Are the Pacific and Indo–Atlantic Hotspots Fixed?

Total Page:16

File Type:pdf, Size:1020Kb

Are the Pacific and Indo–Atlantic Hotspots Fixed? ELSEVIER Earth and Planetary Science Letters 170 (1999) 105±117 www.elsevier.com/locate/epsl Are the Paci®c and Indo±Atlantic hotspots ®xed? Testing the plate circuit through Antarctica Vic DiVenere a,c,Ł,DennisV.Kentb,c a Department of Earth and Environmental Science, C.W. Post Campus, Long Island University, Brookville, NY 11548, USA b Department of Geological Sciences, Rutgers University, Piscataway, NY 08854-8066, USA c Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA Received 10 December 1998; revised version received 14 April 1999; accepted 16 April 1999 Abstract It is often assumed that hotspots are ®xed relative to one another and thus constitute a global reference frame for measuring absolute plate motions and true polar wander. But it has long been known that the best documented hotspot track, the Hawaiian±Emperor chain, is inconsistent with the internally coherent tracks left by the Indo±Atlantic hotspots. This inconsistency is due either to unquanti®ed motions within the plate circuit linking the Paci®c with other plates, for example, between East and West Antarctica, or relative motion between the Hawaiian±Emperor and Indo±Atlantic hotspots. Analysis of recent paleomagnetic results from Marie Byrd Land in West Antarctica con®rms that there has been post-100 Ma motion between West Antarctica (Marie Byrd Land) and East Antarctica. However, incorporation of this motion into the plate circuit does not account for the Cenozoic hotspot discrepancy. Comparison of an updated inventory of Paci®c and non-Paci®c paleomagnetic data does not show a signi®cant systematic discrepancy, which, along with other observations, indicates that missing plate boundaries and other errors in the plate circuit play a relatively small role in the hotspot inconsistency. We conclude that most of the apparent motion between the Hawaiian±Emperor and Indo±Atlantic hotspots is real. The best-estimate average drift rate between these sets of hotspots is approximately 25 mm=yr since 65 Ma, ignoring errors in the plate circuit and a small contribution from Cenozoic motions between East and West Antarctica. 1999 Elsevier Science B.V. All rights reserved. Keywords: hot spots; plate tectonics; paleomagnetism; Hawaii; Antarctica 1. Introduction plumes are ®xed relative to one another and there- fore constitute a ®xed mantle reference frame. From During the 1960s and 1970s it became evident this ®xed reference frame the `absolute' motions of that the active ends of many volcanic island and lithospheric plates might be measured (e.g. [5,6]). seamount chains in the Paci®c and elsewhere lie However, tests of hotspot ®xity have shown a sig- above deep-seated sources of hot rising mantle mate- ni®cant discrepancy between the Hawaiian±Emperor rial [1,2]. Morgan [3,4] boldly proposed that mantle and Indo±Atlantic hotspots (e.g. [7,8]), although the discrepancy has often been ascribed to unquanti®ed Ł Corresponding author. Tel.: C1-516-299-2034; Fax: C1-516- plate motions especially within the Antarctic plate 299-3945; E-mail: [email protected] [9] or perhaps Paci®c plate [10]. In this paper we 0012-821X/99/$ ± see front matter 1999 Elsevier Science B.V. All rights reserved. PII: S0012-821X(99)00096-5 106 V. DiVenere, D.V. Kent / Earth and Planetary Science Letters 170 (1999) 105±117 examine the relative ®xity of Indo±Atlantic versus of the hotspot beneath Kilauea, to about 43 Ma at Paci®c hotspots by testing the global plate circuit the bend between the Hawaiian and Emperor chains, through Antarctica. to about 81 Ma at the Detroit Plateau [14] in the north Paci®c near the Aleutian Trench (Fig. 1). This classic, well-de®ned hotspot track is the best choice 2. Testing hotspot ®xity for comparing