Spatial Variation in Reproduction in Southern Populations of the New

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Variation in Reproduction in Southern Populations of the New This article was downloaded by: [203.109.163.22] On: 10 March 2015, At: 18:58 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Invertebrate Reproduction & Development Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tinv20 Spatial variation in reproduction in southern populations of the New Zealand bivalve Paphies ventricosa (Veneroida: Mesodesmatidae) Kendall Gadomskia & Miles Lamarea a Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand Published online: 13 Feb 2015. Click for updates To cite this article: Kendall Gadomski & Miles Lamare (2015): Spatial variation in reproduction in southern populations of the New Zealand bivalve Paphies ventricosa (Veneroida: Mesodesmatidae), Invertebrate Reproduction & Development, DOI: 10.1080/07924259.2015.1007216 To link to this article: http://dx.doi.org/10.1080/07924259.2015.1007216 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Invertebrate Reproduction & Development, 2015 http://dx.doi.org/10.1080/07924259.2015.1007216 Spatial variation in reproduction in southern populations of the New Zealand bivalve Paphies ventricosa (Veneroida: Mesodesmatidae) Kendall Gadomski and Miles Lamare* Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand (Received 25 November 2014; accepted 9 January 2015) Paphies ventricosa is a large surf clam endemic to New Zealand, and whose populations have substantially declined dur- ing the past century owing to overfishing and habitat degradation. Poor recruitment is now evident, and therefore, under- standing the reproductive patterns of P. ventricosa is a key to developing and implementing conservation strategies for the species. This study examines the reproductive cycle of P. ventricosa over one year in a population at Oreti Beach, Southland, the southernmost known extent of the species. At the same beach, we quantify spatial variation in reproduc- tion among four sites using quarterly surveys. Reproductive status is quantified from body indices and histological exam- ination of gonads. Based on changes in oocyte sizes, gametogenic stages and condition index, we observed a species with a primary spawning in spring and a second spawning event in autumn, with no resting phase but minimal reproduc- tive activity over winter. Seasonal reproduction corresponded with warmer sea surface temperature and a peak in chloro- phyll-a concentrations in the region. Small-scale (<15 km) variation in the timing of spawning was also evident along Oreti Beach, and these patterns maybe an important consideration when identifying areas that may be considered for conserving source populations. Keywords: gametogenesis; surf clam; condition index; histology; sea temperature Introduction substantial overfishing in the first half of the twentieth Paphies ventricosa (Veneroida: Mesodesmatidae) Gray century (Rapson 1954), habitat degradation (Beentjes fi 1843, known by the Māori name toheroa, is a large surf et al. 2006) and disturbance from beach traf c are con- clam (up to 150 mm shell length) endemic to New Zealand. tributors (Brunton 1978; Williams et al. 2013). fi The species has a broad latitudinal distribution ranging Recruitment has been identi ed as a key issue for the between 34.5° and 46.3°S, although only three substantial species (Beentjes et al. 2006; Morrison & Parkinson populations now exist, these being physically separated by 2008), and the production and supply of P. ventricosa up to 700 km (Beentjes et al. 2006). The species is larvae may be limited due to the small and fragmented restricted to high-energy dissipating beaches that are on nature of present-day populations. A key aspect in under- western-facing fully exposed coasts made of fine sand standing recruitment in bivalves is quantifying processes (~0.25 mm average grain size) (Rapson 1952;Cassie controlling larval supply, which includes a detailed Downloaded by [203.109.163.22] at 18:58 10 March 2015 1955). Adult size classes (>90 mm) are concentrated at understanding of the spatial and temporal patterns in mid-tide levels, sub-adults (40–90 mm) are higher on the reproductive cycles and gamete production. beach, whilst the juveniles (<40 mm) have a wider and Reproduction has been examined in a range of more even vertical distribution across the tidal range but are temperate bivalve orders such as Veneroida (Newell & most abundant higher up the beach (Beentjes et al. 2006; Bayne 1980; Harvey & Vincent 1989; Gaspar et al. Beentjes & Gilbert 2006). 