LACTIC ACID PRODUCTION by IMMOBILIZED RHIZOPUS ORYZAE in a ROTATING FIBROUS BED BIOREACTOR DISSERTATION Presented in Partial

Total Page:16

File Type:pdf, Size:1020Kb

LACTIC ACID PRODUCTION by IMMOBILIZED RHIZOPUS ORYZAE in a ROTATING FIBROUS BED BIOREACTOR DISSERTATION Presented in Partial LACTIC ACID PRODUCTION BY IMMOBILIZED RHIZOPUS ORYZAE IN A ROTATING FIBROUS BED BIOREACTOR DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nuttha Thongchul, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Shang-Tian Yang, Advisor Professor Jeffrey J. Chalmers __________________________________ Professor James F. Rathman Advisor Graduate Program in Chemical Engineering ABSTRACT Lactic acid has long been widely used in food and pharmaceutical industries. Due to the evolution of new applications in solvent replacement, biodegradable polymer, and oxygenated chemicals, the estimated worldwide market of lactic acid, especially the L(+)-isomer, tends to increase rapidly. Lactic acid bacteria have been extensively used in industrial production of lactic acid because of their high growth rate and product yield. However, the major limitations including costly substrates and complicated product recovery make bacterial fermentation economically unattractive. In contrast, filamentous fungi, Rhizopus oryzae, can produce the optically pure L(+)-lactic acid from complex carbohydrates present in agricultural residues and plant biomass without prior treatment; therefore, can overcome the problems in bacterial fermentation. However, cultivation of filamentous fungi in a stirred tank bioreactor is usually troublesome because of the diversity and change in morphology during fermentation which in turn affects lactic acid production. Therefore, in this research, fungal morphology was controlled by immobilization. Contrary to free cell culture in the stirred tank bioreactor, the fermentation carried out in a Rotating Fibrous Bed bioreactor (RFBB) resulted in good control of morphology, and improved oxygen transfer and lactic acid production from glucose. The improved oxygen transfer obtained in the RFBB not ii only increased lactic acid production rate, but also limited undesirable ethanol production and allowed the bioreactor to be operated for long-term production. To minimize the production cost, the feasibility of using low-value substrates derived from agricultural residues and plant biomass was studied. It was found that R. oryzae was capable of utilizing both starchy materials present in agricultural residues and pentose sugars which were abundant in plant biomass. Lactic acid yields obtained from these substrates were comparable to the yield from glucose. However, the production rate obtained from fermentation of pentose and insoluble starch was lower than that obtained from fermentations of glucose and soluble starch because of the complicated pentose metabolism and poor oxygen transfer in the cultivation with insoluble starch. Process engineering techniques were also used to improve lactic acid production in the RFBB. Previous study reported the critical demand of oxygen for lactic acid production. In this research, it was found that increasing oxygen transfer rate led to the increase in lactic acid productivity. Although high oxygen transfer rate was maintained, ethanol production and the estimation of the critical biofilm thickness indicated an anoxic condition in the overgrown immobilized fungal cells on the rotating fibrous matrix. In this study, growth of immobilized cells was controlled by shaving-off the mycelia with rotational shear rate and by limiting the concentration of the nitrogen source in the medium. iii In order to achieve controlled growth and immobilization of productive cells for stable long-term operation, spore germination and cell immobilization at the initial phase was studied. The effect of rotational speed on spore immobilization on different fibrous matrices was investigated. The mechanisms of spore immobilization on different fibrous matrices were elucidated. The knowledge gained in these process engineering techniques is important to the development of the RFBB and its scale-up for lactic acid production from sugars. iv