gravis Patients Human Thymus and Thymomas from And Functional Expression of Receptors for Calcitonin Gene-Related Peptide, Calcitonin, and Vasoactive Intestinal Peptide in the Human Thymus and Thymomas from This information is current as Myasthenia Gravis Patients of September 29, 2021. J.-C. Marie, A. Wakkach, A.-M. Coudray, E. Chastre, S. Berrih-Aknin and C. Gespach J Immunol 1999; 162:2103-2112; ; http://www.jimmunol.org/content/162/4/2103 Downloaded from References This article cites 57 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/162/4/2103.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Functional Expression of Receptors for Calcitonin Gene-Related Peptide, Calcitonin, and Vasoactive Intestinal Peptide in the Human Thymus and Thymomas from Myasthenia Gravis Patients1 J.-C. Marie,2,3* A. Wakkach,2† A.-M. Coudray,* E. Chastre,* S. Berrih-Aknin,† and C. Gespach4* The molecular and functional expression of serpentine membrane receptors for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), and calcitonin (CT) were characterized in human thymus and thymomas from myasthenia gravis (MG) patients and thymic epithelial cells either in primary culture (PTEC) or transformed by the siman virus 40 large T (SV40LT) Downloaded from oncogene (LT-TEC). Using RT-PCR combined with Southern analysis, we identified the PCR products corresponding to the receptor (-R) transcripts for VIP, CGRP, and CT in thymus from control subjects and MG patients with either hyperplasia or thymoma. Similar expressions of the VIP- and CGRP-R transcripts were observed in PTEC, whereas the CT-R message was not detected. In LT-TEC, the signals for VIP-R, CGRP-R, and CT-R transcripts were seen with a lower intensity than those in control and MG thymus. In agreement with our molecular analysis, 1) VIP was the most potent peptide among VIP-related peptides (VIP > PACAP > PHM > PHV) to stimulate cAMP production through specific type 1 VIP receptors in both PTEC and LT-TEC; http://www.jimmunol.org/ 2) cAMP generation was induced by CGRP in PTEC and by CT in LT-TEC; 3) in frozen thymic sections and by flow cytometry, type 1 VIP-R, CGRP-R, and CT-R were localized in epithelial cells; and 4) in parallel, the transcription of the acetylcholine receptor a subunit (the main autoantigen in MG) was induced by CGRP and CT in PTEC and LT-TEC, respectively. Our data suggest that the neuroendocrine peptides VIP, CGRP, and CT may exert functional roles during MG and malignant transfor- mation of the human thymus. The Journal of Immunology, 1999, 162: 2103–2112. he thymus is an essential organ in the differentiation and ment through the release of cytokines and inhibition of stromal maturation of lymphoid precursor cells into mature T epithelial cell proliferation (10). by guest on September 29, 2021 T lymphocytes (1–4). These precursors, derived from bone The cellular heterogeneity of the thymus and the cross-talk be- marrow stem cells, are subjected to positive and negative selec- tween the different cell types constitute the main limit in under- tions by thymic stromal cells, including dendritic cells, macro- standing the physiology and pathophysiology of the thymus. phages, and epithelial cells (5–7). In this context, thymic epithelial Pathological thymi, including thymic hyperplasia and thymoma, cells have been shown to protect thymocytes from apoptosis (8) are frequently found in myasthenia gravis (MG),5 and MG patients and to promote the maturation of the double-positive (CD41 and 1 1 2 are improved after thymectomy (11). Autosensitization to acetyl- CD8 ) thymocytes into single-positive cells CD4 CD8 , choline receptors (AChR), which is the main autoantigen impli- CD42CD81 (9). In turn, thymocytes also modulate their environ- cated in MG, is thought to take place in the thymus (12). AChR a subunit (a-AChR) transcripts have been shown to be up-regulated by the neuropeptide calcitonin gene-related peptide (CGRP) in *Institut National de la Sante´et de la Recherche Me´dicale, Unit 482, Signalisation et chicken myocytes in primary culture (13). Thus, such an effect Fonctions Cellulaires, Applications au Diabe`te et aux Cancers Digestifs, Hoˆpital Saint-Antoine, Paris, France; and †Laboratoire d’Immunologie, Centre National de la occurring in the thymus would represent an important neuroendo- Recherche Scientifique-Unite´Propre de Recherche et de l’Enseignement Supe´rieur crine control in MG and thymic neoplasia. CGRP is a 37-amino Associe´e, Hoˆpital Marie Lannelongue, Le Plessis-Robinson, France acid peptide generated by tissue-specific alternative processing of Received for publication