Head, Neck, and Abdominopelvic Septic Thrombophlebitis: Current Evidence and Challenges in Diagnosis and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Head, Neck, and Abdominopelvic Septic Thrombophlebitis: Current Evidence and Challenges in Diagnosis and Treatment Review Article 301 Head, Neck, and Abdominopelvic Septic Thrombophlebitis: Current Evidence and Challenges in Diagnosis and Treatment Luca Valerio1 Nicoletta Riva2 1 Center for Thrombosis and Hemostasis, University Medical Center Address for correspondence Luca Valerio, MD, Center for Thrombosis Mainz, University of Mainz, Mainz, Germany and Hemostasis, University Medical Center Mainz, University of 2 Department of Pathology and Anatomy, Faculty of Medicine and Mainz, Mainz, 55116, Germany (e-mail: [email protected]). Surgery, University of Malta, Msida, Malta Hämostaseologie 2020;40:301–310. Abstract Septic thrombophlebitis (STP) is a complex, cross-disciplinary clinical condition that combines a localized infection with a neighboring venous thrombosis. STP can occur at several possible anatomic sites, such as dural sinuses, jugular vein (Lemierre syn- drome), portal vein (pylephlebitis), and pelvic veins. Its high mortality in the preanti- biotic era improved considerably with the introduction of modern antibiotics. However, little evidence exists to date to guide its clinical management. The incidence of STP or its risk factors may be increasing, and its mortality may still be considerable. These Keywords trends would have far-reaching implications, especially in the setting of increasing ► septic resistance to antimicrobial agents. No clinical assessment tools exist to support patient thrombophlebitis screening or guide treatment in STP. Few interventional studies exist on the efficacy ► venous and safety of anticoagulation. Recommendations on its indications, duration, and the thromboembolism agents of choice are mostly based on evidence derived from small observational ► Lemierre syndrome studies. While all forms of STP pose similar challenges, future research may benefit ► pylephlebitis from the distinction between bacteria-associated, virus-associated, and mycosis- ► bacterial infection associated thrombophlebitis. Addressing these gaps in evidence would enhance our ► anticoagulant ability to diagnose this condition and treat patients effectively. Introduction the thrombus; (3) bacteremia; or (4) suppuration or micro- organisms in the thrombus itself.1 Hence, the notion of STP.2 Septic thrombophlebitis (STP) can be defined as venous The bacteria themselves or the inflammation that they thrombosis resulting from local bacterial infection or colo- elicit acts on the Virchow triad’s component of vascular nization. This common pathogenesis encompasses a group of damage.3 Indeed, the other two components of the triad, fi clinical conditions with speci c anatomic localizations, risk hypercoagulability and venous stasis, often explain the This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. factors, and prognoses. association of STP with specific sites and risk factors. The The idea that some venous thromboses have an infectious oldest example is pelvic thrombophlebitis: hypercoagulabil- origin originated from the observation that a thrombus may co- ity is provided by pregnancy/puerperium, stasis by the occur with local infection and inflammation. Historically, this dilation of the ovarian veins.4 pathogenesis was reflected in the anatomic-pathological dem- However, the term STP is often referred to two groups of onstration of (1) perivascular inflammation and (2) vein-wall conditions with overlapping but different etiology (►Fig. 1). suppuration (which, together, define phlebitis) contiguous to The first group includes thrombi resulting from vascular received © 2020 Georg Thieme Verlag KG DOI https://doi.org/ February 17, 2020 Stuttgart · New York 10.1055/a-1177-5127. accepted after revision ISSN 0720-9355. May 12, 2020 302 Head, Neck, and Abdominopelvic Septic Thrombophlebitis Valerio, Riva Fig. 1 Major risk factors and sites of septic thrombophlebitis. involvement in the context of a localized infection. Dural STP Epidemiology can involve the sagittal sinus, the lateral sinus, or the cavernous sinus, typically as a complication of meningitis, All STPs are rare. Estimates of their incidence in the general otitis media, or facial and sinusal infections, respectively. population amount to 1 to 2 per million population-years for Lemierre syndrome, a STP of the jugular vein, usually follows dural sinus STP6 and 1 per