1999), Mytiloida (Wilson & Hodgkin 1967), Ostreoida P. ventricosa population sizes throughout New (Ruiz et al. 1992), and Myoida (Zaidman et al. 2012). Zealand have decreased substantially over the past cen- This includes a number of bivalve species inhabiting tury. For example, Greenway (1972) estimated that the New Zealand soft sand environments, such as Ruditapes northern population has declined from an estimate of largillierti (Gribben et al. 2001), Panopea zelandica 10,000,000 individuals in 1964 to 1,000,000 in 1971. (Gribben et al. 2004) and Zenatia acinaces (Gribben Southern populations have also experienced similar 2005). For the New Zealand species, reproduction fi declines, with Beentjes et al. (2006) reporting population follows relatively well-de ned annual cycles with spawn- sizes reduced from 2.2 million in the mid-1970s to ing occurring within the spring and summer period. 78,000 individuals larger than 100 mm by 1990. The Of interest in this study is the family Mesodesmati- reasons for the decline are poorly understood, but dae (Bivalvia: Veneroida), in which the reproduction has *Corresponding author. Email: [email protected] © 2015 Taylor & Francis 2 K. Gadomski and M. Lamare been described in a small number of species including threatened bivalve species such as P. ventricosa, where the Australian Donacilla cuneata (Roberts 1984), Asian knowledge of spatial and temporal patterns of reproduc- Coecella chinensis (Kim et al. 2013), the South tion can be used in conservation strategies to maximise American Mesodesma donacium (Peredo et al. 1987; future recruitment by identifying larval source popula- Riascos et al. 2009; Uribe et al. 2012) and Mesodesma tions (Gaines et al. 2010). mactroides (Herrmann et al. 2009), and the tropical spe- cies Atactodea striata (Baron 1992). Reproduction in New Zealand mesodematids, all in the genus Paphies, Materials and methods has been described for P. ventricosa (Redfearn 1974), Study site and animal collection P. australis (Hooker & Creese 1995), Paphies donacina Reproduction in P. ventricosa was examined at four sites (Marsden 1999) and Paphies subtriangulata (Grant & along Oreti Beach, Southland, New Zealand. Oreti Beach Creese 1995). is a south-west facing, 26 km long, dissipating surf Most of what it known about P. ventricosa reproduc- beach on the shores of Foveaux Strait (Figure 1). Each tion comes from the North Island. Hoby (1933) found end of the beach is bordered by two river/estuary sys- – μ that egg diameter increased from June (59 65 m) to tems. – μ October (75 80 m) and that sperm activity increased To examine reproduction over one year, 20 mature “ ” “ from fairly active at the end of July to extremely animals were collected from a single site (Site B) every ” active in October. Additionally, Hoby (1933) found that month between January 2011 and December 2011, at the beginning of October few animals had spawned, excluding April 2011 (Figure 1). The following year but by the end of the month, most animals had spawned. (2012), spatial and seasonal patterns of reproduction in fi Redfearn (1974) identi ed four stages of gametogenic P. ventricosa along Oreti Beach was examined at four fi development in P. ventricosa, classi ed as early active sample sites along the length of the beach (Site A–D) (EA), late active (LA), mature and partially spawned/ for autumn (March), winter (June), spring (September) spent. The study found two to three spawning events and summer (December) (Figure 1). For this, 20 animals occurred during the summer season, with an initial were collected per site per season. All animals collected maturing period
Recommended publications
  • AEBR 114 Review of Factors Affecting the Abundance of Toheroa Paphies
    Review of factors affecting the abundance of toheroa (Paphies ventricosa) New Zealand Aquatic Environment and Biodiversity Report No. 114 J.R. Williams, C. Sim-Smith, C. Paterson. ISSN 1179-6480 (online) ISBN 978-0-478-41468-4 (online) June 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................... 1 1. INTRODUCTION ............................................................................................................ 2 2. METHODS ....................................................................................................................... 3 3. TIME SERIES OF ABUNDANCE .................................................................................. 3 3.1 Northland region beaches .......................................................................................... 3 3.2 Wellington region beaches ........................................................................................ 4 3.3 Southland region beaches .........................................................................................
