From Multi-Omics to Single Function in Hyperthermophilic Archaeon Sulfolobus Solfataricus

Total Page:16

File Type:pdf, Size:1020Kb

From Multi-Omics to Single Function in Hyperthermophilic Archaeon Sulfolobus Solfataricus Zooming in: from multi-omics to single function in hyperthermophilic archaeon Sulfolobus solfataricus Pawel Sierocinski Thesis committee Promotor Prof. Dr J. van der Oost Personal chair at the Laboratory of Microbiology Co-promotor Prof. Dr W. de Vos Distinguished Professor Microbiology Other members Prof. Dr W van Berkel Wageningen University & Research Dr SJJ Brouns UHD Delft University of Technology Dr D Swarts UD Wageningen University & Research Dr Nico Claassens, PostDoc Max Planck Institute of Molecular Plant Physiology, Potsdam The research was conducted under the auspices of the Graduate School VLAG ( Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Zooming in: from multi-omics to single function in hyperthermophilic archaeon Sulfolobus solfataricus Pawel Sierocinski Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 26th August 2019 at 11 a.m. in the Aula Pawel Sierocinski Zooming in: from multi-omics to single function in hyperthermophilic archaeon Sulfolobus solfataricus, 210 pages PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) With references, with summary in English ISBN 978-94-6343-974-9 DOI https://doi.org/10.18174/476997 Table of contents Chapter 1: Introduction and Outlook 6 Chapter 2: Hot Transcriptomics 19 Chapter 3: “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus 46 Chapter 4: Quantitative Proteomic Analysis of Sulfolobus solfataricus Membrane Proteins 108 Chapter 5: Temperature promoter motif regulates gene expression in S. solfataricus 132 Chapter 6: Evolution of S. solfataricus in fluctuating temperature Conditions 148 Chapter 7: Summary, discussion and general conclusions 159 Appendices 179 References 180 About the author 203 Acknowledgements 204 List of publications 207 Overview of completed training activities 208 Hot Transcriptomics 6 Chapter 1 Introduction and Outlook Pawel Sierocinski Till the 1960s life as we knew it occupied a comfortable niche that overlapped with the human temperature range. Even though the earliest reports of life at temperatures above 80°C were published back in 1897 (Davis 1897) they were generally discarded as artefacts. Temperatures reaching over 80°C were considered too high for any living creature to survive, let alone to thrive. In 1963 Kempner speculated, based on the analysis of hot springs in Yellowstone National Park that 73°C is the upper temperature limit for life (Kempner 1963). This paradigm shifted soon thereafter when Brock and Freeze managed to isolate and cultivate Thermus aquaticus, a bacterium with a temperature range from 40°C to 79°C (Brock & Freeze 1969). This opened the doors for further investigation of environments previously assumed hostile for life, resulting in the discovery of a great diversity of thermophiles and hyperthermophiles, both marine and terrestrial. Hyperthermophiles, defined as organisms that thrive at elevated temperatures with optimal growth at or above 80°C (Stetter 2006), occupy diverse sets of environments – from the submarine black smokers, though terrestrial and marine hot springs to high temperature compost heaps. This diversity of ecosystems allows for multiple life strategies. Hyperthermophiles include both aerobic and anaerobic life forms. Most are autotrophic, using hydrogen as the electron donor and a range of electron acceptors, including CO2, sulphur, and nitrate. Their autotrophy is not obligatory and a majority has been classified Hot Transcriptomics 7 as opportunistic heterotrophs capable of metabolising a wide range of organic compounds either by aerobic respiration or fermentation. One key feature that all the hyperthermophiles share is the presence of the reverse gyrase enzyme (Forterre et al. 1995). Although it can be occasionally found in regular thermophiles as well, it has never been observed in mesophiles. The reverse gyrase enzyme is present in bacterial hyperthermophiles but it is of archaeal origin, suggesting it was evolved in HT Archaea and subsequently transferred to HT Bacteria through a horizontal gene transfer event shortly after the two domains split. The enzyme is responsible for positive supercoiling of DNA and knock out strains of hyperthermophiles lacking it are viable, but thermosensitive (Atomi et al. 2004), most likely causing deficient strains to lose competition with the gyrase possessing organism in the hyperthermophilic conditions. Archaea Even though hyperthermophiles share multiple similarities, they span two groups separated by the oldest rift in phylogenetic history of life, i.e. the split between the Bacteria and the Archaea. Their similarities, from both morphological and physiological perspective, caused that initially they were all classified as bacteria. For example, Sulfolobus solfataricus, the subject of this thesis, has been initially classified as an atypical member of the genus Pseudomonas. It was only in 1977 when Carl Woese