February 23, 1998. Accepted for publication November the calcitonin/CGRP gene transcript in central and peripheral neu- 30, 1998. rons (14, 15). Several neuroendocrine peptides, such as vasoactive The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance intestinal peptide (VIP), are also involved in the regulation of im- with 18 U.S.C. Section 1734 solely to indicate this fact. mune responses (16, 17). VIP is a 28-amino acid neuropeptide 1 This work was supported by the Institut National de la Sante´et de la Recherche Me´dicale, the Centre National de la Recherche Scientifique, and research grants from Association Franc¸aise contre les Myopathies, la Ligue Contre le Cancer, and Caisse Nationale d’Assurance Maladie des Travailleurs Salarie´s. 2 J.-C.M. and A.W. contributed equally. 5 Abbreviations used in this paper: MG, myasthenia gravis; AChR, acetylcholine receptors; a-AChR, a subunit of AChR; CGRP, calcitonin gene-related peptide; VIP, 3 Current address: Laboratoire de Physiopathologie de la Nutrition, Centre National vasoactive intestinal polypeptide; PACAP-38, pituitary adenylate cyclase-activating de la Recherche Scientifique et de l’Enseignement Supe´rieur Associe´e 7059, Univer- polypeptide; CT, calcitonin; PTEC, thymic epithelial cells in primary culture; LT- site´Paris 7, 75251 Paris Cedex 05, France. TEC, thymic epithelial cells transformed by the simian virus 40 large T oncogene; 4 Address correspondence and reprint requests to Dr. C. Gespach, Institut National de PHM, peptide with NH2-terminal histidine and C-terminal methionine; PHV, peptide la Sante´et de la Recherche Me´dicale, Unit 482, Signalisation et Fonctions Cellulaires, with NH2-terminal histidine and C-terminal valine; TGLP-1, truncated glucagon-like Applications au Diabe`te et aux Cancers Digestifs, Hoˆpital Saint-Antoine, 75571 Paris peptide-1; IAPP, islet amyloid polypeptide; pAbs, polyclonal Abs; RAMPS, receptor Cedex 12, France. E-mail address: [email protected] activity-modifying proteins; RCP, receptor component protein. Copyright © 1999 by The American Association of Immunologists 0022-1767/99/$02.00 2104 NEUROENDOCRINE PEPTIDE RECEPTORS IN HUMAN THYMUS structurally related to glucagon, pituitary adenylate cyclase-acti- software. The percentage of contaminating macrophages in thymic epithe- vating peptide (PACAP), and secretin (18). These regulatory pep- lial cell cultures was determined using anti-HLA-DR Abs (Dako, Trappes, tides exert their biological activities through activation of specific France). Most contaminant fibroblasts were eliminated by selective trypsinization. They represent ,10% of the total cell population as as- membrane receptors (19). These receptors have seven transmem- sessed by FACS analysis using anti-collagen III Ab (ICN, Costa Mesa, brane domains and are positively coupled to adenylyl cyclase. Sub- CA). The thymic epithelial cell population (at least 90% enriched), ob- types of VIP and CGRP/calcitonin (CT) receptors were identified tained after selective resistance to trypsin, was then used for PTEC culture on the basis of pharmacological and molecular analysis. VIP- and and SV40-LT transformation (see below). To obtain evidence of VIP-R expression in PTEC and LT-TEC1 cells in CGRP-immunoreactive fibers were identified in the thymus, and culture, we used the rabbit polyclonal Ab (pAb) A directed against the first both neuropeptides were reported to inhibit IL-2 production and extracellular loop of this serpentine receptor (26) at a dilution of 1/100 in proliferation of thymocytes in vitro (20–22). Further, VIP has been PBS. Primary and SV40-LT-transformed thymic cells were then washed, shown to rescue the immature double-positive CD41CD81 thy- incubated with goat anti-rabbit bound to tetramethylrhodamine isothiocya- mocytes from the glucocorticoid-induced apoptosis (23, 24). Thus, nate (Immunotech, Marseille, France), and washed twice in PBS. To our knowledge, there is no available CGRP-R or CT-R Ab. We it can be postulated that VIP exerts its protective effects against therefore biotinylated the CGRP and CT peptides according to the immu- apoptosis in thymocytes through an indirect action on thymic ep- noprobe biotinylation kit, as described by the manufacturer (Sigma, Saint- ithelial cells. Quentin Fallavier, France). Biotinylated CGRP or CT was incubated for 60 In the current hypotheses that neuroendocrine peptides exert a min with PTEC and LT-TEC1 cells, then unbound probe was eliminated by three washes, and fluorescence was revealed by avidin-phycoerythrin (Im- regulatory role on the development of the thymus and its immune munotech).