    [Show full text]
  • Ripiro Beach
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The modification of toheroa habitat by streams on Ripiro Beach A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Research) in Environmental Science at The University of Waikato by JANE COPE 2018 ―We leave something of ourselves behind when we leave a place, we stay there, even though we go away. And there are things in us that we can find again only by going back there‖ – Pascal Mercier, Night train to London i Abstract Habitat modification and loss are key factors driving the global extinction and displacement of species. The scale and consequences of habitat loss are relatively well understood in terrestrial environments, but in marine ecosystems, and particularly soft sediment ecosystems, this is not the case. The characteristics which determine the suitability of soft sediment habitats are often subtle, due to the apparent homogeneity of sandy environments.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • Global Perspective of Bivalve Hatchery Processes
    Global Perspective of Bivalve Hatchery Processes A report for by Ian Duthie 2010 Nuffield Scholar October 2012 Nuffield Australia Project No 1017 Sponsored by: © 2010 Nuffield Australia. All rights reserved. This publication has been prepared in good faith on the basis of information available at the date of publication without any independent verification. Nuffield Australia does not guarantee or warrant the accuracy, reliability, completeness of currency of the information in this publication nor its usefulness in achieving any purpose. Readers are responsible for assessing the relevance and accuracy of the content of this publication. Nuffield Australia will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication. Products may be identified by proprietary or trade names to help readers identify particular types of products but this is not, and is not intended to be, an endorsement or recommendation of any product or manufacturer referred to. Other products may perform as well or better than those specifically referred to. This publication is copyright. However, Nuffield Australia encourages wide dissemination of its research, providing the organisation is clearly acknowledged. For any enquiries concerning reproduction or acknowledgement contact the Publications Manager on ph: (03) 54800755. Scholar Contact Details Ian Duthie P.O. Box 74 ORFORD, TASMANIA, 7190 Phone: 03 62 571 239 Mobile: 0409 411 322 Email: [email protected] In submitting this report, the Scholar has agreed to Nuffield Australia publishing this material in its edited form. Nuffield Australia Contact Details Nuffield Australia Telephone: (03) 54800755 Facsimile: (03) 54800233 Mobile: 0412696076 Email: [email protected] 586 Moama NSW 2731 2 Foreword Shellfish (Bivalve) cultivation is a significant form of aquaculture around the world, with production at 13.9 million tonnes and continuing to grow at 5% per annum.
    [Show full text]
  • Panopea Abrupta ) Ecology and Aquaculture Production
    COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ...................................................
    [Show full text]
  • Embryonic & Larval Development Gadomski.Pdf (646.7
    Journal of Molluscan Studies Advance Access published 16 February 2015 Journal of The Malacological Society of London Molluscan Studies Journal of Molluscan Studies (2015) 1–9. doi:10.1093/mollus/eyv001 Embryonic and larval development of the New Zealand bivalve Paphies ventricosa Gray, 1843 (Veneroida: Mesodesmatidae) at a range of temperatures Kendall Gadomski1, Henrik Moller2, Michael Beentjes3 and Miles Lamare1 1Department of Marine Science, University of Otago, Dunedin, New Zealand; 2Centre for Sustainability (CSAFE), University of Otago, Dunedin, New Zealand; and 3National Institute of Water and Atmospheric Research, 38 Harrow Street, Dunedin, New Zeland Correspondence: M. Lamare; e-mail: [email protected] (Received 3 June 2014; accepted 14 December 2014) ABSTRACT Paphies ventricosa is a large (up to 150 mm shell length) surf clam endemic to New Zealand, with a geo- graphically patchy distribution. Using scanning electron microscopy and light microscopy, its fertiliza- tion, embryonic and larval development were observed at three culturing temperatures (12, 16 and 20 8C). The progress of development follows that previously described for the family Mesodesmatidae, with P. ventricosa having a small egg (63–70 mm), with a 83–102 mm trochophore stage observed at 15 h, and a 100 mm D-veliger larva observed at 22 h at 12 and 168C, and 37 h at 20 8C. At 20 8C, the pediveliger larval stage was reached by 31 d. While the morphology of the embryonic and larval stages of P. ventricosa is typical for bivalves, we show that in this species the shell field invagination occurs in the gastrula stage and that the expansion of the dorsal shell field occurs during gastrulation, with the early trochophore having a well-developed shell field that has a clearly defined axial line between the two shell lobes.
