Sequences Kelly Tong 2017/07/17
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube. -
Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
Microfilmed 1996 Information to Users
UMI MICROFILMED 1996 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 NonhZeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Interpoint Distance Methods for the Analysis of High Dimensional Data DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By John Lawrence, B. -
Fibonacci Numbers
mathematics Article On (k, p)-Fibonacci Numbers Natalia Bednarz The Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powsta´nców Warszawy 12, 35-959 Rzeszów, Poland; [email protected] Abstract: In this paper, we introduce and study a new two-parameters generalization of the Fibonacci numbers, which generalizes Fibonacci numbers, Pell numbers, and Narayana numbers, simultane- ously. We prove some identities which generalize well-known relations for Fibonacci numbers, Pell numbers and their generalizations. A matrix representation for generalized Fibonacci numbers is given, too. Keywords: Fibonacci numbers; Pell numbers; Narayana numbers MSC: 11B39; 11B83; 11C20 1. Introduction By numbers of the Fibonacci type we mean numbers defined recursively by the r-th order linear recurrence relation of the form an = b1an−1 + b2an−2 + ··· + bran−r, for n > r, (1) where r > 2 and bi > 0, i = 1, 2, ··· , r are integers. For special values of r and bi, i = 1, 2, ··· r, the Equality (1) defines well-known numbers of the Fibonacci type and their generalizations. We list some of them: Citation: Bednarz, N. On 1. Fibonacci numbers: Fn = Fn−1 + Fn−2 for n > 2, with F0 = F1 = 1. (k, p)-Fibonacci Numbers. 2. Lucas numbers: Ln = Ln−1 + Ln−2 for n > 2, with L0 = 2, L1 = 1. Mathematics 2021, 9, 727. https:// 3. Pell numbers: Pn = 2Pn−1 + Pn−2 for n > 2, with P0 = 0, P1 = 1. doi.org/10.3390/math9070727 4. Pell–Lucas numbers: Qn = 2Qn−1 + Qn−2 for n > 2, with Q0 = 1, Q1 = 3. 5. Jacobsthal numbers: Jn = Jn−1 + 2Jn−2 for n > 2, with J0 = 0, J1 = 1. -
On Repdigits As Product of Consecutive Fibonacci Numbers1
Rend. Istit. Mat. Univ. Trieste Volume 44 (2012), 393–397 On repdigits as product of consecutive Fibonacci numbers1 Diego Marques and Alain Togbe´ Abstract. Let (Fn)n≥0 be the Fibonacci sequence. In 2000, F. Luca proved that F10 = 55 is the largest repdigit (i.e. a number with only one distinct digit in its decimal expansion) in the Fibonacci sequence. In this note, we show that if Fn ··· Fn+(k−1) is a repdigit, with at least two digits, then (k, n) = (1, 10). Keywords: Fibonacci, repdigits, sequences (mod m) MS Classification 2010: 11A63, 11B39, 11B50 1. Introduction Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for possessing amaz- ing properties. In 1963, the Fibonacci Association was created to provide an opportunity to share ideas about these intriguing numbers and their applica- tions. We remark that, in 2003, Bugeaud et al. [2] proved that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 (see [6] for the Fibono- mial version). In 2005, Luca and Shorey [5] showed, among other things, that a non-zero product of two or more consecutive Fibonacci numbers is never a perfect power except for the trivial case F1 · F2 = 1. Recall that a positive integer is called a repdigit if it has only one distinct digit in its decimal expansion. In particular, such a number has the form a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. -
On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues S
ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey Shah [1] and Bruckner [2] have considered the problem of determining which moduli m have the property that the Fibonacci sequence {u }, de- fined in the usual way9 contains a complete system of residues modulo m, Following Shah we say that m is defective if m does not have this property, The results proved in [1] includes (I) If m is defective, so is any multiple of m; in particular, 8n is always defective. (II) if p is a prime not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (in) If p is a prime = 3 or 7 (mod 20) and is not defective^ thenthe set {0, ±1, =tu3, ±u49 ±u5, • • • , ±u }9 where h = (p + l)/2 ? is a complete system of residues modulo p„ In [2], Bruckner settles the case of prime moduli by showing that all primes are defective except 2, 3S 5, and 7. In this paper we complete the work of Shah and Bruckner by proving the following re suit f which completely characterizes all defective and nondefective moduli. Theorem. A number m is not defective if and only if m has one of the following forms: k k k 5 , 2 * 5 f 4»5 , 3 k k 3 *5 5 6«5 , k k 7-5 , 14* 5* , where k ^ 0S j — 1. Thus almost all numbers are defective. We will prove a series of lem- mas, from which the theorem will follow directly, We first make some use- ful definitions. -