million population-years for an acute pharyngotonsillitis in children and young adults. Lemierre syndrome.7 Incidences are often produced for STP of the portal vein (pylephlebitis) is associated with specific age groups at risk: the yearly incidence of dural abdominal infections (diverticulitis, cholangitis, appendici- sinus STP is then estimated to be 13 to 16 cases per million tis). The second group of STP includes conditions associated adults,6 and that of Lemierre syndrome over 10 per million with septic colonization through a porte d’entrée—abreachof children and adolescents.7 Pelvic STP has been reported to anatomic continuity through which bacteria enter the vas- occur in 1:3,000 overall deliveries and 1:800 caesarean cular system even in the absence of an overt primary local deliveries.8 No reliable estimates of the incidence of pyle- infection. This mechanism explains all catheter-associated phlebitis exist; in a single-center retrospective study, it thrombophlebitis, including inferior vena cava thrombosis, complicated 0.6% of all intra-abdominal infections.9 and peripheral vein thrombophlebitis, often found in intra- venous drug users and burn patients. STP of the pelvic veins Pathophysiology can accompany either local infections or septic colonization following delivery or surgery. Both groups may evolve into Coagulation plays a defensive role during infections by sepsis, and the distinction between infection and coloniza- limiting the dissemination of pathogens and contributing 10 fl tion is not always clear-cut. Yet, it sets apart catheter- to their destruction. The systemic in ammatory response This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. associated thrombophlebitis, which affects a relatively during sepsis includes the increased expression of procoa- well-defined patient population with specific implications gulant cytokines such as interleukin-1 (IL-1), IL-6, and for clinical management, and has been thus addressed by tumor necrosis factor-α,11 which also activate platelets.12 considerable research and long-standing international Locally, bacteria and viruses elicit a prothrombotic environ- guidelines.5 ment both indirectly, through endothelial damage and This article focuses on the forms of STP associated with local inflammation,13 and directly, by inducing the expression infection. While these conditions affect different patient pop- of tissue factor on monocytes and endothelial cells,14 acti- ulations, they are all treated in relatively similar ways and vating the intrinsic coagulation pathway,10 inhibiting the present the physician with the same management problems. physiologic anticoagulation mechanisms,15 and promoting Their common pathophysiology provides the rationale for a platelet aggregation,16 particularly via complement activa- unified view of all STPs as a single entity in clinical practice. We tion.17 Antiphospholipid antibodies generated during bac- will review available evidence and current challenges in the terial and viral infections18 may result in thrombotic epidemiology and management of STP associated with syndromes clinically indistinguishable from the classic head/neck, abdominal, and pelvic infections. antiphospholipid antibody syndrome.19 Gram-negative Hämostaseologie Vol. 40 No. 3/2020 Head, Neck, and AbdominopelvicSepticThrombophlebitis Valerio, Riva 303 bacteria may elicit the formation of antibodies that cross- subclinical cases. In contrast, increased imaging specificity react with platelet factor 4 (PF4), possibly leading to a may have lowered the estimated incidence of some condi- procoagulant state and even to “spontaneous heparin-in- tions. This is the case for septic pulmonary embolism as a duced thrombocytopenia.”20 complication of pelvic STP: its high incidence described in Thrombotic complications can derive either from the exces- the 1970s may have been partly due the exclusive use of the sive activation of coagulation or from the evasion of host poorly specific plain chest radiographs in the earliest diag- defenses by the pathogen. Prolonged sepsis damages endothe- noses.27 While thrombus demonstration is generally re- lial cells, leading to microvascular dysfunction and loss of quired for a diagnosis of dural STP and pylephlebitis, antithrombotic properties,11 while sepsis-associated neutro- Lemierre syndrome and pelvic STP can be diagnosed even phil extracellular traps (NETs) and neutrophil-derived extra- with negative imaging tests. In Lemierre syndrome, ultra- cellular vesicles also contribute to coagulation activation and sound, readily available in emergency settings, may miss the platelet aggregation.21 Some bacteria seem to have developed hallmark jugular vein thrombosis. In early stages, thrombi the ability to turn coagulation to their advantage. A well- may be fresh and poorly echogenic; in advanced stages, by documented example is the streptococcal ability to inhibit the time Fusobacterium or septic emboli are found, they may plasminogen and use the fibrin clot to shield themselves have resolved.23 Pelvic STP presents even more difficulties from the immune system.22 The combination of these mech- for the radiologist: no imaging techniques identify