Paci®c hotspots with Indo±Atlantic hotspots. Testing the ®xity of hotspots requires that the mo- Studies comparing Indo±Atlantic hotspot tracks tion of the hotspots relative to their overlying plates with the Hawaiian±Emperor hotspot track on the and the relative motions of the plates be known. Paci®c plate have found signi®cant discrepancies Hotspot to plate relative motions are determined between the predicted vs. actual hotspot track [7±10] by mapping the age progression of volcanic chains. (Fig. 1). The discrepancy is particularly large prior Plate to plate relative motions are determined from to the 43 Ma bend in the Hawaiian±Emperor chain, the rate and direction of sea¯oor spreading on inter- for example the offset between the predicted and vening midocean ridges as determined from marine actual position of the hotspot around 65 m.y. ago is magnetic anomalies and fracture zone trends. 14.5ë or about 1600 km. This discrepancy may be Under the assumption that all hotspots are ®xed in explained by either unquanti®ed plate motion within the mantle with respect to one another, the motion of the plate circuit linking the north Paci®c to the Indian a plate over a given hotspot can be considered the ab- and Atlantic oceans (e.g. [10]) or it may indeed be solute motion of the plate. If the motion of a second caused by relative motion between the Indo±Atlantic plate relative to the ®rst is known, then the absolute and Paci®c hotspots. motion of the second plate may be simply calculated as the sum of the motion of the ®rst plate relative to the hotspots plus the motion of the second plate 3. Possible sources for apparent inter-hotspot relative to the ®rst. Conversely, if the hotspots are motion ®xed, one should be able to predict prior positions of any current hotspot with respect to the second Assuming hotspots are ®xed, there are a number plate. Comparison of predicted positions versus ac- of possible sources of error within the plate circuit tual mapped hotspot tracks should indicate whether linking the northern Paci®c plate (containing the the hotspots have moved relative to one another. Hawaiian±Emperor hotspot track) with the Atlantic Studies of hotspots in the Atlantic and Indian and Indian Ocean plates (with their hotspot tracks) oceans have found no signi®cant motion (less than 5 that could account for the discrepancy in compar- mm per year) between these plumes [11,12]. Thus, isons of the Hawaiian±Emperor hotspot track with hotspots responsible for such widely distributed fea- the Indo±Atlantic hotspot framework. Two general tures as the New England Seamounts in the north At- categories are errors in sea¯oor spreading models lantic, Tristan da Cunha, Walvis Ridge, and the Rio and undocumented plate boundaries or intraplate de- Grande Rise in the south Atlantic, ReÂunion Island formation. and the Mascarene Plateau, Ninety East Ridge, the Chagos±Laccadive Ridge, and the Kerguelen Plateau 3.1. Sea¯oor spreading parameters in the Indian Ocean, may constitute a coherent Indo± Atlantic hotspot reference frame, at least within the Sea¯oor spreading models linking the African and error bounds. Indian plates to Antarctica and the Antarctic plate to The Hawaiian±Emperor chain of islands and the Paci®c are constrained by magnetic anomalies seamounts on the Paci®c plate is an important record and fracture zone trends. Molnar and Stock [7] and of hotspot±plate relative motion. It is quite long Acton and Gordon [10] estimated errors associated (over 5000 km), therefore yielding good spatial res- with the sea¯oor spreading data and concluded that olution, and it is documented with many dates along they were not suf®cient to account for the hotspot track [13] extending from the present-day position discrepancy. The north±south component of the es- V. DiVenere, D.V. Kent / Earth and Planetary Science Letters 170 (1999) 105±117 107 Fig. 1. A view of the Paci®c, showing the Hawaiian±Emperor chain and predicted positions of the Hawaiian±Emperor hotspot track assuming that this hotspot has been ®xed with respect to the Indo±Atlantic hotspots. timated error is approximately 2ë to 2.5ë, at least a from North America, Africa, India, and Australia factor of 5 less than the pre-bend (e.g. ca. 65 Ma) were evenly distributed forming a generally smooth discrepancy in the predicted hotspot positions. Di- synthetic apparent polar wander (APW) path. Cande Venere et al. [15] also argued against large errors et al. [8] presented newly acquired sea¯oor spreading in published Cretaceous sea¯oor spreading data be- data linking Antarctica with the Paci®c plate. These cause paleomagnetic poles transferred to Antarctica new data did not remove the hotspot discrepancy. 108 V. DiVenere, D.V. Kent / Earth and Planetary Science Letters 170 (1999) 105±117 Using their reconstruction parameters for the south- and seamount-based (Pac 76s) poles and is therefore west Paci®c there is a 14.5ë discrepancy between not statistically distinct from these. the predicted and actual hotspot position at 64.7 Ma The general agreement between the north Paci®c, (Suiko Seamount, Fig. 1). New Zealand (south Paci®c) and non-Paci®c pale- omagnetic poles suggests that the Late Cretaceous 3.2. Coherence of the Paci®c plate plate circuit is reasonably well known and contains no signi®cant systematic bias. Another proposal to account for the apparent in- There is some disagreement between younger Pa- ter-hotspot discrepancy is an undocumented Ceno- ci®c and non-Paci®c results. The 65 Ma and 57 zoic plate boundary between the north and south Ma Paci®c poles are far-sided by statistically sig- Paci®c. Gordon and Cox [16] and Acton and Gor- ni®cant 6ë to 10ë with respect to the non-Paci®c don [10] proposed a possible plate boundary some- APW path. This might suggest post 57 Ma `exten- where to the north of the Eltanin Fracture Zone sion' between the Paci®c and Indo±Atlantic.
Recommended publications
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Predicted Path for Hotspot Tracks Off South America Since Paleocene Times: Tectonic Implications of Ridge-Trench Collision Along the Andean Margin
    Gondwana Research 64 (2018) 216–234 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andean margin Juan Pablo Bello-González a,⁎, Eduardo Contreras-Reyes b,CésarArriagadaa a Laboratorio de Paleomagnetismo, Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile b Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile article info abstract Article history: Hotspots are generated by partial melting due to hot plumes rising within the Earth's mantle, and when tectonic Received 12 January 2018 plates move relative to the plume source, hotspot tracks form. Off South America, the oceanic Nazca Plate hosts a Received in revised form 20 July 2018 large population of hotspot tracks. Examples include seamounts formed far from the Pacific-Nazca spreading cen- Accepted 23 July 2018 ter (“off-ridge” seamounts), such as the Juan Fernández Ridge (Juan Fernández hotspot), the Taltal Ridge (San Available online 20 September 2018 Félix hotspot), and the Copiapó Ridge (Caldera hotspot). These hotspot tracks are characterized by a rough and fi “ Handling Editor: T. Gerya discontinuous topography. Other examples include seamounts formed near the East Paci c Rise (EPR) ( on- ridge” seamounts), such as the Nazca Ridge (Salas y Gómez hotspot) and Easter Seamount Chain (Easter hotspot), Keywords: and the Iquique Ridge (Foundation hotspot). These oceanic ridges developed a relatively smooth and broad mor- Hotspot phology. Here, we present a plate reconstruction of these six oceanic hotspot tracks since the Paleocene, provid- Volcanism ing a kinematic model of ridge-continental margin collision.