Grade 7 Mathematics Strand 6 Pattern and Algebra
GR 7 MATHEMATICS S6 1 TITLE PAGE GRADE 7 MATHEMATICS STRAND 6 PATTERN AND ALGEBRA SUB-STRAND 1: NUMBER PATTERNS SUB-STRAND 2: DIRECTED NUMBERS SUB-STRAND 3: INDICES SUB-STARND 4: ALGEBRA GR 7 MATHEMATICS S6 2 ACKNOWLEDGEMENT Acknowledgements We acknowledge the contributions of all Secondary and Upper Primary Teachers who in one way or another helped to develop this Course. Special thanks to the Staff of the mathematics Department of FODE who played active role in coordinating writing workshops, outsourcing lesson writing and editing processes, involving selected teachers of Madang, Central Province and NCD. We also acknowledge the professional guidance provided by the Curriculum Development and Assessment Division throughout the processes of writing and, the services given by the members of the Mathematics Review and Academic Committees. The development of this book was co-funded by GoPNG and World Bank. MR. DEMAS TONGOGO Principal- FODE . Written by: Luzviminda B. Fernandez SCO-Mathematics Department Flexible Open and Distance Education Papua New Guinea Published in 2016 @ Copyright 2016, Department of Education Papua New Guinea All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or any other form of reproduction by any process is allowed without the prior permission of the publisher. ISBN: 978 - 9980 - 87 - 250 - 0 National Library Services of Papua New Guinea Printed by the Flexible, Open and Distance Education GR 7 MATHEMATICS S6 3 CONTENTS CONTENTS Page Secretary‟s Message…………………………………….…………………………………......... 4 Strand Introduction…………………………………….…………………………………………. 5 Study Guide………………………………………………….……………………………………. 6 SUB-STRAND 1: NUMBER PATTERNS ……………...….……….……………..……….. -
Product of Consecutive Tribonacci Numbers with Only One Distinct Digit
1 2 Journal of Integer Sequences, Vol. 22 (2019), 3 Article 19.6.3 47 6 23 11 Product of Consecutive Tribonacci Numbers With Only One Distinct Digit Eric F. Bravo and Carlos A. G´omez Department of Mathematics Universidad del Valle Calle 13 No 100 – 00 Cali Colombia [email protected] [email protected] Florian Luca School of Mathematics University of the Witwatersrand Johannesburg South Africa and Research Group in Algebraic Structures and Applications King Abdulaziz University Jeddah Saudi Arabia and Department of Mathematics University of Ostrava 30 Dubna 22, 701 03 Ostrava 1 Czech Republic [email protected] Abstract Let (Fn)n≥0 be the sequence of Fibonacci numbers. Marques and Togb´eproved that if the product Fn ··· Fn+ℓ−1 is a repdigit (i.e., a number with only distinct digit 1 in its decimal expansion), with at least two digits, then (ℓ,n)=(1, 10). In this paper, we solve the same problem with Tribonacci numbers instead of Fibonacci numbers. 1 Introduction A positive integer is called a repdigit if it has only one distinct digit in its decimal expansion. The sequence of numbers with repeated digits is included in Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS) [11] as sequence A010785. In 2000, Luca [6] showed that the largest repdigit Fibonacci number is F10 = 55 and the largest repdigit Lucas number is L5 = 11. Motivated by the results of Luca [6], several authors have explored repdigits in general- izations of Fibonacci numbers and Lucas numbers. For instance, Bravo and Luca [1] showed 1 (3) that the only repdigit in the k-generalized Fibonacci sequence , is F8 = 44. -
Estimating Indirect Parental Genetic Effects on Offspring Phenotypes Using Virtual Parental Genotypes Derived from Sibling and Half Sibling Pairs