Dedicated to my mother v ACKNOWLEDGMENTS My great appreciation goes to my advisor, Dr. Shang-Tian Yang, for intellectual support, encouragement, and enthusiasm throughout my study, and for his patience in correcting both my stylistic and scientific errors. I have gained a lot from his insights and I have enjoyed my staying at Ohio State as his student. I would like to acknowledge with sincere gratitude to the members of my dissertation committee, Dr. Jeffrey J. Chalmers and Dr. James F. Rathman. I am grateful for their helpful advices on various topics. I wish to thank Dr. Nalin Nilubol, Dr. Suraphong Nawankasattusat, and Dr. Amorn Petchsom for providing me help and opportunity to pursue my Ph.D. study. The scholarship from Chulalongkorn University is gratefully acknowledged. Financial supports from the U.S. department of agriculture (SBIR), Consortium for Plant Biotechnology Research, Inc., and Environmental Energy, Inc. to various phases of this work are also acknowledged. I also appreciate Mr. Carl Scott, Mr. Paul Green, and Mr. Leigh Evrard for their technical assistances. My colleagues in my research group, especially Ms. Supaporn Suwannakham, Ms. Suwattana Pruksasri, Dr. Liping Wang, and Mr. Anli Ouyang, offered many kinds of support and help over the last 4 years. I benefited a lot from discussions with them. vi I feel indebted to my best friend, Mr. Kovit Visessompak, for his helps in many ways during the last 4 years. I also wish to thank Mr. Taradon Luangtongkum, who is always by my side, for his warm support and understanding. Special thank goes to my family for their love and support. Without their love, I would not be able to deal with ups and downs during my study. Finally, my heartfelt gratitude goes to my mother, Ms. Sudathip Thongchul, for her love and inspiration. My graduation could have not been possible without her warm support and understanding. vii VITA October 5, 1974…………………….. …………..Born – Bangkok, Thailand July, 1995…………………………………….....B.S. Chemical Engineering Chulalongkorn University Bangkok, Thailand August, 1998……………………………………M.S. Bioprocess Technology Asian Institute of Technology Pathumthani, Thailand September, 1998 – present……………………...Researcher Chulalongkorn University Bangkok, Thailand PUBLICATION Thongchul, N. and Yang, S.-T., Controlling filamentous fungal morphology by immobilization on a rotating fibrous matrix to enhance oxygen transfer and L(+)-lactic acid production by Rhizopus oryzae. In Fermentation Biotechnology, ed. B.C. Saha. Oxford University Press, MA, 2003, pp. 36-51. FIELD OF STUDY Major Field: Chemical Engineering Specialty: Biochemical Engineering viii TABLE OF CONTENTS Page Abstract…………………………………………………………………….................……ii Dedication……………………………………………………………………….........……v Acknowledgments……………………………………………………………………..….vi Vita…………………………………………………………………………………....…viii List of Tables……………………………………………………………....................….xiii List of Figures………………………………………………………………………...…..xv Chapters: 1. Introduction………………………………………………………………………..…. …..1 2. Literature Review…………………………………………………………………..….13 2.1 Significance of Filamentous Fungal Fermentation…………………………...…..13 2.2 Fungal Morphology in Submerged Fermentation…………………………….…..15 2.2.1 Substrate………………………………………………………………...…..20 2.2.2 pH……………………………………………………………………….…..24 2.2.3 Shear rate……………………………………………………………….…..26 2.2.4 Dissolved oxygen……………………………………………………….….31 2.3 Reaction Systems Used in Submerged Filamentous Fungal Fermentation…..…..37 2.4 L(+)-Lactic Acid Production……………………………………………………..41 2.4.1 Metabolic pathway of R. oryzae………………………………………..…..42 2.4.2 L(+)-lactic acid production by R. oryzae……………………………….…..43 2.5 Conclusion………………………………………………………………………..44 2.6 References…………………………………………………………………….…..46 3. Controlling Filamentous Fungal Morphology by Immobilization on a Rotating Fibrous Matrix to Enhance Oxygen Transfer and L(+)-Lactic Acid Production by Rhizopus oryzae……………………………………………………………….…..69 Summary………………………………………………………………………….…..69 3.1 Introduction…………………………………………………………………...…..71 3.2 Materials and Methods………………………………………………………..…..74 3.2.1 Culture, inoculum preparation, and medium compositions…………….