    [Show full text]
  • Chemical Systematics of an Intermediate Spreading Ridge: the Pacific-Antarctic Ridge Between 56°S and 66°S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B2, PAGES 2915-2936, FEBRUARY 10, 2000 Chemical systematics of an intermediate spreading ridge: The Pacific-Antarctic Ridge between 56°S and 66°S Ivan Vlastélic,I,2 Laure DOSSO,I Henri Bougault/ Daniel Aslanian,3 Louis Géli,3 Joël Etoubleau,3 Marcel Bohn,1 Jean-Louis Joron,4 and Claire Bollinger l Abstract. Axial bathymetry, major/trace elements, and isotopes suggest that the Pacific-Antarctic Ridge (PAR) between 56°S and 66°S is devoid of any hotspot influence. PAR (56-66°S) samples 144 have in average lower 87Sr/86Sr and 143 Nd/ Nd and higher 206 PbP04 Pb than northern Pacific l11id­ ocean ridge basalts (MORB), and also than MORB From the other oceans. The high variability of pb isotopic ratios (compared to Sr and Nd) can be due to either a general high ~l (I-IIMU) (high U/Pb) affïnity of the southern Pacific upper mantle or to a mantle event first recorded in time by Pb isotopes. Compiling the results ofthis study with those From the PAR between 53°S and 57°S gives a continuous vie~ of mantle characteristics fr~m sOl~th ,Pitman. Fracture Z?ne (FZ) to . Vacquier FZ, representll1g about 3000 km of spreadll1g aXIs. [he latitude ofUdmtsev FZ (56°S) IS a limit between, to the narth, a domain with large geochemical variations and, to the south, one with small variations. The spreading rate has intermediate values (54 mm/yr at 66°S to 74 mm/yr at 56°S) which increase along the PAR, while the axial morphology changes from valley to dome.
    [Show full text]
  • Deep-Sea Drilling in the Northern Indian Ocean: India's Science Plans
    DDEEEEPP‐‐SSEEAA DDRRIILLLLIINNGG IINN TTHHEE NNOORRTTHHEERRNN IINNDDIIAANN OOCCEEAANN:: IINNDDIIAA’’SS SSCCIIEENNCCEE PPLLAANNSS National Centre for Antarctic and Ocean Research (Ministry of Earth Sciences) Headland Sada, Vasco da Gama, Goa 403804 2 © NATIONAL CENTRE FOR ANTARCTIC AND OCEAN RESEARCH, 2010 IODP Science Plan Draft Version 1/Jan.2010 3 PREFACE Secretary MoES Message Director, NCAOR Message IODP Science Plan 4 OUTLINED Left intentionally blank IODP Science Plan Draft Version 1/Jan.2010 5 CHAPTER 1: AN OVERVIEW Earth’s evolutionary history through the geologic time has been distinctly recorded in the rocks on its surface as well as at depths. The seafloor sediments and extrusive volcanic rocks represent the most recent snapshot of geological events. Beneath this cover, buried in sedimentary sections and the underlying crust, is a rich history of the waxing and waning of glaciers, the creation and aging of oceanic lithosphere, the evolution and extinction of microorganisms and the building and erosion of continents. The scientific ocean drilling has explored this history in increasing detail for several decades. As a consequence, we have learnt about the complexity of the processes that control crustal formation, earthquake generation, ocean circulation and chemistry, and global climate change. The Ocean Drilling has also elucidated on the deep marine sediments, mid-ocean ridges, hydrothermal circulations and many more significant regimes where microbes thrive and natural resources accumulate. The Integrated Ocean Drilling Program (IODP) began in 2003, envisaged as an ambitious expansion of exploration beneath the oceans. The IODP is an international marine research endeavor that explores Earth's structure and history recorded in oceanic sediments and rocks and monitors sub-sea floor environments.
    [Show full text]
  • Analysis of Satellite Gravity and Bathymetry Data Over Ninety-East Ridge: Variation in the Compensation Mechanism and Implication for Emplacement Process V.M
    Analysis of satellite gravity and bathymetry data over Ninety-East Ridge: Variation in the compensation mechanism and implication for emplacement process V.M. Tiwari, M Diament, S. C. Singh To cite this version: V.M. Tiwari, M Diament, S. C. Singh. Analysis of satellite gravity and bathymetry data over Ninety-East Ridge: Variation in the compensation mechanism and implication for emplacement process. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2003, 108 (B2), <10.1029/2000JB000047>. <insu-01356385> HAL Id: insu-01356385 https://hal-insu.archives-ouvertes.fr/insu-01356385 Submitted on 25 Aug 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B2, 2109, doi:10.1029/2000JB000047, 2003 Analysis of satellite gravity and bathymetry data over Ninety-East Ridge: Variation in the compensation mechanism and implication for emplacement process V. M. Tiwari National Geophysical Research Institute, Hyderabad, India M. Diament and S. C. Singh Institut de Physique du Globe de Paris, Paris, France Received 7 November 2000; revised 14 June 2002; accepted 3 July 2002; published 20 February 2003. [1] We investigate the mode of compensation, emplacement history and deep density structure of the Ninety-East Ridge (Indian Ocean) using spectral analyses and forward modeling of satellite gravity and bathymetry data.
