Tensors Over Semirings for Latent-Variable Weighted Logic Programs

Total Page:16

File Type:pdf, Size:1020Kb

Tensors Over Semirings for Latent-Variable Weighted Logic Programs Tensors over Semirings for Latent-Variable Weighted Logic Programs Esma Balkır1 Daniel Gildea2 Shay B. Cohen1 1ILCC, School of Informatics, University of Edinburgh 2Department of Computer Science, University of Rochester [email protected] [email protected] [email protected] Abstract the set of all possible derivations. It is then possi- ble to derive a general formulation of inside and Semiring parsing (Goodman, 1999) is an ele- outside calculations in a way that is agnostic to the gant framework for describing parsers by us- particular semiring chosen. ing semiring weighted logic programs. In this paper we present a generalization of this con- Latent variable models have been an important cept: latent-variable semiring parsing. With component in the NLP toolbox. The central as- our framework, any semiring weighted logic sumption in latent variable models is that the corre- program can be latentified by transforming lations between observed variables in the training weights from scalar values of a semiring to data could be explained by unobserved, hidden vari- rank-n arrays, or tensors, of semiring val- ables. Latent variables have been used with gram- ues, allowing the modeling of latent variables mars such as Probabilistic Context-Free Grammars within the semiring parsing framework. Semir- ing is too strong a notion when dealing with (PCFGs), where each node in the parse tree is rep- tensors, and we have to resort to a weaker resented using a vector of latent state probabilities structure: a partial semiring.1 We prove that that further extend the expressiveness of the gram- this generalization preserves all the desired mar (Matsuzaki et al., 2005). properties of the original semiring framework The approach of adding latent variables to formal while strictly increasing its expressiveness. grammars have proven to be a fruitful one: in the context of PCFG parsing, Matsuzaki et al.(2005) 1 Introduction show that latent variable PCFGs (L-PCFGs) per- Weighted Logic Programming (WLP) is a declara- form on par with models hand-annotated with lin- tive approach to specifying and reasoning about dy- guistically motivated features. Cohen et al.(2013) namic programming algorithms and chart parsers. report that on the Penn Treebank dataset, L-PCFGs WLP is a generalization of bottom-up logic pro- trained with either EM or a spectral algorithm pro- gramming where proofs are assigned weights by vide a 20% increase in F1 over PCFGs without combining the weights of the axioms used in the latent states. Gebhardt(2018) shows that the bene- proof, and the weight of a theorem is in turn cal- fits of latent variables are not limited to PCFGs by culated by combining the weights of all its possi- successfully enriching both Linear Context-Free ble proof paths. The combinatorial nature of this Rewriting Systems and Hybrid Grammars with la- arXiv:2006.04232v1 [cs.CL] 7 Jun 2020 procedure makes weighted logic programs highly tent variables, and demonstrates their applicability suitable for specifying dynamic programming algo- on discontinuous constituent parsing. rithms. In particular, Goodman(1999) presents an Given the usefulness of latent variables, it would elegant abstraction for specifying and computing be desirable to have a generic inference mechanism parser values based on WLP where the values could for any latent variable grammar. WLPs can repre- be drawn from any complete semiring. This gener- sent inference algorithms for probabilistic gram- alizes the case of Boolean decision problems, prob- mars effectively. However, this does not trivially abilistic grammars with Viterbi search and other extend to latent-variable models because latent vari- quantities of interest such as the best derivation or ables are often represented as vectors, matrices and higher-order tensors, and these taken together no 1Our definition of a partial semiring is slightly different than those in the abstract algebra literature e.g. Steenstrup longer form a semiring. This is because in the (1985). semiring framework, values for deduction items and for rules must all come from the same set, and valid derivation should correspond to a sequence the semiring operations must be defined over all of well defined semiring operations. For CFGs, we pairs of values from this set. This does not al- give a straightforward condition that ensures this low for letting different grammar nonterminals be is the case. This essentially boils down to making represented by vectors of different sizes. More sure that each non-terminal corresponds to a fixed importantly, it does not allow for a rule’s value vector space dimension. For example, if A corre- to be a tensor whose dimensionality depends on sponds to a space of d1 dimensions, B to d2 and C the rule’s arity, as is generally the case in latent to d3, then a rule A ! BC would have a tensor variable frameworks. weight in d2 × d3 × d1. In this paper we start