Recommended publications
  • Clinical Case: Post-Procedure Thrombophlebitis
    Clinical Case: Post-procedure Thrombophlebitis A 46 year old female presented with long-standing history of right lower limb fatigue and aching with prolonged standing. Symptoms –Aching, cramping, heavy, tired right lower limb –Tenderness over bulging veins –Symptoms get worse at end of the day –She feels better with lower limb elevation and application of elastic compression stockings (ECS) History Medical and Surgical history: Sjogren syndrome, mixed connective tissue disease, GERD, IBS G2P2 with C-section x2, left breast biopsy No history of venous thrombosis Social history: non-smoker Family history: HTN, CAD Allergies: None Current medications: Pantoprazole Physical exam Both lower limbs were warm and well perfused Palpable distal pulses Motor and sensory were intact Prominent varicosities Right proximal posterior-lateral thigh and medial thigh No ulcers No edema Duplex ultrasound right lower limb GSV diameter was 6.4mm and had reflux from the SFJ to the distal thigh No deep venous reflux No deep vein thrombosis Duplex ultrasound right lower limb GSV tributary diameter 4.6mm Anterior thigh varicose veins diameter 1.5mm-2.6mm with reflux No superficial vein thrombosis What is the next step? –Conservative treatment – Phlebectomies –Sclerotherapy –Thermal ablation –Thermal ablation, phlebectomies and sclerotherapy Treatment Right GSV radiofrequency ablation Right leg ultrasound guided foam sclerotherapy with 0.5% sodium tetradecyl sulfate (STS) Right leg ambulatory phlebectomies x19 A compression dressing and ECS were applied to the right lower limb after the procedure. Follow-up 1 week post-procedure –The right limb was warm and well perfused –There was mild bruising, no infection and signs of mild thrombophlebitis –Right limb venous duplex revealed no deep vein thrombosis and the GSV was occluded 2 weeks post-procedure –Tender palpable cord was found in the right thigh extending into the calf with overlying hyperpigmentation.
    [Show full text]
  • Pulmonary Veno-Occlusive Disease
    Arch Dis Child: first published as 10.1136/adc.42.223.322 on 1 June 1967. Downloaded from Arch. Dis. Childh., 1967, 42, 322. Pulmonary Veno-occlusive Disease K. WEISSER, F. WYLER, and F. GLOOR From the Departments of Paediatrics and Pathology, University of Basle, Switzerland Pulmonary venous congestion with or without time. She gradually became more dyspnoeic, with 'reactive' or 'protective' pulmonary arterial hyper- increasing weakness and fatigue, and her weight fell. tension (Wood, 1954; Wood, Besterman, Towers, In October 1961 she developed jaundice with acholic and McIlroy, 1957) is most commonly caused by stools and dark urine. Infective hepatitis was diagnosed, and she was put on a diet and, 2 weeks later, on corti- left heart disease. The obstruction to blood flow costeroids. She had had no known contact with a case may, however, also be located upstream to the left of hepatitis. Again, except for her dyspnoea, no cardiac atrium. Among the known causes of such obstruc- or pulmonary abnormality was found. The icterus tion are compression of the pulmonary veins by a decreased very slowly, but never disappeared entirely. mediastinal mass (Edwards and Burchell, 1951; In the following months her general condition deteriora- Andrews, 1957; Evans, 1959); congenital stenosis of ted and she was breathless even at rest. On two occasions the pulmonary veins at the veno-atrial junction she had syncopal attacks lasting a few minutes. She lost (Lucas, Woolfrey, Anderson, Lester, and Edwards, 12 kg. within one year. In January 1962 the parents finally consented to her being admitted to hospital. 1962); or thrombus formation in the pulmonary On admission she was obviously ill, wasted, jaundiced, veins due to greatly reduced blood flow associated cyanotic, and severely dyspnoeic and orthopnoeic.