established a novel method of determining phylogeny that was based on similarities of conserved regions of the ribosomal genes (Woese & Fox 1977). His results suggested that, although morphologically identical, some microorganisms show a genetic divergence indicating an ancient split from the rest of the prokaryotes. Hot Transcriptomics 8 Initially it was the methanogens that did not fit in the prokaryotic puzzle, but soon after it turned out that the majority of thermophiles cluster closer to the methanogens than to bacteria. The idea did not catch quickly in the morphology dominated field of phylogenetics, but in 1990 it was proposed, again by Woese, that life should be reorganised into three domains (Woese et al. 1990) and since then this classification has become a new paradigm on how the life on earth has evolved, and should be organised. Archaea are distinct from the rest of the nucleus-free life not only due to their 16S RNA sequences. They have a unique composition of their cell membrane, consisting of ether-linked isoprenoid lipids (Kates 1977) a trait that allows them to thrive in environments where other microorganisms fail (Gliozzi et al. 2002). They are the only group of organisms that can perform metabolic processes that are key to the nutrient cycling on our planet. Main example is methanogenesis, a key process in anaerobic conditions that allows removal of acetate, CO2 and hydrogen thus protecting the microbial communities from accumulation of harmful by-products of fermentation. Annually 500 billion tons of methane are produced by methanogens making it a truly planetary scale process fully facilitated by Archaea (Conrad 2009). Archaea are also responsible for recently discovered processes of anaerobic methane oxidation (Raghoebarsing et al. 2006) and anaerobic ammonia oxidation (Schmidt et al. 2002) that play a key role in the stability of nutrient cycles of the planet. One of the most interesting features of Archaea is their DNA processing machinery. Even though they are similar to prokaryotes in terms of the metabolism, their processing of DNA resembles the one of eukaryotes. They have similar regulatory proteins and sequences, similar tRNA genes and, at Hot Transcriptomics 9 least in some cases, their replication starts, unlike bacterial one, from multiple origins of replication. This has led to Archaea becoming a model system for preliminary studies of eukaryote replication, transcription and translation, combining a relatively homologous mechanism and the ease of growing and manipulating the genetics in comparison with the eukaryotes. This similarity resulted with a novel concept of the origin of Eukaryotic cell as a fusion between an archaeon and a prokaryote, changing the tree of life into a ring- like structure (Rivera & Lake 2004). Archaea are also a key element of studying the origins of life on the planet, with multiple hypotheses suggesting that it might have required hot environments for the first cellular replicators to kick off. Archaea were originally divided into two major kingdoms: Euryarchaeota, containing halophilic Archaea, methanogens and some of the (hyper)thermophiles and Crenarchaeota, harbouring most of the known (hyper)thermo (acido)philes. This has been challenged by the more recent discoveries of multiple novel groups of Archaea, including Nanoarchaeota, Thaumarchaeota, Lokiarchaeota and Korarchaeota, which makes the current phylogeny of Archaea a work in progress (Huber et al. 2003; Brochier- Armanet et al. 2008; Petitjean et al. 2015; Spang et al. 2015). The new discoveries, greatly facilitated by the cheaper sequencing technology, also put a dent in the long held belief that Archaea are mainly involved in the extreme environments. Archaeal sequences are ubiquitous in all the sampled environments, and make up a significant part of mesophilic strata. The initial abundance of extremophiles was probably an artefact; the extreme environments where Archaea are predominant were disproportionally sampled, while mesophilic Archaea were too rare to be readily discovered and cultivated. Yet since typical mesophilic environments are vastly bigger than Hot Transcriptomics 10 the extreme ones, a large diversity of Archaea from those environments still outnumbers the extremophiles. Thermophiles and Sulfolobus solfataricus That said, thermophiles are still one of the hallmarks of Archaea and are among the
Recommended publications
  • CRISPR Loci Reveal Networks of Gene Exchange in Archaea Avital Brodt, Mor N Lurie-Weinberger and Uri Gophna*
    Brodt et al. Biology Direct 2011, 6:65 http://www.biology-direct.com/content/6/1/65 RESEARCH Open Access CRISPR loci reveal networks of gene exchange in archaea Avital Brodt, Mor N Lurie-Weinberger and Uri Gophna* Abstract Background: CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past “infection history” of the organism. Results: Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions: CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti- plasmid defense. Open peer review: This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof.