    [Show full text]
  • 2017 SMALL BIVALVE FISHERY ASSESSMENT Venerupis Largillierti - Northern Zone, Georges Bay Katelysia Scalarina - Ansons Bay
    2017 SMALL BIVALVE FISHERY ASSESSMENT Venerupis largillierti - Northern Zone, Georges Bay Katelysia scalarina - Ansons Bay John Keane and Caleb Gardner June 2017 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart TAS 7001 Enquires should be directed to: Dr John Keane Institute for Marine and Antarctic Studies University of Tasmania Private Bag 49, Hobart, Tasmania 7001, Australia [email protected] Ph. (03) 6226 8265 Citation: Keane, J.P. and Gardner, C. (2017), 2017 Small Bivalve Fishery Assessment. Institute for Marine and Antarctic Studies Report. University of Tasmania, Hobart. 18 p. The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Institute for Marine and Antarctic Studies (IMAS) or the University of Tasmania (UTas). The Institute for Marine and Antarctic Studies, University of Tasmania 2017. Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Institute for Marine and Antarctic Studies. Small Bivalve Survey 2017 Executive Summary In 2017, stock assessments with total allowable commercial catch recommendations (TACC) ware conducted for the Georges Bay Northern Zone Venus Clam, Venerupis largillierti, fishery and the Ansons Bay Vongole, Katelysia scalarina, fishery.
    [Show full text]
  • Distribution and Abundance of Toheroa (Paphies Ventricosa) and Tuatua (P
    Distribution and abundance of toheroa (Paphies ventricosa) and tuatua (P. subtriangulata) at Ninety Mile Beach in 2010 and Dargaville Beach in 2011 New Zealand Fisheries Assessment Report 2013/39 J. Williams, H. Ferguson, I. Tuck ISSN 1179-5352 (online) ISBN 978-0-478-41436-3 (online) May 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries. TABLE OF CONTENTS Executive Summary ...................................................................................................................................................... 1 Objectives ..................................................................................................................................................................... 2 1 INTRODUCTION ................................................................................................................................................ 3 1.1 Toheroa and tuatua ....................................................................................................................................... 3 1.2 Toheroa fisheries and surveys .....................................................................................................................
    [Show full text]
  • PC20058 AC.Pdf
    doi:10.1071/PC20059 © CSIRO Pacific Conservation Biology 2021 Translocation of black foot pāua (Haliotis iris) in a customary fishery management area: transformation from top-down management to kaitiakitanga (local guardianship) of a cultural keystone Louise Bennett-JonesA,E, Gaya GnanalingamA, Brendan FlackB, Nigel ScottC, Daniel PritchardA, Henrik MollerD and Christopher HepburnA ADepartment of Marine Science, University of Otago, Dunedin, New Zealand 9016. BKāti Huirapa Rūnaka ki Puketeraki, Karitane, New Zealand 9440. CTe Ao Tūroa, Te Rūnanga o Ngāi Tahu, Christchurch, New Zealand 8024. DKā Rakahau o Te Ao Tūroa (Centre for Sustainability), University of Otago, Dunedin, New Zealand 9016. ECorresponding author. Email: [email protected] SUPPLEMENTARY MATERIAL Supplementary Material 1. Table 1 references [1] Single, M. (2015) Beach profile surveys and morphological change, Otago Harbour entrance to Karitane. Port Otago Ltd. (Shore Processes and Management Ltd.: New Zealand). [2] Hepburn, C., Richards, D., Subritzky, P., and Pritchard, D. (2016) Status of the East Otago Taiāpure pāua fishery 2008-2016. Univesrity of Otago, Te Tiaki Mahinga Kai. [3] Coates, J.H., Hovel, K.A., Butler, J.L., Klimley, A.P., and Morgan, S.G. (2013) Movement and home range of pink abalone Haliotis corrugata: Implications for restoration and population recovery. Marine Ecology Progress Series 486, 189-201. [4] Poore, G.C.B. (1973) Ecology of New Zealand abalones, Haliotis species (Mollusca: Gastropoda). 4. Reproduction. New Zealand Journal of Marine and Freshwater Research. 7(1-2), 67-84. [5] Sainsbury, K.J. (1982) Population dynamics and fishery management of the paua, Haliotis iris. 1. Population structure, growth, reproduction, and mortality.