    [Show full text]
  • Treatment for Superficial Thrombophlebitis of The
    Treatment for superficial thrombophlebitis of the leg (Review) Di Nisio M, Wichers IM, Middeldorp S This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2012, Issue 3 http://www.thecochranelibrary.com Treatment for superficial thrombophlebitis of the leg (Review) Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 Figure1. ..................................... 7 Figure2. ..................................... 8 DISCUSSION ..................................... 11 AUTHORS’CONCLUSIONS . 12 ACKNOWLEDGEMENTS . 12 REFERENCES ..................................... 12 CHARACTERISTICSOFSTUDIES . 17 DATAANDANALYSES. 42 Analysis 1.1. Comparison 1 Fondaparinux versus placebo, Outcome 1 Pulmonary embolism. 51 Analysis 1.2. Comparison 1 Fondaparinux versus placebo, Outcome 2 Deep vein thrombosis. 51 Analysis 1.3. Comparison 1 Fondaparinux versus placebo, Outcome 3 Deep vein thrombosis and pulmonary embolism. 52 Analysis 1.4. Comparison 1 Fondaparinux versus placebo, Outcome 4 Extension of ST. 52 Analysis 1.5. Comparison 1 Fondaparinux versus placebo, Outcome 5 Recurrence of ST. 53 Analysis 1.6. Comparison 1 Fondaparinux
    [Show full text]
  • Inherited Thrombophilia Protein S Deficiency
    Inherited Thrombophilia Protein S Deficiency What is inherited thrombophilia? If other family members suffered blood clots, you are more likely to have inherited thrombophilia. “Inherited thrombophilia” is a condition that can cause The gene mutation can be passed on to your children. blood clots in veins. Inherited thrombophilia is a genetic condition you were born with. There are five common inherited thrombophilia types. How do I find out if I have an They are: inherited thrombophilia? • Factor V Leiden. Blood tests are performed to find inherited • Prothrombin gene mutation. thrombophilia. • Protein S deficiency. The blood tests can either: • Protein C deficiency. • Look at your genes (this is DNA testing). • Antithrombin deficiency. • Measure protein levels. About 35% of people with blood clots in veins have an inherited thrombophilia.1 Blood clots can be caused What is protein S deficiency? by many things, like being immobile. Genes make proteins in your body. The function of Not everyone with an inherited thrombophilia will protein S is to reduce blood clotting. People with get a blood clot. the protein S deficiency gene mutation do not make enough protein S. This results in excessive clotting. How did I get an inherited Sometimes people produce enough protein S but the thrombophilia? mutation they have results in protein S that does not Inherited thrombophilia is a gene mutation you were work properly. born with. The gene mutation affects coagulation, or Inherited protein S deficiency is different from low blood clotting. The gene mutation can come from one protein S levels seen during pregnancy. Protein S levels or both of your parents.
    [Show full text]
  • CT Observations Pertinent to Septic Cavernous Sinus Thrombosis
    755 CT Observations Pertinent to Septic Cavernous Sinus Thrombosis Jamshid Ahmadi1 The use of high-resolution computed tomography (CT) is described in four patients James R. Keane2 with septic cavernous sinus thrombosis, In all patients CT findings included multiple Hervey D. Segall1 irregular filling defects in the enhancing cavernous sinus. Unilateral or bilateral inflam­ Chi-Shing Zee 1 matory changes in the orbital soft tissues were also present. Enlargement of the superior ophthalmic vein due to extension of thrombophlebitis was noted in three patients. Since the introduction of antibiotics, septic cavernous sinus thrombosis (throm­ bophlebitis) has become a rare disease [1-4]. Despite considerable improvement in morbidity and mortality (previously almost universal), it remains a potentially lethal disease. The diagnosis of cavernous sinus thrombophlebitis requires a careful clinical evaluation supplemented with appropriate laboratory and radiographic studies. Current computed tomographic (CT) scanners (having higher spatial and contrast resolution) play an important role in the radiographic evaluation of the diverse pathologiC processes that involve the cavernous sinus [5-7]. The use of CT has been documented in several isolated cases [8-13], and small series [14] dealing with the diagnosis and management of cavernous sinus thrombophlebitis. CT scanning in these cases was reported to be normal in two instances [8 , 10]. In other cases so studied, CT showed abnormalities such as orbital changes [11 , 14], paranasal sinusitis [12], and associated manifestations of intracranial infection [9]; however, no mention was made in these cases of thrombosis within the cavernous sinus itself. Direct CT demonstration of thrombosis within the cavernous sinus has been rarely reported [13].