    [Show full text]
  • Sulfolobus Acidocaldarius Claus AAGAARD, JACOB Z
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12285-12289, December 1995 Biochemistry Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius CLAus AAGAARD, JACOB Z. DALGAARD*, AND ROGER A. GARRETr Institute of Molecular Biology, Copenhagen University, S0lvgade 83 H, 1307 Copenhagen K, Denmark Communicated by Carl R. Woese, University of Illinois at Urbana-Champaign, Urbana, IL, August 28, 1995 ABSTRACT Some intron-containing rRNA genes of ar- experiments suggest, but do not establish, that the intron is chaea encode homing-type endonucleases, which facilitate mobile between yeast cells. intron insertion at homologous sites in intron- alleles. These To test whether the archaeal introns constitute mobile archaeal rRNA genes, in contrast to their eukaryotic coun- elements, we electroporated the intron-containing 23S rRNA terparts, are present in single copies per cell, which precludes gene from the archaeal hyperthermophile Desulfurococcus intron homing within one cell. However, given the highly mobilis on nonreplicating bacterial vectors into an intron- conserved nature of the sequences flanking the intron, hom- culture of Sulfolobus acidocaldarius. In the presence of I-Dmo ing may occur in intron- rRNA genes of other archaeal cells. I, the endonuclease encoded by the D. mobilis intron (20), the To test whether this occurs, the intron-containing 23S rRNA intron was shown to home in the chromosomal DNA of intron- gene of the archaeal hyperthermophile Desulfurococcus mobi- cells of S. acidocaldarius. Moreover, using a double drug- lis, carried on nonreplicating bacterial vectors, was electro- resistant mutant (21), it was demonstrated that the intron can porated into an intron- culture of Sulfolobus acidocaldarius.
    [Show full text]
  • The Isolation of Viruses Infecting Archaea
    Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 2010 The Isolation of Viruses Infecting Archaea Kenneth M. Stedman Portland State University Kate Porter Mike L. Dyall-Smith Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Bacteria Commons, Biology Commons, and the Viruses Commons Let us know how access to this document benefits ou.y Citation Details Stedman, Kenneth M., Kate Porter, and Mike L. Dyall-Smith. "The isolation of viruses infecting Archaea." Manual of aquatic viral ecology. American Society for Limnology and Oceanography (ASLO) (2010): 57-64. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. MANUAL of MAVE Chapter 6, 2010, 57–64 AQUATIC VIRAL ECOLOGY © 2010, by the American Society of Limnology and Oceanography, Inc. The isolation of viruses infecting Archaea Kenneth M. Stedman1, Kate Porter2, and Mike L. Dyall-Smith3 1Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97207, USA 2Biota Holdings Limited, 10/585 Blackburn Road, Notting Hill Victoria 3168, Australia 3Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Abstract A mere 50 viruses of Archaea have been reported to date; these have been investigated mostly by adapting methods used to isolate bacteriophages to the unique growth conditions of their archaeal hosts. The most numer- ous are viruses of thermophilic Archaea.
    [Show full text]
  • The Stability of Lytic Sulfolobus Viruses
    The Stability of Lytic Sulfolobus Viruses A thesis submitted to the Graduate School of the University of Cincinnati In partial fulfillment of The requirements for the degree of Master of Sciences in the Department of Biological Sciences of the College of Arts and Sciences 2017 Khaled S. Gazi B.S. Umm Al-Qura University, 2011 Committee Chair: Dennis W. Grogan, Ph.D. i Abstract Among the three domains of cellular life, archaea are the least understood, and functional information about archaeal viruses is very limited. For example, it is not known whether many of the viruses that infect hyperthermophilic archaea retain infectivity for long periods of time under the extreme conditions of geothermal environments. To investigate the capability of viruses to Infect under the extreme conditions of geothermal environments. A number of plaque- forming viruses related to Sulfolobus islandicus rod-shaped viruses (SIRVs), isolated from Yellowstone National Park in a previous study, were evaluated for stability under different stress conditions including high temperature, drying, and extremes of pH. Screening of 34 isolates revealed a 95-fold range of survival with respect to boiling for two hours and 94-fold range with respect to drying for 24 hours. Comparison of 10 viral strains chosen to represent the extremes of this range showed little correlation of stability with respect to different stresses. For example, three viral strains survived boiling but not drying. On the other hand, five strains that survived the drying stress did not survive the boiling temperature, whereas one strain survived both treatments and the last strain showed low survival of both.