…..74 3.2.2 Rotating Fibrous Bed Bioreactor……………………………………….…..74 3.2.3 Determination of volumetric oxygen transfer coefficient…………………..75 ix 3.2.4 Analytical methods……………………………………………………..…..76 3.3 Results and Discussion……………………………………………………….…..77 3.3.1 Effect of immobilization on fungal morphology……………………….…..77 3.3.2 Fermentation kinetics…………………………………………………...…..77 3.3.3 Long-term lactic acid production in the RFBB……………………………..79 3.3.4 Effects of aeration on fermentation…………………………………….…..82 3.4 Conclusion………………………………………………………………………..84 3.5 References…………………………………………………………………….…..85 4. Preference of Carbon Assimilation in Lactic Acid Fermentation by Rhizopus oryzae in a Rotating Fibrous Bed Bioreactor…………………………………….…..94 Summary………………………………………………………………………….…..94 4.1 Introduction…………………………………………………………………...…..96 4.2 Materials and Methods………………………………………………………..…..98 4.2.1 Culture, inoculum preparation, and medium compositions…………….…..98 4.2.2 Bioreactor setup………………………………………………………... .…99 4.2.3 Lactic acid fermentation……………………………………………….. ….99 4.2.4 Acid hydrolysis of corn fiber…………………………………………...…100 4.2.5 Oxygen transfer determination……………………………………………100 4.2.6 Analytical methods……………………………………………………..…101 4.3 Results and Discussion……………………………………………………….…104 4.3.1 Fermentation of glucose and corn starch……………………………….…104 4.3.2 Fermentation
Recommended publications
  • Isolation and Expression of a Malassezia Globosa Lipase Gene, LIP1 Yvonne M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ORIGINAL ARTICLE Isolation and Expression of a Malassezia globosa Lipase Gene, LIP1 Yvonne M. DeAngelis1, Charles W. Saunders1, Kevin R. Johnstone1, Nancy L. Reeder1, Christal G. Coleman2, Joseph R. Kaczvinsky Jr1, Celeste Gale1, Richard Walter1, Marlene Mekel1, Martin P. Lacey1, Thomas W. Keough1, Angela Fieno1, Raymond A. Grant1, Bill Begley1, Yiping Sun1, Gary Fuentes1, R. Scott Youngquist1, Jun Xu1 and Thomas L. Dawson Jr1 Dandruff and seborrheic dermatitis (D/SD) are common hyperproliferative scalp disorders with a similar etiology. Both result, in part, from metabolic activity of Malassezia globosa and Malassezia restricta, commensal basidiomycete yeasts commonly found on human scalps. Current hypotheses about the mechanism of D/SD include Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that lipase activity was detected in four species of Malassezia, including M. globosa. We isolated lipase activity by washing M. globosa cells. The isolated lipase was active against diolein, but not triolein. In contrast, intact cells showed lipase activity against both substrates, suggesting the presence of at least another lipase. The diglyceride-hydrolyzing lipase was purified from the extract, and much of its sequence was determined by peptide sequencing. The corresponding lipase gene (LIP1) was cloned and sequenced. Confirmation that LIP1 encoded a functional lipase was obtained using a covalent lipase inhibitor. LIP1 was differentially expressed in vitro. Expression was detected on three out of five human scalps, as indicated by reverse transcription-PCR.
    [Show full text]
  • Steady State and Transient Behavior of a Continuous Fermentor Thor Almep R Hanson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Steady state and transient behavior of a continuous fermentor Thor almeP r Hanson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Hanson, Thor almeP r, "Steady state and transient behavior of a continuous fermentor " (1969). Retrospective Theses and Dissertations. 4109. https://lib.dr.iastate.edu/rtd/4109 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-13,589 HANSONJ Thor Palmer, 1942- STEADY STATE AND TRANSIENT BEHAVIOR OF A CONTINUOUS FERMENTOR. Iowa State University, Ph.D., 1969 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED STEADY STATE AND TRANSIENT BEHAVIOR OF A CONTINUOUS FERMENTOR Thor Palmer Hanson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Chemical Engineering Approved : Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. D( 'ége Iowa State University Ames, lowa 1969 11 TABLE OP CONTENTS Page ABSTRACT v I. INTRODUCTION 1 II. BACKGROUND INFORMATION 5 A. Bacterial Growth 5 B. Mathematical Models for Bacterial Growth l4 1.