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959114; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Estimating indirect parental genetic effects on offspring phenotypes using virtual parental genotypes derived from sibling and half sibling pairs Liang-Dar Hwang#1, Justin D Tubbs#2, Justin Luong1, Gunn-Helen Moen1,3, Pak C Sham*2,5,6, Gabriel Cuellar-Partida*1, David M Evans*1,7 1The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia 2Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China 3Institute of Clinical Medicine, University of Oslo 4Population Health Science, Bristol Medical School, University of Bristol, UK. 5Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China 6State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong SAR, China 7Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK #Joint first authors *Joint senior authors Corresponding author: David M Evans Email: [email protected] Telephone: +61 7 3443 7347 Address: University of Queensland Diamantina Institute Level 7, 37 Kent St Translational Research Institute Woolloongabba, QLD 4102 Australia bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959114; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Retrograde Renegades and the Pascal Connection: Repeating Decimals Represented by Fibonacci and Other Sequences Appearing from Right to Left
RETROGRADE RENEGADES AND THE PASCAL CONNECTION: REPEATING DECIMALS REPRESENTED BY FIBONACCI AND OTHER SEQUENCES APPEARING FROM RIGHT TO LEFT Marjorie Bicknell-Johnson Santa Clara Unified School District, Santa Clara, CA 95051 (Submitted October 1987) Repeating decimals show a surprisingly rich variety of number sequence patterns when their repetends are viewed in retrograde fashion, reading from the rightmost digit of the repeating cycle towards the left. They contain geometric sequences as well as Fibonacci numbers generated by an application of Pascal*s triangle. Further, fractions whose repetends end with successive terms of Fnm , m = 1, 2, ..., occurring in repeating blocks of k digits, are completely characterized, as well as fractions ending with Fnm+p or Lnm+p, th where Fn is the n Fibonacci number, F1 = 1, F2 = 1, Fn+i = Fn + Fn_19 th and Ln is the n Lucas number, 1. The Pascal Connection It is no surprise that 1/89 contains the sum of successive Fibonacci num- bers in its decimal expansion [2], [3], [4], [5], as 1/89 = .012358 13 21 34 However, 1/89 can also be expressed as the sum of successive powers of 11, as 1/89 = .01 .0011 .000121 .00001331 .0000014641 where 1/89 = 1/102 + ll/lO4 + 1'12/106 + ..., which is easily shown by summing the geometric progression. If the array above had the leading zeros removed and was left-justified, we would have Pascal's triangle in a form where the Fibonacci numbers arise as the sum of the rising diagonals. Notice that llk generates rows of Pascal's triangle, and that the columns of the array expressing 1/89 are the diagonals of Pascal's triangle. -
A NOTE on BICOMPLEX FIBONACCI and LUCAS NUMBERS Semra
International Journal of Pure and Applied Mathematics Volume 120 No. 3 2018, 365-377 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: 10.12732/ijpam.v120i3.7 ijpam.eu A NOTE ON BICOMPLEX FIBONACCI AND LUCAS NUMBERS Semra Kaya Nurkan1 §, Ilkay˙ Arslan G¨uven2 1Department of Mathematics U¸sak University 64200, U¸sak, TURKEY 2Department of Mathematics Gaziantep University 27310, Gaziantep, TURKEY Abstract: In this study, we define a new type of Fibonacci and Lucas numbers which are called bicomplex Fibonacci and bicomplex Lucas numbers. We obtain the well-known properties e.g. D’ocagnes, Cassini, Catalan for these new types. We also give the identities of negabicomplex Fibonacci and negabicomplex Lucas numbers, Binet formulas and relations of them. AMS Subject Classification: 11B39, 11E88, 11R52 Key Words: Fibonacci numbers, Lucas numbers, bicomplex numbers 1. Introduction Fibonacci numbers are invented by Italian mathematician Leonardo Fibonacci when he wrote his first book Liber Abaci in 1202 contains many elementary problems, including famous rabbit problem. The Fibonacci numbers are the numbers of the following integer sequence; 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... The sequence of Fibonacci numbers which is denoted by Fn is defined as the Received: February 21, 2017 c 2018 Academic Publications, Ltd. Revised: March 28, 2018 url: www.acadpubl.eu Published: December 4, 2018 §Correspondence author 366 S.K. Nurkan, I.A.˙ G¨uven linear reccurence relation Fn = Fn−1 + Fn−2 with F = F = 1 and n Z. Also as a result of this relation we can define F = 1 2 ∈ 0 0.