    [Show full text]
  • Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
    JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions.
    [Show full text]
  • Sulfolobus As a Model Organism for the Study of Diverse
    SULFOLOBUS AS A MODEL ORGANISM FOR THE STUDY OF DIVERSE BIOLOGICAL INTERESTS; FORAYS INTO THERMAL VIROLOGY AND OXIDATIVE STRESS by Blake Alan Wiedenheft A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2006 © COPYRIGHT by Blake Alan Wiedenheft 2006 All Rights Reserved ii APPROVAL of a dissertation submitted by Blake Alan Wiedenheft This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Mark Young and Dr. Trevor Douglas Approved for the Department of Microbiology Dr.Tim Ford Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University – Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microfilm along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Blake Alan Wiedenheft November, 2006 iv DEDICATION This work was funded in part through grants from the National Aeronautics and Space Administration Program (NAG5-8807) in support of Montana State University’s Center for Life in Extreme Environments (MCB-0132156), and the National Institutes of Health (R01 EB00432 and DK57776).
    [Show full text]
  • Counts Metabolic Yr10.Pdf
    Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering.
    [Show full text]
  • Gene Cloning and Characterization of NADH Oxidase from Thermococcus Kodakarensis
    African Journal of Biotechnology Vol. 10(78), pp. 17916-17924, 7 December, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.989 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Gene cloning and characterization of NADH oxidase from Thermococcus kodakarensis Naeem Rashid 1*, Saira Hameed 2, Masood Ahmed Siddiqui 3 and Ikram-ul-Haq 2 1School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan. 2Institute of Industrial Biotechnology, GC University, Lahore, Pakistan. 3Department of Chemistry, University of Balochistan, Quetta, Pakistan. Accepted 12 October, 2011 The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 amino acids with a molecular weight of 48 kDa. Expression of the gene in Escherichia coli resulted in the production of Tk0304 in soluble form which was purified by heat treatment at 80°C followed by ion exchange chromatography. Enzyme activity of Tk0304 was enhanced about 50% in the presence of 30 µM flavin adenine dinucleotide (FAD) when assay was conducted at 60°C. Surprisingly the activity of the enzyme was not affected by FAD when the assay was conducted at 75°C or at higher temperatures. Tk0304 displayed highest activity at pH 9 and 80°C. The enzyme was highly thermostable displaying 50% of the original activity even after an incubation of 80 min in boiling water. Among the potent inhibitors of NADH oxidases, silver nitrate and potassium cyanide did not show any significant inhibitory effect at a final concentration of 100 µM.
    [Show full text]
  • Post-Genomic Characterization of Metabolic Pathways in Sulfolobus Solfataricus
    Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis committee Thesis supervisors Prof. dr. J. van der Oost Personal chair at the laboratory of Microbiology Wageningen University Prof. dr. W. M. de Vos Professor of Microbiology Wageningen University Other members Prof. dr. W.J.H. van Berkel Wageningen University Prof. dr. V.A.F. Martins dos Santos Wageningen University Dr. T.J.G. Ettema Uppsala University, Sweden Dr. S.V. Albers Max Planck Institute for Terrestrial Microbiology, Marburg, Germany This research was conducted under the auspices of the Graduate School VLAG Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 23 January 2012 at 11 a.m. in the Aula. Jasper Walther Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus, 164 pages. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-203-3 Table of contents Chapter 1 Introduction 1 Chapter 2 Hot Transcriptomics 17 Chapter 3 Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis 45 Chapter 4 Identification of the Missing
    [Show full text]
  • Calditol-Linked Membrane Lipids Are Required for Acid Tolerance in Sulfolobus Acidocaldarius
    Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius Zhirui Zenga,1, Xiao-Lei Liub,1, Jeremy H. Weia, Roger E. Summonsc, and Paula V. Welandera,2 aDepartment of Earth System Science, Stanford University, Stanford, CA 94305; bDepartment of Geology and Geophysics, University of Oklahoma, Norman, OK 73019; and cDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Katherine H. Freeman, Pennsylvania State University, University Park, PA, and approved November 7, 2018 (received for review August 14, 2018) Archaea have many unique physiological features of which the lipid and sea-surface temperatures in the Mesozoic and early Cenozoic, composition of their cellular membranes is the most striking. and the geologic history of archaea in ancient sediments (13, 14). Archaeal ether-linked isoprenoidal membranes can occur as bilayers However, deciphering the evolutionary implications of archaeal or monolayers, possess diverse polar head groups, and a multiplicity lipid biosynthesis, as well as being able to properly interpret ar- of ring structures in the isoprenoidal cores. These lipid structures chaeal lipid biomarkers, requires a full understanding of the are proposed to provide protection from the extreme temperature, biosynthetic pathways and the physiological roles of these various pH, salinity, and nutrient-starved conditions that many archaea structures in extant archaea. inhabit. However, many questions remain regarding the synthesis Studies of archaeal membrane lipid synthesis have revealed and physiological role of some of the more complex archaeal lipids. distinct proteins and biochemical reactions, but several open In this study, we identify a radical S-adenosylmethionine (SAM) questions remain (4, 15).