    [Show full text]
  • Geochemical Evidence in the Northeast Lau Basin for Subduction
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Geochemical evidence in the northeast Lau Basin for 10.1002/2015GC006237 subduction of the Cook-Austral volcanic chain in the Key Points: Tonga Trench Portions of the Rurutu and Rarotonga hotspots likely subducted into the Allison A. Price1, Matthew G. Jackson1, Janne Blichert-Toft2, Jerzy Blusztajn3, Tonga Trench Christopher S. Conatser4, Jasper G. Konter5, Anthony A.P. Koppers4, and Mark D. Kurz6 Geochemical signatures in northeast Lau Basin lavas require EM1 and HIMU components 1Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California, USA, 2Laboratoire de 3 4 New high He/ He lavas are found Geologie de Lyon, CNRS UMR 5276, Ecole Normale Superiere de Lyon and Universite Claude Bernard Lyon 1, Lyon, further to the west in the Lau Basin France, 3Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, 4College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, 5Department of Supporting Information: Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, Supporting Information S1 USA, 6Department of Marine Chemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Supporting Information S2 Data Set S1 Data Set S2 Data Set S3 Abstract Lau Basin basalts host an array of geochemical signatures that suggest incorporation of Data Set S4 Data Set S5 enriched mantle source material often associated with intraplate hotspots, but the origin of these signatures Data Set S6 remain uncertain. Geochemical signatures associated with mantle material entrained from the nearby Data Set S7 Samoan hotspot are present in northwest Lau Basin lavas, and subducted seamounts from the Louisville hotspot track may contribute geochemical signatures to the Tonga Arc.
    [Show full text]
  • Non-Hawaiian Lithostratigraphy of Louisville Seamounts and the Formation of High-Latitude Oceanic Islands and Guyots
    Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots David M. Buchsa,⁎, Rebecca Williamsb, Shin-ichi Sanoc, V. Paul Wrightd a Cardiff University, UK b University of Hull, UK c Fukui Prefectural Dinosaur Museum, Japan d National Museum of Wales, UK This is an author accepted manuscript for an article published in Journal of Volcanology and Geothermal Research, doi: 10.1016/j.jvolgeores.2017.12.019. ABSTRACT Guyots are large seamounts with a flat summit that is generally believed to form due to constructional biogenic and/or erosional processes during the formation of volcanic islands. However, despite their large abundance in the oceans, there are still very few direct constraints on the nature and formation of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies of sedimentary and volcanic deposits are described, which include facies not previously recognized on the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast- moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments.
    [Show full text]
  • Vicente De Gouveia Et Al 2018.Pdf
    Earth and Planetary Science Letters 487 (2018) 210–220 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening ∗ S. Vicente de Gouveia a, , J. Besse a, D. Frizon de Lamotte b, M. Greff-Lefftz a, M. Lescanne c, F. Gueydan d, F. Leparmentier e a Institut de Physique du Globe de Paris - Sorbonne Paris Cité, Université Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75252 Paris 05, France b Département Géosciences et Environnement, Université de Cergy-Pontoise, Cergy-Pontoise, France c Total EP, Pau, France d Géosciences Montpellier, Université de Montpellier, CNRS UMR 5243, Montpellier, France e Total EP, Paris La Défense, France a r t i c l e i n f o a b s t r a c t Article history: Rifts are often associated with ancient traces of hotspots, which are supposed to participate to the Received 11 December 2017 weakening of the lithosphere. We investigated the expected past trajectories followed by three hotspots Received in revised form 25 January 2018 (Afar, East-Africa and Lake-Victoria) located around the Red Sea. We used a hotspot reference frame Accepted 29 January 2018 to compute their location with respect to time, which is then compared to mantle tomography Available online xxxx interpretations and geological features. Their tracks are frequently situated under continental crust, which Editor: R. Bendick is known to strongly filter plume activity. We looked for surface markers of their putative ancient Keywords: existence, such as volcanism typology, doming, and heat-flow data from petroleum wells.