Recommended publications
  • General Pathomorpholog.Pdf
    Ukrаiniаn Medicаl Stomаtologicаl Аcаdemy THE DEPАRTАMENT OF PАTHOLOGICАL АNАTOMY WITH SECTIONSL COURSE MАNUАL for the foreign students GENERАL PАTHOMORPHOLOGY Poltаvа-2020 УДК:616-091(075.8) ББК:52.5я73 COMPILERS: PROFESSOR I. STАRCHENKO ASSOCIATIVE PROFESSOR O. PRYLUTSKYI АSSISTАNT A. ZADVORNOVA ASSISTANT D. NIKOLENKO Рекомендовано Вченою радою Української медичної стоматологічної академії як навчальний посібник для іноземних студентів – здобувачів вищої освіти ступеня магістра, які навчаються за спеціальністю 221 «Стоматологія» у закладах вищої освіти МОЗ України (протокол №8 від 11.03.2020р) Reviewers Romanuk A. - MD, Professor, Head of the Department of Pathological Anatomy, Sumy State University. Sitnikova V. - MD, Professor of Department of Normal and Pathological Clinical Anatomy Odessa National Medical University. Yeroshenko G. - MD, Professor, Department of Histology, Cytology and Embryology Ukrainian Medical Dental Academy. A teaching manual in English, developed at the Department of Pathological Anatomy with a section course UMSA by Professor Starchenko II, Associative Professor Prylutsky OK, Assistant Zadvornova AP, Assistant Nikolenko DE. The manual presents the content and basic questions of the topic, practical skills in sufficient volume for each class to be mastered by students, algorithms for describing macro- and micropreparations, situational tasks. The formulation of tests, their number and variable level of difficulty, sufficient volume for each topic allows to recommend them as preparation for students to take the licensed integrated exam "STEP-1". 2 Contents p. 1 Introduction to pathomorphology. Subject matter and tasks of 5 pathomorphology. Main stages of development of pathomorphology. Methods of pathanatomical diagnostics. Methods of pathomorphological research. 2 Morphological changes of cells as response to stressor and toxic damage 8 (parenchimatouse / intracellular dystrophies).
    [Show full text]
  • Oxytocin Is an Anabolic Bone Hormone
    Oxytocin is an anabolic bone hormone Roberto Tammaa,1, Graziana Colaiannia,1, Ling-ling Zhub, Adriana DiBenedettoa, Giovanni Grecoa, Gabriella Montemurroa, Nicola Patanoa, Maurizio Strippolia, Rosaria Vergaria, Lucia Mancinia, Silvia Coluccia, Maria Granoa, Roberta Faccioa, Xuan Liub, Jianhua Lib, Sabah Usmanib, Marilyn Bacharc, Itai Babc, Katsuhiko Nishimorid, Larry J. Younge, Christoph Buettnerb, Jameel Iqbalb, Li Sunb, Mone Zaidib,2, and Alberta Zallonea,2 aDepartment of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; bThe Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029; cBone Laboratory, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; dGraduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555 Japan; and eCenter for Behavioral Neuroscience, Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322 Communicated by Maria Iandolo New, Mount Sinai School of Medicine, New York, NY, February 19, 2009 (received for review October 24, 2008) We report that oxytocin (OT), a primitive neurohypophyseal hor- null mice (5). But the mice are not rendered diabetic, and serum mone, hitherto thought solely to modulate lactation and social glucose homeostasis remains unaltered (9). Thus, whereas the bonding, is a direct regulator of bone mass. Deletion of OT or the effects of OT on lactation and parturition are hormonal, actions OT receptor (Oxtr) in male or female mice causes osteoporosis that mediate appetite and social bonding are exerted centrally. resulting from reduced bone formation. Consistent with low bone The precise neural networks underlying OT’s central effects formation, OT stimulates the differentiation of osteoblasts to a remain unclear; nonetheless, one component of this network mineralizing phenotype by causing the up-regulation of BMP-2, might be the interactions between leptin- and OT-ergic neurones which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expres- in the hypothalamus (10).