    [Show full text]
  • Lipids of Sulfolobus Spp. | Encyclopedia
    Lipids of Sulfolobus spp. Subjects: Biophysics | Biotechnology Contributors: Kerstin Rastaedter , David J. Wurm Submitted by: Kerstin Rastaedter Definition Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. Sulfolobales mainly consist of C40-40 tetraether lipids (caldarchaeol) and partly of C20-20 diether lipids (archaeol). A variant of caldarchaeol called glycerol dialkylnonitol tetraether (GDNT) has only been found in Sulfolobus and other members of the Creanarchaeota phylum so far. Altering the numbers of incorporated cyclopentane rings or the the diether to tetraether ratio results in more tightly packed membranes or vice versa. 1. The Cell Membrane and Lipids of Sulfolobus spp. The thermoacidophilic genus Sulfolobus belongs to the phylum Crenarchaeota and is a promising player for biotechnology [1], since it harbors a couple of valuable products, such as extremozymes[ 2], trehalose [3], archaeocins [4] and lipids for producing archaeosomes [5]. Genetic tools for this genus have rapidly advanced in recent years[ 6], generating new possibilities in basic science and for biotechnological applications alike. The cultivation conditions are preferably at around 80 °C and pH 3 [7]. Sulfolobus species are able to grow aerobically and can be readily cultivated on a laboratory scale. These organisms became a model organism for Crenarchaeota and for adaption processes to extreme environments [8][9][10][11][12][13]. Sulfolobus species were found in solfataric fields all over the world[ 14]. A major drawback of cultivating this organism was the lack of a defined cultivation medium.
    [Show full text]
  • Diversity of DNA Replication in the Archaea
    G C A T T A C G G C A T genes Review Diversity of DNA Replication in the Archaea Darya Ausiannikava * and Thorsten Allers School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-115-823-0304 Academic Editor: Eishi Noguchi Received: 29 November 2016; Accepted: 20 January 2017; Published: 31 January 2017 Abstract: DNA replication is arguably the most fundamental biological process. On account of their shared evolutionary ancestry, the replication machinery found in archaea is similar to that found in eukaryotes. DNA replication is initiated at origins and is highly conserved in eukaryotes, but our limited understanding of archaea has uncovered a wide diversity of replication initiation mechanisms. Archaeal origins are sequence-based, as in bacteria, but are bound by initiator proteins that share homology with the eukaryotic origin recognition complex subunit Orc1 and helicase loader Cdc6). Unlike bacteria, archaea may have multiple origins per chromosome and multiple Orc1/Cdc6 initiator proteins. There is no consensus on how these archaeal origins are recognised—some are bound by a single Orc1/Cdc6 protein while others require a multi- Orc1/Cdc6 complex. Many archaeal genomes consist of multiple parts—the main chromosome plus several megaplasmids—and in polyploid species these parts are present in multiple copies. This poses a challenge to the regulation of DNA replication. However, one archaeal species (Haloferax volcanii) can survive without replication origins; instead, it uses homologous recombination as an alternative mechanism of initiation. This diversity in DNA replication initiation is all the more remarkable for having been discovered in only three groups of archaea where in vivo studies are possible.
    [Show full text]