    [Show full text]
  • Fermentation Microorganisms and Flavor Changes in Fermented Foods R.F
    Fermentation Technology—12th World Congress of Food Science and Technology Fermentation Microorganisms and Flavor Changes in Fermented Foods R.F. MCFEETERS ABSTRACT: Food fermentation processes often result in profound changes in flavor relative to the starting ingredients. However, fermenting foods are typically very complex ecosystems with active enzyme systems from the ingredient materials interacting with the metabolic activities of the fermentation organisms. Factors such as added salt, particle sizes, temperature, and oxygen levels will also have important effects on the chemistry that occurs during fermentation. This is a brief review of recent research on flavor changes in food fermentations. The emphasis will be on the role of lactic acid bacteria in changing the compounds that help determine the character of fermented foods from plant-based substrates. Introduction GC-olfactometry led to recognition of a compound with an odor actic acid bacteria influence the flavor of fermented foods in a close to that of the fermentation brine. The compound with a fer- Lvariety of ways. In many cases, the most obvious change in a lac- mentation brine odor was identified as trans-4-hexenoic acid. They tic acid fermentation is the production of acid and lowering pH that also tentatively identified the presence of cis-4-hexenoic acid. In a results in an increase in sourness. Since most of the acid produced reconstitution experiment, a solution that contained 25 ppm trans- in fermentations will be produced by the metabolism of sugars, 4-hexenoic acid, 10 ppm phenyl ethyl alcohol, 0.65% lactic acid, sweetness will likely decrease as sourness increases. The produc- 0.05% acetic acid, and 8% NaCl had an odor very similar to that of tion of volatile flavor components tends to be the first mechanism brine from fermented cucumbers.
    [Show full text]
  • Effect of Lactic Acid Fermentation on Color, Phenolic Compounds And
    microorganisms Article Effect of Lactic Acid Fermentation on Color, Phenolic Compounds and Antioxidant Activity in African Nightshade Alexandre Degrain 1,2, Vimbainashe Manhivi 1, Fabienne Remize 2,* , Cyrielle Garcia 2 and Dharini Sivakumar 1 1 Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; [email protected] (A.D.); [email protected] (V.M.); [email protected] (D.S.) 2 QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d’Avignon, 97490 Sainte Clotilde, France; [email protected] * Correspondence: [email protected]; Tel.: +27-012-382-5303 Received: 3 August 2020; Accepted: 23 August 2020; Published: 30 August 2020 Abstract: This study aimed to investigate the influences of fermentation at 37 ◦C for 3 days by different lactic acid bacterium strains, Lactobacillus plantarum (17a), Weissella cibaria (21), Leuconostoc pseudomesenteroides (56), W. cibaria (64) or L. plantarum (75), on color, pH, total soluble solids (TSS), phenolic compounds and antioxidant activity of African nightshade (leaves). Results indicated fermentation with L. plantarum 75 strain significantly decreased the pH and total soluble solids, and increased the concentration of ascorbic acid after 3 days. L. plantarum 75 strain limited the color modification in fermented nightshade leaves and increased the total polyphenol content and the antioxidant activity compared to the raw nightshade leaves. Overall, L. plantarum 75 enhanced the functional potential of nightshade leaves and improved the bioavailability of gallic, vanillic acid, coumaric, ferulic ellagic acids, flavonoids (catechin, quercetin and luteolin) and ascorbic acid compared to the other lactic acid bacterium strains.