    [Show full text]
  • Varicose Veins and Superficial Thrombophlebitis
    ENTITLEMENT ELIGIBILITY GUIDELINES VARICOSE VEINS AND SUPERFICIAL THROMBOPHLEBITIS 1. VARICOSE VEINS MPC 00727 ICD-9 454 DEFINITION Varicose Veins of the lower extremities are a dilatation, lengthening and tortuosity of a subcutaneous superficial vein or veins of the lower extremity such as the saphenous veins and perforating veins. A diagnosis of varicose veins is sometimes made in error when the veins are prominent but neither varicose or abnormal. This guideline excludes Deep Vein Thrombosis, and telangiectasis. DIAGNOSTIC STANDARD Diagnosis by a qualified medical practitioner is required. ANATOMY AND PHYSIOLOGY The venous system of the lower extremities consists of: 1. The deep system of veins. 2. The superficial veins’ system. 3. The communicating (or perforating) veins which connect the first two systems. There are primary and secondary causes of varicose veins. Primary causes are congenital and/or may develop from inherited conditions. Secondary causes generally result from factors other than congenital factors. VETERANS AFFAIRS CANADA FEBRUARY 2005 Entitlement Eligibility Guidelines - VARICOSE VEINS/SUPERFICIAL THROMBOPHLEBITIS Page 2 CLINICAL FEATURES Clinical onset usually takes place when varicosities in the affected leg or legs appear. Varicosities typically present as a bluish discolouration and may have a raised appearance. The affected limb may also demonstrate the following: • Aching • Discolouration • Inflammation • Swelling • Heaviness • Cramps Varicose Veins may be large and apparent or quite small and barely discernible. Aggravation for the purposes of Varicose Veins may be represented by the veins permanently becoming larger or more extensive, or a need for operative intervention, or the development of Superficial Thrombophlebitis. PENSION CONSIDERATIONS A. CAUSES AND/OR AGGRAVATION THE TIMELINES CITED BELOW ARE NOT BINDING.
    [Show full text]
  • Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE)
    How can it be prevented? You can take steps to prevent deep vein thrombosis (DVT) and pulmonary embolism (PE). If you're at risk for these conditions: • See your doctor for regular checkups. • Take all medicines as your doctor prescribes. • Get out of bed and move around as soon as possible after surgery or illness (as your doctor recommends). Moving around lowers your chance of developing a blood clot. References: • Exercise your lower leg muscles during Deep Vein Thrombosis: MedlinePlus. (n.d.). long trips. Walking helps prevent blood Retrieved October 18, 2016, from clots from forming. https://medlineplus.gov/deepveinthrombos is.html If you've had DVT or PE before, you can help prevent future blood clots. Follow the steps What Are the Signs and Symptoms of Deep above and: Vein Thrombosis? - NHLBI, NIH. (n.d.). Retrieved October 18, 2016, from • Take all medicines that your doctor http://www.nhlbi.nih.gov/health/health- prescribes to prevent or treat blood clots topics/topics/dvt/signs • Follow up with your doctor for tests and treatment Who Is at Risk for Deep Vein Thrombosis? - • Use compression stockings as your DEEP NHLBI, NIH. (n.d.). Retrieved October 18, doctor directs to prevent leg swelling 2016, from http://www.nhlbi.nih.gov/health/health- VEIN topics/topics/dvt/atrisk THROMBOSIS How Can Deep Vein Thrombosis Be Prevented? - NHLBI, NIH. (n.d.). Retrieved October 18, 2016, from (DVT) http://www.nhlbi.nih.gov/health/health- topics/topics/dvt/prevention How Is Deep Vein Thrombosis Treated? - NHLBI, NIH. (n.d.). Retrieved October 18, 2016, from http://www.nhlbi.nih.gov/health/health- topics/topics/dvt/treatment Trinity Surgery Center What is deep vein Who is at risk? What are the thrombosis (DVT)? The risk factors for deep vein thrombosis symptoms? (DVT) include: Only about half of the people who have DVT A blood clot that forms in a vein deep in the • A history of DVT.
    [Show full text]
  • Successful Surgical Management of Mesenteric Inflammatory Veno
    Matsuda et al. Surgical Case Reports (2020) 6:27 https://doi.org/10.1186/s40792-020-0796-1 CASE REPORT Open Access Successful surgical management of mesenteric inflammatory veno-occlusive disease Keiji Matsuda1* , Yojiro Hashiguchi1, Yoshinao Kikuchi2, Kentaro Asako1, Kohei Ohno1, Yuka Okada1, Takahiro Yagi1, Mitsuo Tsukamoto1, Yoshihisa Fukushima1, Ryu Shimada1, Tsuyoshi Ozawa1, Tamuro Hayama1, Takeshi Tsuchiya1, Keijiro Nozawa1, Yuko Sasajima2 and Fukuo Kondo2 Abstract Background: The term “mesenteric inflammatory veno-occlusive disease (MIVOD)” is used to describe an ischemic injury resulting from phlebitis or venulitis that affects the bowel or mesentery in the absence of arteritis. MIVOD is difficult to diagnose because of its rarity and frequent confusion with other diseases. The incidence and etiology of MIVOD remain unclear; only a few cases have been reported. We describe a case of the successful surgical management of a patient with MIVOD with characteristic images. Case presentation: A 65-year-old Japanese man visited a hospital with the chief complaint of abdominal pain in January 2018. CT showed edema and thickening of the intestinal wall from the descending colon to the rectum. The patient was admitted to the hospital. Suspected diagnoses were enteritis, ulcerative colitis, amyloidosis, vasculitis, malignant lymphoma, and venous thrombus, but no definitive diagnosis was obtained. The patient was transferred to our hospital for the treatment of stenosis (located from the descending colon to the rectum) and bowel obstruction. An emergency transverse colostomy was performed. The sigmoid colon and mesentery were too rigid and edematous to resect. Colonic hemorrhage occurred 2 weeks after the surgery. With radiology intervention, coiling for the arteriovenous fistula in the descending colon was performed, and hemostasis was obtained.