with a broad interpreta- As long as the weights are well defined, the stan- tion of latent variables as tensors over an arbitrary dard definitions for the value of a grammar deriva- semiring. While a set of tensors over semirings tion and a string according to a semiring weighted is no longer a semiring, we prove that if the set grammar extend to the case of tensors of semirings. of tensors have certain matching dimensions for Weighted logic programming provides the means the set of grammar rules they are assigned to, then to declaratively specify an efficient algorithm to they fulfill all the desirable properties relevant for obtain these values of interest. In line with Sikkel the semiring parsing framework. This paves the (1998) and Goodman(1999) we present precise way to use WLPs with latent variables, naturally conditions for when a partial-semiring WLP de- improving the expressivity of the statistical model scribes a correct parser. represented by the underlying WLP. Introducing The value of the WLP formulation of parsing a semiring framework like ours makes it easier to algorithms is that it provides a unified fashion in seamlessly incorporate latent variables into any exe- which dynamic programming algorithms can be cution model for dynamic programming algorithms extracted from the program description. This relies (or software such as Dyna, Eisner et al. 2005, and on the ability of a WLP to decompose the value other Prolog-like/WLP-like solvers). of a proof to a combination of the values of the We focus on CFG parsing, however the same sub-proofs. Specifically, given a derivation tree, latent variable techniques can be applied to any a WLP description automatically provides algo- weighted deduction system, including systems for rithms for calculating the inside and outside values. parsing TAG, CCG and LCFRS, and systems for We provide analogous algorithms for calculating Machine Translation (Lopez, 2009). The methods the inside and outside values for partial-semiring we present for inside and outside computation can WLPs. Our outside formulation addresses the non- be used to learn latent refinements of a specified commutative nature of tensors themselves, and grammar for any of these tasks with EM (Dempster could be extended to cases where the underlying et al., 1977; Matsuzaki et al., 2005), or used as semiring is non-commutative using the techniques a backbone to create spectral learning algorithms presented by Goodman(1998). (Hsu et al., 2012; Bailly et al., 2009; Cohen et al., 2014). 3 Related Work 2 Main Results Takeaway “Parsing as deduction” (Pereira and Warren, 1983) is an established framework that allows a number of We present a strict generalization of semiring parsing algorithms to be written as declarative rules weighted logic programming, with a particular fo- and deductive systems (Shieber et al., 1995), and cus on parser descriptions in WLP for context-free their correctness to be rigorously stated (Sikkel, grammars. Throughout, we utilize the correspon- 1998). Goodman(1999) has extended the pars- dence between axioms and grammar rules, deduc- ing as deduction framework to arbitrary semirings tive proofs and grammar derivations, and derived and showed that various different values of interest theorems and strings. could be computed using the same algorithm by We assume that axioms/grammar rules come changing the semiring. This led to the develop- equipped with weights in the form of tensors over ment of Dyna, a toolkit for declaratively specifying semiring values. The main issue with going from weighted logic programs, allowing concise imple- semirings to tensors over semiring values is that mentation of a number of NLP algorithms (Eisner these weights need to be well defined in that any et al., 2005). The semiring characterization of possible values (lhs), and a string α 2 (N [ Σ)∗ on the right hand to assign to WLPs gave rise to the formulation of a side (rhs). We will use α ) β if β could be de- number of novel semirings. One novel semiring of rived from α with the application of one grammar interest for purposes of learning parameters is the rule. We will say that a sentence σ 2 Σ+ could generalized entropy semiring (Cohen et al., 2008) be derived from the non-terminal A if σ could be which can be used to calculate the KL-divergence generated by starting with A and repeatedly apply- between the distribution of derivations induced by ing rules in R until the right hand side contains ∗ two weighted logic programs. Other two semir- only terminals, and denote this as A =) σ. We will ings of interest are expectation and variance semir- denote the language that a grammar G defines by ∗ ings introduced by Eisner(2002) and Li and Eisner L(G) = fσjS =) σg. (2009). These utilize the algebraic structure to effi- CFG derivations can naturally be represented as ciently track quantities needed by the expectation- trees.
Recommended publications
  • An Elementary Approach to Boolean Algebra
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason­ able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved.