    [Show full text]
  • Clinical Case
    Annals of Oncology 9: 95-100. 1998. © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Clinical case Management of an isolated thymic mass after primary therapy for lymphoma S. Anchisi, R. Abele, M. Guetty-Alberto & P. Alberto Division of Oncology, Department of Medicine, University Hospital, Geneva, Switzerland Key words: CT scan, galliumscintigraphy, Hodgkin's disease, lymphoma, residual mass, thymus hyperplasia Introduction pose tissue constituting less than 40% of the total mass. The patient is still in CR 51 months after the end of The appearance of an anterior mediastinal mass during treatment. the follow-up of patients successfully treated for lym- phoma is worrisome, and may suggest treatment failure. Case 2 However, benign 'rebound' thymic hyperplasia (TH), a well documented phenomenon in children [1-3] and in A 26-year-old woman presented with a stage IVB young adults treated for malignant testicular teratoma nodular sclerosing HD, with liver and spleen infiltration [4], is an important differential diagnosis even in the and a bulky mediastinum. adult population [5]. Magnetic resonance imaging (MRI) disclosed a dif- fuse infiltration of the thoracic and lumbar vertebral bodies. The result of a bone-marrow biopsy was normal. Case reports Five courses of VEMP chemotherapy (vincristine, eto- poside, mitoxantrone, prednisone) produced a partial Between July 1990 and December 1994, we observed response greater than 75%. The treatment was intensi- two cases of TH among 58 adults treated consecutively fied with a BEAM chemotherapy (carmustine, etoposide, at our institution. Thirty of the 58 had de novo Hodgkin's cytosine arabinoside, melphalan), followed by an autol- disease (HD) and 28 had aggressive non-Hodgkin's ogous bone marrow transplant (BMT).
    [Show full text]
  • Neuroendocrinology 165P PC125 EFFECT of CALCITONIN GENE
    Poster Communication - Neuroendocrinology 165P PC125 PC127 EFFECT OF CALCITONIN GENE-RELATED PEPTIDE ON Effects of the potent hop-derived phytoestrogen, GnRH mRNA EXPRESSION IN THE GT1-7 CELL 8-prenylnaringenin, on the reproductive neuroendocrine axis 1 1 1 2 1 J. Kinsey-Jones ,X.Li ,J.Bowe ,S.Brain and K. O’Byrne J. Bowe1,J.Kinsey-Jones1,X.Li1,S.Brain2 and K. O’Byrne1 1Division of Reproductive Health, Endocrinology and Development, 1Division of Reproductive Health, Endocrinology and Development, Kings College London, London, UK and 2Centre for Cardiovascular King’s College London, London, UK and 2Centre for Cardiovascular Biology, Kings College London, London, UK Biology, King’s College London, London, UK Calcitonin gene-related peptide (CGRP) has recently been The phytoestrogen, 8-prenylnaringenin (8-PN), is the most potent shown to induce a profound suppression of the hypothala- phytoestrogen discovered to date. Derived from hops, it is pres- mic gonadotrophin-releasing hormone (GnRH) pulse gen- ent in dietary supplements currently marketed for natural breast erator, resulting in an inhibition of pulsatile luteinising hor- enhancement, though little is known about efficacy rates or other mone (LH) secretion in the rat (Li et al., 2004). The aims of effects (Coldham & Sauer, 2001). 8-PN is also of potential inter- the present study were, (i) to determine the presence of the est in the treatment of menopausal symptoms and diseases involv- CGRP receptor subunits, receptor activity modifying protein- ing angiogenesis. It is known that various phytoestrogens pro- 1(RAMP-1) and calcitonin receptor like receptor (CL), both duce inhibitory effects on gonadotrophin secretion in both of which are required for functional activity, in the GT1-7 humans and animals (McGarvey et al, 2001).