    [Show full text]
  • Studies on Fungi Associated with Storage Rot of Carrot
    DOI: 10.21276/sajb.2016.4.10.15 Scholars Academic Journal of Biosciences (SAJB) ISSN 2321-6883 (Online) Sch. Acad. J. Biosci., 2016; 4(10B):880-885 ISSN 2347-9515 (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Original Research Article Studies on Fungi Associated with Storage Rot of Carrot (Daucus carota L.) and Radish (Raphanus sativas L.) in Odisha, India Khatoon Akhtari1, Mohapatra Ashirbad2, Satapathy Kunja Bihari1* 1Post Graduate, Department of Botany, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India 2Sri Jayadev College of Education and Technology, Naharkanta, Bhubaneswar-752101, Odisha, India *Corresponding author Satapathy Kunja Bihari Email: [email protected] Abstract: An extensive survey on fungi associated with post-harvest deterioration of carrot and radish storage roots was conducted during 2014-2015 in different market places of Odisha, India. Rotten samples were collected from five different localities such as Bhubaneswar, Cuttack, Jajpur, Puri, Balasore and Bhadrak. Three fungal species such as Aspergillus niger, Geotrichum candidum and Rhizopus oryzae were isolated from the rotten samples. Of these, Geotrichum candidum has highest percentage frequency of occurrence in both carrot and radish. In carrot next to Geotrichum candidum, Rhizopus oryzae showed more frequency of occurrence than Aspergillus niger but in case of radish the case is just opposite, here the percentage frequency of occurrence of Aspergillus niger was found to be more than Rhizopus oryzae. Pathogenicity tests revealed that all the isolated fungi were pathogenic to their respective host storage roots. However, Rhizopus oryzae was found to be most pathogenic on carrot leading to rapid disintegration of the infected roots while Geotrichum candidum was the least pathogenic.
    [Show full text]
  • NOTES: Ch 9, Part 4 - 9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration
    NOTES: Ch 9, part 4 - 9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration 9.5 - Fermentation enables some cells to produce ATP without the use of oxygen ● Cellular respiration requires O2 to produce ATP ● Glycolysis can produce ATP with or without O2 (in aerobic or anaerobic conditions) ● In the absence of O2, glycolysis couples with fermentation to produce ATP Alternative Metabolic Pathways - Vocabulary: ● aerobic: existing in presence of oxygen ● anaerobic: existing in absence of oxygen ● FERMENTATION = anaerobic catabolism of organic nutrients Types of Fermentation ● Fermentation consists of glycolysis plus reactions that regenerate NAD+, which can be reused by glycolysis ● Two common types are alcohol fermentation and lactic acid fermentation Alcohol Fermentation + Pyruvate + NADH ethanol + CO2 + NAD ● pyruvate is converted to ethanol ● NADH is oxidized to NAD+ (recycled) ● performed by yeast and some bacteria Alcohol Fermentation ● In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO2 ● Alcohol fermentation by yeast is used in brewing, winemaking, and baking 2 ADP + 2 P i 2 ATP Glucose Glycolysis 2 Pyruvate 2 NAD+ 2 NADH 2 CO2 + 2 H+ 2 Ethanol 2 Acetaldehyde Alcohol fermentation Lactic Acid Fermentation Pyruvate + NADH lactic acid + NAD+ ● pyruvate is reduced to lactic acid (3-C compound); no CO2 produced ● NADH is oxidized to NAD+ (recycling of NAD+) Lactic Acid Fermentation ● Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt ● Human muscle
    [Show full text]
  • First Record of Rhizopus Oryzae from Stored Apple Fruits in Saudi Arabia
    Plant Pathology & Quarantine 8(2): 116–121 (2018) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/8/2/2 Copyright ©Agriculture College, Guizhou University First record of Rhizopus oryzae from stored apple fruits in Saudi Arabia Al-Dhabaan FA Department of Biology, Science and Humanities College Alquwayiyah, Shaqra University, Saudi Arabia Al-Dhabaan FA 2018 – First record of Rhizopus oryzae from stored apple fruits in Saudi Arabia. Plant Pathology & Quarantine 8(2), 116–121, Doi 10.5943/ppq/8/2/2 Abstract During spring 2017, red delicious and Granny Smith apples with soft rot symptoms were collected from commercial markets in Saudi Arabia. The causal agent was isolated from infected fruits and its pathogenicity was confirmed by inoculation assays. To confirm the identity, total genomic DNA was extracted and multi-locus sequence data targeting two gene markers (ITS, ACT) was sequenced. Phylogenetic analysis confirmed the presence of two distinct clades; Saudi isolate was placed within a clade comprising Rhizopus oryzae and R. delemar reference isolates. Based on morphological characteristics, molecular identification and pathogenicity test, the fungus was identified as Rhizopus oryzae. This is the first report of Rhizopus soft rot caused by R. oryzae from stored apple fruits in Saudi Arabia. Key words – Rhizopus soft rot – phylogeny – pathogenicity – morphological characters – sequence data Introduction Rhizopus soft rot caused by Rhizopus oryzae occurs worldwide and reduces the quantity and quality of harvested vegetables and ornamental crops during storage, transit, and marketing (Amadioha 1996, 2001, Agrios 2005). Rhizopus soft rot is one of the most important postharvest diseases of apple, banana, watermelon, sweet potato and other hosts in Korea (Kwon et al.