    [Show full text]
  • Pulmonary Vascular Disease
    28 Pulmonary Vascular Disease Steve D. Groshong, Joseph F. Tomashefski, Jr., and Cadyne D. Cool The pulmonary vasculature is an anatomic compartment important vascular changes of Langerhans cell histiocy­ that is frequently overlooked in the histologic review of tosis, sarcoidosis, and amyloidosis are respectively lung biopsy samples, other than those obtained specifi­ addressed in Chapters 17,18, and 21. Remodeling of the cally to assess pulmonary vascular disease.1 Though often bronchial arteries is an important focus in the section on of a nonspecific nature, the histologic pattern of vascular bronchiectasis in Chapter 5. Vascular malformations pre­ remodeling may at times suggest its underlying patho­ dominantly affecting the pediatric population are mainly genesis and provide clues to the cause of pulmonary discussed in Chapter 6, and intralobar sequestration, hypertension.2 Disproportionately severe vascular pathol­ considered by many an acquired rearrangement of the ogy may further indicate alternate disease processes, such pulmonary blood supply, is covered in Chapter 7. The as congestive heart failure or thromboemboli, contribut­ topic of vasoformative neoplasms, including hemangio­ ing to the patient's overall respiratory condition. mas, lymphangiomatous proliferations, angiosarcoma, This chapter discusses pulmonary hypertension, which and pulmonary artery sarcoma, is covered in Chapter 40 represents a final common pathway of pulmonary vascu­ on mesenchymal tumors. Although pulmonary capillary lar disease.3 Idiopathic pulmonary arterial hypertension hemangiomatosis is considered by some to be a neoplas­ (i.e., primary pulmonary hypertension) serves as a model tic proliferation, because of its close morphologic and of vascular reconfiguration formerly designated as "plexo­ (possibly) pathogenetic associations with pulmonary genic arteriopathy.,,4 The 2003 World Health Organiza­ veno-occlusive disease, this entity is mainly discussed in tion (WHO) classification of pulmonary hypertension, this chapter.
    [Show full text]
  • Management of Superficial Thrombophlebitis in Secondary Care in Adults (Excluding Pregnancy)
    CLINICAL GUIDELINE Management of Superficial Thrombophlebitis in Secondary Care in Adults (excluding pregnancy) A guideline is intended to assist healthcare professionals in the choice of disease-specific treatments. Clinical judgement should be exercised on the applicability of any guideline, influenced by individual patient characteristics. Clinicians should be mindful of the potential for harmful polypharmacy and increased susceptibility to adverse drug reactions in patients with multiple morbidities or frailty. If, after discussion with the patient or carer, there are good reasons for not following a guideline, it is good practice to record these and communicate them to others involved in the care of the patient. Version Number: 5 Does this version include No changes to clinical advice: Date Approved: 5th December 2019 Date of Next Review: 31st December 2021 Lead Author: Catherine Bagot Approval Group: Medicines Utilisation Subcommittee of ADTC Important Note: The Intranet version of this document is the only version that is maintained. Any printed copies should therefore be viewed as ‘Uncontrolled’ and as such, may not necessarily contain the latest updates and amendments. MANAGEMENT OF SUPERFICIAL THROMBOPHLEBITIS IN SECONDARY CARE IN ADULTS (EXCLUDING PREGNANCY) Background Superficial vein thrombosis also known as superficial thrombophlebitis (STP) is a common condition, likely more common than deep vein thrombosis1. It is a painful condition affecting the superficial veins, usually of the lower limbs. It should not be confused with superficial femoral vein thrombosis, as this is thrombosis in a deep vein and requires full anticoagulation therapy. STP can occur alone or in association with deep vein thrombosis (DVT). In people with STP, 6-44% are associated with or develop DVT, 20-33% with asymptomatic pulmonary embolism (PE) and 2-13% with symptomatic PE 2-14.