    [Show full text]
  • Injection Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION ---------------------DOSAGE FORMS AND STRENGTHS---------------------- These highlights do not include all the information needed to use MIACALCIN injection safely and effectively. See full prescribing Injection: 200 International Units per mL sterile solution in 2 mL multi- information for MIACALCIN injection. dose vials (3) MIACALCIN® (calcitonin-salmon) injection, synthetic, for subcutaneous ----------------------------CONTRAINDICATIONS------------------------------ or intramuscular use Hypersensitivity to calcitonin-salmon or any of the excipients (4) Initial U.S. Approval: 1975 -----------------------WARNINGS AND PRECAUTIONS------------------------ -------------------------------RECENT MAJOR CHANGES----------------------- Serious hypersensitivity reactions, including reports of fatal anaphylaxis Indications and Usage (1.4) 03/2014 have been reported. Consider skin testing prior to treatment in patients with Warnings and Precautions (5.3) 03/2014 suspected hypersensitivity to calcitonin-salmon (5.1) ----------------------------INDICATIONS AND USAGE--------------------------- Hypocalcemia has been reported. Ensure adequate intake of calcium and vitamin D (5.2) Miacalcin synthetic injection is a calcitonin, indicated for the following Malignancy: A meta-analysis of 21 clinical trials suggests an increased risk conditions: of overall malignancies in calcitonin-salmon-treated patients (5.3, 6.1) Treatment of symptomatic Paget’s disease of bone when alternative Circulating antibodies to calcitonin-salmon
    [Show full text]
  • (Calcitonin-Salmon) Nasal Spray, for Intranasal Use Vitamin D (5.2) Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------- WARNINGS AND PRECAUTIONS ----------------------­ These highlights do not include all the information needed to use • Serious hypersensitivity reactions including anaphylactic shock have been MIACALCIN nasal spray safely and effectively. See full prescribing reported. Consider skin testing prior to treatment in patients with information for MIACALCIN nasal spray. suspected hypersensitivity to calcitonin-salmon (5.1) • Hypocalcemia has been reported. Ensure adequate intake of calcium and MIACALCIN® (calcitonin-salmon) nasal spray, for intranasal use vitamin D (5.2) Initial U.S. Approval: 1975 • Nasal adverse reactions, including severe ulceration can occur. Periodic nasal examinations are recommended (5.3) • Malignancy: A meta-analysis of 21 clinical trials suggests an increased ------------------------------ INDICATIONS AND USAGE --------------------------- risk of overall malignancies in calcitonin-salmon-treated patients (5.4, Miacalcin nasal spray is a calcitonin, indicated for the treatment of 6.1) postmenopausal osteoporosis in women greater than 5 years postmenopause • Circulating antibodies to calcitonin-salmon may develop, and may cause when alternative treatments are not suitable. Fracture reduction efficacy has not loss of response to treatment (5.5) been demonstrated (1.1) ------------------------------- ADVERSE REACTIONS -------------------------------­ Limitations of Use: Most common adverse reactions (3% or greater) are rhinitis, epistaxis and other • Due to the possible association between malignancy and calcitonin­ nasal symptoms, back pain, arthralgia, and headache (6) salmon use, the need for continued therapy should be re-evaluated on a periodic basis (1.2, 5.4) To report SUSPECTED ADVERSE REACTIONS, contact Mylan • Miacalcin nasal spray has not been shown to increase bone mineral Pharmaceuticals Inc. at 1-877-446-3679 (1-877-4-INFO-RX) or FDA at 1­ density in early postmenopausal women (1.2) 800-FDA-1088 or www.fda.gov/medwatch.
    [Show full text]
  • Preventing Thymus Involution in K5.Cyclin D1 Transgenic Mice Sustains the Naïve T Cell Compartment with Age
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE Michelle L. Bolner Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cell Biology Commons, Immunology and Infectious Disease Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Bolner, Michelle L., "PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 636. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/636 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE BY Michelle Lynn Bolner, Ph.D. Candidate APPROVED: _____________________________________ Ellen R. Richie, Ph.D., Supervisory Professor _____________________________________ Shawn B. Bratton, Ph.D. _____________________________________ David G. Johnson, Ph.D.
    [Show full text]
  • Rebound Thymic Hyperplasia After Chemotherapy in Children
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE + MODEL provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2016) xx,1e7 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com ORIGINAL ARTICLE Rebound Thymic Hyperplasia after Chemotherapy in Children with Lymphoma Chih-Ho Chen a, Chih-Chen Hsiao a, Yu-Chieh Chen a, Sheung-Fat Ko b, Shu-Hua Huang c, Shun-Chen Huang d, Kai-Sheng Hsieh a, Jiunn-Ming Sheen a,* a Department of Pediatrics, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan b Department of Radiology, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan c Department of Nuclear Medicine, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan d Department of Pathology, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan Received Sep 24, 2015; received in revised form Nov 30, 2015; accepted Feb 5, 2016 Available online --- Key Words Background: Development of mediastinal masses after completion of chemotherapy in pediat- lymphoma; ric patients with malignant lymphoma is worrisome and challenging to clinicians. prognosis; Methods: We performed a retrospective review of 67 patients with lymphoma treated at our rebound thymic hospital from January 1, 2001 to June 1, 2013. Patients who received at least two chest hyperplasia; computed tomography (CT) examinations after complete remission (CR) was achieved were recurrence further analyzed. Gallium-67 scans and positron emission tomography (PET) were recorded and compared between these patients.