    [Show full text]
  • The Living Cell
    THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic cells are independently functioning organisms, such as microscopic amoeba and bacteria cells whereas, eukaryotic cells generally function only when they are a part of a larger organism such as the cells that make up our body. An exception is yeast which is eukaryotic, yet lives as a single cell. Many different types of cells are found in nature. Cells come in all shapes and sizes and perform various functions. In the body, there are brain cells, skin cells, liver cells, stomach cells and so on. All of these cells have unique functions and features. While typical animal cells are about one-hundredth of a millimeter in diameter (1/100 mm), bacterial cells are only a few hundredth-thousandths of a centimeter in size (1/100,000 cm). Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. Bacterial cells may be rod Nerve cells are a complex Muscle cells are extremely shaped or spiral array of fibers elongated a b c Figure 1: a : Rod shaped bacterial cells; b: Nerve cell; c: elongated muscle cell The differences in shapes and sizes reflect the differences in the functions that the cells perform. Elongated muscle cells exert forces when they contract. Branched nerve cells transmit impulses to many other cells. 1 Bacterial cells operate independently and ensure their survival by reproducing in large numbers, whereas animal and plant cells have collective interdependence.
    [Show full text]
  • Division: Zygomycota
    Division: Zygomycota Zygomycota members are characterized by primitive coenocytic hyphae. More than 1050 Zygomycota species currently exist. They are mostly terrestrial in habitat, living in soil or on decaying plant or animal material. Some are parasites of plants, insects, and small animals, while others form symbiotic relationships with plants. Members of the division possess the ability to reproduce both sexually and asexually. Asexual spores include chlamydoconidia, conidia, and sporangiospores contained in sporangia borne on simple or branched sporangiophores. Sexual reproduction is isogamous producing a thick-walled sexual resting spore called a zygospore. Systematics of Zygomycota Two classes are recognized in this division; the Trichomycetes and Zygomycetes. Class: Zygomycetes Characteristics of the class are the same as those of the division. The class contains 6 orders, 29 families, 120 genera, approximately 800 species. Order: Endogonales The order includes only one family, four genera and 27 species. Its members are distinguished by their production of small sporocarps that are eaten by rodents and distributed by their feces. Order: Entomophthorales Most members of the order are pathogens of insects. A few attack nematodes, mites, and tardigrades, and some are saprotrophs. Genus: Entomophthora Members of the genus are parasitic on flies and other two-winged insects. Order: Kickxellales The order contains single family and eight genera. Order: Mucorales Mucorales, also known as pin molds, is the largest order of the class Zygomycetes. The order includes 13 families, 56 genera, 300 species. Most of its members are saprotrophic and grow on organic substrates. Some species are parasites or pathogens of animals, plants, and fungi. A few species cause human and animal disease zygomycosis, as well as allergic reactions.