    [Show full text]
  • Dural Venous Sinus Thrombosis in a Patient with Significant Family History of Protein S Deficiency
    Open Access Case Report DOI: 10.7759/cureus.13866 A Rare Thrombophilic Occurrence: Dural Venous Sinus Thrombosis in a Patient with Significant Family History of Protein S Deficiency Eluwana A. Amaratunga 1 , James Kamau 2 , Emily Ernst 2 , Richard Snyder 1 1. Internal Medicine, St. Luke’s University Health Network, Easton, USA 2. Internal Medicine, St. Luke's University Health Network, Easton, USA Corresponding author: Eluwana A. Amaratunga , [email protected] Abstract Protein S is a potent anticoagulant that downregulates thrombin formation and is a vitamin K-dependent glycoprotein which is primarily synthesized in the liver. A deficiency in this protein or decreased activity, as seen in hereditary protein S deficiency, can lead to life-threatening thrombosis. Hereditary protein S deficiency is a rare disease as listed by the National Organization for Rare Disorders (NORD). It is known to cause venous as well as arterial thromboembolic events commonly occurring in the deep leg and pelvic veins. Dural venous sinus thrombosis is a rare consequence of protein S deficiency and is associated with a risk of increased morbidity and mortality. We report a case of dural venous sinus thrombosis in a patient with a family history of protein S deficiency in nine family members. A 53-year-old female presented to the ED with a three-day history of persistent left-sided headache, left facial numbness with tingling, and photophobia. She denied any visual disturbances, slurring of speech, and/or unilateral weakness. Some 10 years prior to this episode, she was placed on warfarin therapy for deep vein thrombosis (DVT) of lower extremity, but she discontinued it after three years of treatment without consulting her treating physician.
    [Show full text]
  • Protein C and S Deficiency, Thrombophilia, and Hypofibrinolysis: Pathophysiologic Causes of Legg-Perthes Disease
    0031-3998/94/3504.Q383$03.00/0 PEDIATRIC RESEARCH Vol. 35. No.4. 1994 Copyright © 1994 International Pediatric Research Foundation. Inc. Printed in U.S.A. Protein C and S Deficiency, Thrombophilia, and Hypofibrinolysis: Pathophysiologic Causes of Legg-Perthes Disease CHARLES J. GLUECK, HELEN I. GLUECK, DAVID GREENFIELD, RICHARD FREIBERG . ALFRED KAHN. TRACEY HAMER. DAVIS STROOP. AND TRENT TRACY Cholesterol Center. Jewish Hospital[CJ.G.. T.H.. T.T.}: Departments of Orthopedics, Jewish [D.G.. R.F.j and Christ /A.K.}Hospitals: and Departments 0/Pathology and Laboratory Medicine. University 0/Cincinnati College0/ Medicine[H./.G.. D.S.}. Cincinnati. Ohio45229 ABSTRACf. In eight patients with Legg-Perthes disease, be caused by intravascular thrombosis as a result of reduced we assessed the etiologic roles of thrombophilia caused by fibrinolysis (9). protein C and protein S deficiency and hypofibrinolysis We have recently shown that hypofibrinolysis mediated by mediated by low levels of tissue plasminogen activator high levels of the major inhibitor of fibrinolysis, PAl, is a activity. We speculated that thrombosis or hypofibrinolysis common major cause of idiopathic osteonecrosis (10, 11). Nine were common causes of Legg-Perthes disease. Three of of 12 adults with idiopathic osteonecrosis had high levels of PAl the eight patients had protein C deficiency; they came from with hypofibrinolysis (10, 11). The thrombogenic, atherogenic kindreds with previously undiagnosed protein C deficiency. apolipoprotein, Lp(a), was elevated in 14 of 18 patients with In one of these three kindreds there were six protein C­ secondary osteonecrosis, and protein C deficiency was present in deficient family members (beyond the proband child), four I of the 18 patients, suggesting that thrombophilia and hypofi­ of whom had thrombotic events as adults.
    [Show full text]