    [Show full text]
  • 2018 SMALL BIVALVE FISHERY ASSESSMENT Ostrea Angasi - Georges Bay Katelysia Scalarina - Ansons Bay Venerupis Largillierti - Northern Zone, Georges Bay
    2018 SMALL BIVALVE FISHERY ASSESSMENT Ostrea angasi - Georges Bay Katelysia scalarina - Ansons Bay Venerupis largillierti - Northern Zone, Georges Bay John Keane and Caleb Gardner June 2018 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart TAS 7001 Enquires should be directed to: Dr John Keane Institute for Marine and Antarctic Studies University of Tasmania Private Bag 49, Hobart, Tasmania 7001, Australia [email protected] Ph. (03) 6226 8265 Citation: Keane, J.P. and Gardner, C. (2018), 2018 Small Bivalve Fishery Assessment. Institute for Marine and Antarctic Studies Report. University of Tasmania, Hobart. 24 p. The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Institute for Marine and Antarctic Studies (IMAS) or the University of Tasmania (UTas). The Institute for Marine and Antarctic Studies, University of Tasmania 2018. Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Institute for Marine and Antarctic Studies. Small Bivalve Survey 2018 Executive Summary In 2018, stock assessments with total allowable commercial catch recommendations (TACC) ware conducted for the Georges Bay flat oyster, Ostrea angasi, fishery and the Ansons Bay Vongole, Katelysia scalarina, fishery.
    [Show full text]
  • Growth and Reproduction in Bivalves an Energy Budget Approach
    Growth and Reproduction in Bivalves An energy budget approach The research reported in this thesis was carried out at the Department of Marine Ecology and Evolution (MEE) of the Royal Netherlands Institute for Sea Research (NIOZ) and financially supported by the project ‘Praxis XXI’, grant BD/21799/99, from ‘Fundação para a Ciência e a Tecnologia (FCT)’, Portugal. Cover design and thesis layout: Joana Cardoso Figures: Henk Hobbelink, Bert Aggenbach and Joana Cardoso Printed by: PrintPartners Ipskamp RIJKSUNIVERSITEIT GRONINGEN Growth and Reproduction in Bivalves An energy budget approach Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 21 september 2007 om 14.45 uur door Joana Ferreira Marques Ferreira Cardoso geboren op 6 november 1975 te Porto, Portugal Promotores: Prof. dr. W.J. Wolff Prof. dr. P.T. Santos Copromotor: Dr. ir. H.W. van der Veer Beoordelingscommissie: Prof. dr. J.T.M. Elzenga Prof. dr. C.H.R. Heip Prof. dr. S.A.L.M. Kooijman ISBN: 978-90-367-3140-9 Fundo do mar No fundo do mar há brancos pavores, Onde as plantas são animais E os animais são flores. Mundo silencioso que não atinge A agitação das ondas. Abrem-se rindo conchas redondas, Baloiça o cavalo-marinho. Um polvo avança No desalinho Dos seus mil braços, Uma flor dança, Sem ruído vibram os espaços. Sobre a areia o tempo poisa Leve como um lenço. Mas por mais bela que seja cada coisa Tem um monstro em si suspenso.
    [Show full text]
  • Historical Translocations by Māori May Explain the Distribution and Genetic
    www.nature.com/scientificreports OPEN Historical translocations by Māori may explain the distribution and genetic structure of a threatened Received: 12 June 2018 Accepted: 6 November 2018 surf clam in Aotearoa (New Published: xx xx xxxx Zealand) Philip M. Ross 1, Matthew A. Knox2,3, Shade Smith4, Huhana Smith5, James Williams6 & Ian D. Hogg2,7 The population genetic structure of toheroa (Paphies ventricosa), an Aotearoa (New Zealand) endemic surf clam, was assessed to determine levels of inter-population connectivity and test hypotheses regarding life history, habitat distribution and connectivity in coastal vs. estuarine taxa. Ninety-eight toheroa from populations across the length of New Zealand were sequenced for the mitochondrial cytochrome c oxidase I gene with analyses suggesting a population genetic structure unique among New Zealand marine invertebrates. Toheroa genetic diversity was high in Te Ika-a Māui (the North Island of New Zealand) but completely lacking in the south of Te Waipounamu (the South Island), an indication of recent isolation. Changes in habitat availability, long distance dispersal events or translocation of toheroa to southern New Zealand by Māori could explain the observed geographic distribution of toheroa and their genetic diversity. Given that early-Māori and their ancestors, were adept at food cultivation and relocation, the toheroa translocation hypothesis is plausible and may explain the disjointed modern distribution of this species. Translocation would also explain the limited success in restoring what may in some cases be ecologically isolated populations located outside their natural distributions and preferred niches. Dispersal and connectivity among populations of marine organisms are strongly infuenced by a species’ life his- tory characteristics1.
    [Show full text]