    [Show full text]
  • 38. Tectonic Constraints on the Hot-Spot Formation of Ninetyeast Ridge1
    Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 121 38. TECTONIC CONSTRAINTS ON THE HOT-SPOT FORMATION OF NINETYEAST RIDGE1 Jean-Yves Royer,2 John W. Peirce,3 and Jeffrey K. Weissel4 ABSTRACT This paper examines the constraints on the tectonic setting of Ninetyeast Ridge, based on a compilation of bathymetric and magnetic data from the basins surrounding Ninetyeast Ridge in the Indian Ocean that includes the magnetic profiles collected under way during ODP Leg 121. Magnetic data in the Central Indian Basin demonstrate that the spreading center immediately west of Ninetyeast Ridge jumped to the south by a total amount of 11° between 68 and 46 Ma, implying that parts of the mirror image of Ninetyeast Ridge on the Antarctic plate were transferred onto the Indian plate. The obliquity of Ninetyeast Ridge relative to the fracture zone pattern and the occurrence of an Eocene extinct spreading axis in the Wharton Basin suggest that the northern part of Ninetyeast Ridge was emplaced by intraplate volcanism on the Indian plate, whereas the middle and southern parts of the ridge were emplaced along transform plate boundaries. The northward drift of the Indian plate over a single hot spot is the most plausible origin for Ninetyeast Ridge. Based on a recent kinematic model for the relative motions of the Indian, Antarctic, and Australian plates, we present a simple model that reconciles most of the available observations for Ninetyeast Ridge: Paleomagnetism, distribution of basement ages, geochemistry, and geometry. In addition, the model predicts a slow westward migration of the Kerguelen/Ninetyeast hot spot with respect to the Antarctic and Australian plates between the Late Cretaceous and early Oligocene (84 to 36 Ma).
    [Show full text]
  • Analysis of Intraplate Earthquakes and Deformation in the Indo-Australian Plate: Moment Tensor and Focal Depth Modeling
    Analysis of Intraplate Earthquakes and Deformation in the Indo-Australian Plate: Moment Tensor and Focal Depth Modeling Honor’s Thesis by Wardah Mohammad Fadil Department of Earth and Environmental Sciences University of Michigan Abstract The April 2012 sequence of MW > 8.0 strike-slip earthquakes off the northern coast of Sumatra ​ ​ and the May 2014 ~50 km deep earthquake in the Bay of Bengal are rare intraplate earthquakes that have sparked numerous studies on internal deformation of the Indo-Australian Plate. In this thesis, we conducted moment tensor analysis and observed the NW/SE pattern of compression in the southern Indian Ocean, perpendicular to the compression directions at the Sunda Trench. We estimated principal stress directions for a cluster of 55 intraplate earthquakes in the southern Indian Ocean, demonstrating that they are consistent with the general stress directions in the region. Analysis of depth phase arrival times and surface wave dispersion for the May 21 2014 Bay of Bengal earthquake at the BJT and PALK seismic stations confirmed the 40-60 km focal depth of the earthquake. The occurrence of intraplate earthquakes and orientation of stress within the Indo-Australian Plate indicate the complex and dynamic plate boundary forces and the formation of a diffuse deformation zone. However, the causes of deep focal depths of intraplate earthquakes are still ambiguous. 1. Introduction The Indo-Australian Plate is a unique tectonic plate. It includes the continents of India and Australia and the surrounding oceanic lithosphere. The plate formed approximately 42 million years ago when the Indian and Australian plates fused together [Royer et al, 1991; Cande and Kent, 1995; Krishna et al, 1995].