    [Show full text]
  • Transition from Biological to Chemical Assay for Quality Assurance of Medicinal Substances (Apis) and Formulated Preparations
    WHO/BS/07.2070 ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva - 8 to 12 October 2007 Discussion paper: Transition from biological to chemical assay for quality assurance of medicinal substances (APIs) and formulated preparations A Bristow National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK ML Rabouhans, J Joung, DJ Wood World Health Organization, Geneva, Switzerland © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected] ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Normative Values of Thymus in Healthy Children; Stiffness by Shear Wave Elastography
    Diagn Interv Radiol 2020; 26:147–152 PEDIATRIC RADIOLOGY © Turkish Society of Radiology 2020 ORIGINAL ARTICLE Normative values of thymus in healthy children; stiffness by shear wave elastography Zuhal Bayramoğlu PURPOSE Mehmet Öztürk Thymus grows after birth, reaches maximal size after the first few years and involutes by puber- Emine Çalışkan ty. Because of the postnatal developmental and involutional duration, we aimed to investigate normal stiffness values of mediastinal thymus by shear wave elastography (SWE) in different age Hakan Ayyıldız groups of children and discuss imaging findings of thymus. İbrahim Adaletli METHODS We prospectively examined 146 children (90 girls, 56 boys) who underwent a thyroid or neck ultrasound examination. All subjects underwent ultrasound and SWE evaluation of mediastinal thymus by parasternal and suprasternal approach. We grouped the subjects based on age as 0 to 2 months, >2 to 6 months, >6 months to 2 years, >2 to 5 years, >5 to 8 years, and greater than 8 years old. We investigated differences of mean shear wave elasticity (kPa) and shear wave veloc- ity (m/s) values among age groups and the association of SWE values with age, body mass index (BMI), height, and weight of the patients. RESULTS Median and range of age, height, weight, and BMI were 24 months (2–84 months), 85 cm (55– 120 cm), 12 kg (4.55–22 kg), 15.37 kg/m2 (13.92–17.51 kg/m2), 11 cc (2.64–23.15 cc), respectively. Mean shear wave elasticity of thymus of all participants was 6.76±1.04 kPa. Differences of mean elasticity values among the age and gender groups were not statistically significant.
    [Show full text]
  • The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
    biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons.
    [Show full text]
  • Somatostatin Acts Via a Pertussis Toxin-Sensitive Mechanism on Calcitonin Secretion in C-Cells
    Henry Ford Hospital Medical Journal Volume 40 Number 3 Article 35 9-1992 Somatostatin Acts Via a Pertussis Toxin-Sensitive Mechanism on Calcitonin Secretion in C-Cells Angela Zink Hans Scherubl Friedhelm Raue Reinhard Ziegler Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Zink, Angela; Scherubl, Hans; Raue, Friedhelm; and Ziegler, Reinhard (1992) "Somatostatin Acts Via a Pertussis Toxin-Sensitive Mechanism on Calcitonin Secretion in C-Cells," Henry Ford Hospital Medical Journal : Vol. 40 : No. 3 , 289-292. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol40/iss3/35 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Somatostatin Acts Via a Pertussis Toxin-Sensitive Mechanism on Calcitonin Secretion in C-Cells Angela Zink,* Hans Scherubl,^ Friedhelm Raue,* and Reinhard Ziegler' The effect ofthe somatostatin analog octreotide on cAMP-mediated calcitonin (CT) secretion and cAMP accumulation in C-cells was investigated. Glucagon stimulated cAMP accumulation and CT secretion with a maximal eff'ecl at a concentration oflQ-^M. The cAMP antagonist RpcAMPs blocked the glucagon-induced CT secretion down to control levels. Therefore, no other second messengers seem to he involved in glucagon-stimulated CT secretion. Octreotide in increasing doses (70'' to 10'^ M) inhibited cAMP accumulation and CT secretion with a maximal effect at a concentration of 10'^ (40% and 29% of control values, respectively).
    [Show full text]