    [Show full text]
  • Prepared with Aged Bean Grains Fermented by Rhizopus Oligosporus
    Research, Society and Development, v. 10, n. 2, e38110212503, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i2.12503 Vegan tempeh burger: prepared with aged bean grains fermented by Rhizopus oligosporus inoculum Hambúrguer vegano de tempeh: preparado com grãos de feijão envelhecidos fermentados por inóculo de Rhizopus oligosporus Hamburguesa vegana tempeh: preparada con granos de frijoles añejos fermentados con inóculo de Rhizopus oligosporus Received: 01/30/2021 | Reviewed: 02/07/2021 | Accept: 02/10/2021 | Published: 02/20/2021 Juliana Aparecida Correia Bento ORCID: https://orcid.org/0000-0001-9015-9426 Federal University of Goiás, Brazil E-mail: [email protected] Priscila Zaczuk Bassinello ORCID: https://orcid.org/0000-0002-8545-9501 EMBRAPA Rice and Beans, Brazil E-mail: [email protected] Aline Oliveira Colombo ORCID: https://orcid.org/0000-0002-2198-0760 Federal University of Goiás, Brazil E-mail: [email protected] Rayane Jesus Vital ORCID: https://orcid.org/0000-0002-5194-8905 Paulista University, Brazil E-mail: [email protected] Rosângela Nunes Carvalho ORCID: https://orcid.org/0000-0002-6862-8940 EMBRAPA Rice and Beans, Brazil E-mail: [email protected] Abstract This work has the objective of producing inoculum to enable tempeh production from aged common bean, by checking fermentation development according to the soybean/common bean ratio and defining the procedure for tempeh preparing in compliance with regulation on standards for acceptable microbiological contamination. Tempehs of common bean (BT), soybean (ST) and both (SBT) were produced by two methods (traditional and modified). The viable BT was used for hamburger preparation, which was evaluated for sensory acceptance in comparison to the traditional ST.
    [Show full text]
  • Developing a Role for Rhizopus Oryzae in the Biobased Economy by Aiming at Ethanol and Cyanophycin Coproduction
    Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis committee Promotor Prof. Dr. J.P.M. Sanders Professor a of Organic Chemistry Wageningen University & Research Promotor Dr. R.A. Weusthuis Associated Professor, Bioprocess Engineering Wageningen University & Research Other members: Prof. Dr. B.P.H.J. Thomma, Wageningen University & Research Prof. Dr. J. Hugenholtz, Wageningen University & Research Dr. M.A. Kabel, Wageningen University & Research Prof. Dr. P.J. Punt, Leiden University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis Submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 5 September 2018 at 1:30 p.m. in the Aula Bas Johannes Meussen Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction (180 pages). PhD thesis, Wageningen University, The Netherlands (2018). With propositions and summary in English. ISBN: 978-94-6343-484-3 DOI: https://doi.org/10.18174/456662 Contents Chapter 1 General Introduction 1 Chapter 2 Metabolic engineering of Rhizopus 31 oryzae for the production of platform chemicals Chapter 3 Production of cyanophycin in 63 Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene Chapter 4 A fast and accurate UPLC method for 87 analysis of proteinogenic amino acids Chapter 5 Introduction of β-1,4-endoxylanase 116 activity in Rhizopus oryzae Chapter 6 General Discussion 135 Summary 165 Acknowledgements 161 Curriculum Vitea 165 List of Publications 167 Overview of Completed Training Activities 169 Chapter 1.
    [Show full text]
  • Antifungal Activity of Selected Malassezia Indolic Compounds Detected in Culture
    This is a repository copy of Antifungal activity of selected Malassezia indolic compounds detected in culture. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/143331/ Version: Accepted Version Article: Gaitanis, G, Magiatis, P, Mexia, N et al. (4 more authors) (2019) Antifungal activity of selected Malassezia indolic compounds detected in culture. Mycoses, 62 (7). pp. 597-603. ISSN 0933-7407 https://doi.org/10.1111/myc.12893 © 2019 Blackwell Verlag Gmb. This is the peer reviewed version of the following article:Gaitanis, G, Magiatis, P, Mexia, N, et al. Antifungal activity of selected Malassezia indolic compounds detected in culture. Mycoses. 2019; 62: 597– 603, which has been published in final form at https://doi.org/10.1111/myc.12893. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]