    [Show full text]
  • Young Tracks of Hotspots and Current Plate Velocities
    Geophys. J. Int. (2002) 150, 321–361 Young tracks of hotspots and current plate velocities Alice E. Gripp1,∗ and Richard G. Gordon2 1Department of Geological Sciences, University of Oregon, Eugene, OR 97401, USA 2Department of Earth Science MS-126, Rice University, Houston, TX 77005, USA. E-mail: [email protected] Accepted 2001 October 5. Received 2001 October 5; in original form 2000 December 20 SUMMARY Plate motions relative to the hotspots over the past 4 to 7 Myr are investigated with a goal of determining the shortest time interval over which reliable volcanic propagation rates and segment trends can be estimated. The rate and trend uncertainties are objectively determined from the dispersion of volcano age and of volcano location and are used to test the mutual consistency of the trends and rates. Ten hotspot data sets are constructed from overlapping time intervals with various durations and starting times. Our preferred hotspot data set, HS3, consists of two volcanic propagation rates and eleven segment trends from four plates. It averages plate motion over the past ≈5.8 Myr, which is almost twice the length of time (3.2 Myr) over which the NUVEL-1A global set of relative plate angular velocities is estimated. HS3-NUVEL1A, our preferred set of angular velocities of 15 plates relative to the hotspots, was constructed from the HS3 data set while constraining the relative plate angular velocities to consistency with NUVEL-1A. No hotspots are in significant relative motion, but the 95 per cent confidence limit on motion is typically ±20 to ±40 km Myr−1 and ranges up to ±145 km Myr−1.
    [Show full text]
  • Sleep, N.H., Hotspots and Mantle Plumes: Some Phenomenology, J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. B5, PAGES 6715-6736, MAY 10, 1990 Hotspotsand Mantle Plumes'Some Phenomenology NORMAN H. SLEEP Departmentsof Geologyand Geophysics,Stanford University, Stanford, California The availabledata, mainly topography, geoid, and heat flow, describinghotspots worldwide are examined to constrainthe mechanismsfor swelluplift and to obtainfluxes and excess temperatures of mantleplumes. Swelluplift is causedmainly by excesstemperatures that move with the lithosphereplate and to a lesser extenthot asthenospherenear the hotspot.The volume,heat, and buoyancy fluxes of hotspotsare computed fromthe cross-sectionalareas of swells,the shapes of nosesof swells,and, for on ridgehotspots, the amount of ascendingmaterial needed to supplythe lengthof ridgeaxis whichhas abnormallyhigh elevationand thickcrust. The buoyancy fluxes range over a factorof 20 withHawaii, 8.7 Mg s -1, thelargest. The buoy- ancyflux for Iceland is 1.4Mg s -1 whichis similarto theflux of CapeVerde. The excess temperature of both on-ridgeand off-ridgehotspots is aroundthe 200øCvalue inferred from petrologybut is not tightly constrainedby geophysicalconsiderations. This observation,the similarityof the fluxesof on-ridgeand off- ridgeplumes, and the tendency for hotspotsto crossthe ridge indicate that similar plumes are likely to cause both typesof hotspots.The buoyancyfluxes of 37 hotspotsare estimated;the globalbuoyancy flux is 50 Mgs -1, whichis equivalentto a globallyaveraged surface heat flow of 4 mWm-2 fromcore sources and wouldcool the core at a rateof 50ø C b.y. -1. Basedon a thermalmodel and the assumption that the likeli- hoodof subductionis independentof age,most of the heatfrom hotspotsis implacedin the lower litho- sphereand later subducted. I.NTRODUCWION ridge plumesusing Iceland as an example. The geometryof flow implied by the assumed existence of a low viscosity Linearseamount chains, such as the Hawaiian Islands, are asthenosphericchannelis illustrated bythis exercise.
    [Show full text]