    [Show full text]
  • On the Relation Between Hyperrings and Fuzzy Rings
    ON THE RELATION BETWEEN HYPERRINGS AND FUZZY RINGS JEFFREY GIANSIRACUSA, JAIUNG JUN, AND OLIVER LORSCHEID ABSTRACT. We construct a full embedding of the category of hyperfields into Dress’s category of fuzzy rings and explicitly characterize the essential image — it fails to be essentially surjective in a very minor way. This embedding provides an identification of Baker’s theory of matroids over hyperfields with Dress’s theory of matroids over fuzzy rings (provided one restricts to those fuzzy rings in the essential image). The embedding functor extends from hyperfields to hyperrings, and we study this extension in detail. We also analyze the relation between hyperfields and Baker’s partial demifields. 1. Introduction The important and pervasive combinatorial notion of matroids has spawned a number of variants over the years. In [Dre86] and [DW91], Dress and Wenzel developed a unified framework for these variants by introducing a generalization of rings called fuzzy rings and defining matroids with coefficients in a fuzzy ring. Various flavors of matroids, including ordinary matroids, oriented matroids, and the valuated matroids introduced in [DW92], correspond to different choices of the coefficient fuzzy ring. Roughly speaking, a fuzzy ring is a set S with single-valued unital addition and multiplication operations that satisfy a list of conditions analogous to those of a ring, such as distributivity, but only up to a tolerance prescribed by a distinguished ideal-like subset S0. Beyond the work of Dress and Wenzel, fuzzy rings have not yet received significant attention in the literature. A somewhat different generalization of rings, known as hyperrings, has been around for many decades and has been studied very broadly in the literature.
    [Show full text]
  • Exploring the Distributive Property; Patterns, Functions, and Algebra; 5.19
    Mathematics Enhanced Scope and Sequence – Grade 5 Exploring the Distributive Property Reporting Category Patterns, Functions, and Algebra Topic Investigating and recognizing the distributive property Primary SOL 5.19 The student will investigate and recognize the distributive property of multiplication over addition. Related SOL 5.7 Materials Base-10 blocks Exploring the Distributive Property Recording Sheet (attached) Colored pencils or markers Drawing paper Vocabulary distributive property Student/Teacher Actions (what students and teachers should be doing to facilitate learning) 1. Begin the lesson by asking students to compute 4 × 53 mentally. Ask volunteers to share different methods of mental computation for this problem, and write their suggested methods on the board. Spotlight any method that uses the distributive property: 4 × 53 = 4 × 50 + 4 × 3 = 200 + 12 = 212 Point out how the number 53 was broken into 50 + 3, making it easier to multiply and add mentally. Thus, this problem could be written as follows: 4 × (50 + 3) = (4 × 50) + (4 × 3) = 200 + 12 = 212 2. Have students use base-10 blocks to model 4 × 53 by showing 4 groups of 53. Guide student to see that if = 10 units and = 1 unit, they can make 4 groups of 50 and 4 groups of 3, as shown below: Using the base-10 blocks, students can see that the 4 groups of 50 = 200 (skip count the rods by 10), and the 4 groups of 3 = 12. Therefore, 200 + 12 = 212. Have students record their drawings and solution in symbols on their recording sheets. 3. Present students with another problem, 6 × 24, and ask them to model this problem with base-10 pieces.
    [Show full text]
  • “The Distributive Property: the Core of Multiplication” Appendix (Page 1 of 5)
    » “The Distributive Property: The Core of Multiplication” appendix (page 1 of 5) Activity 1: Go fi sh This game is like the traditional Go Fish game, except that the goal is to put down sets of three cards that make an addition equation. The game may be played in grades 1–5. Materials • A standard deck of cards for each group of 2–4 students. (Be sure to remove the jokers.) Other kinds of numbered decks (like Uno cards) will also work. • Counters, such as coins or tokens for younger children Purpose • To gain fl uency in decomposing the numbers from 0–10 • To form a foundation for mental addition of a one-digit number to a two-digit number Rules 1. The game is played by a group of 2–4 players. The fi rst player to eliminate all his or her cards wins. If the deck runs out, the player with the fewest cards in his or her hand wins. 2. Shuffl e the cards, and deal seven cards to each player. Place the remainder of the deck in a pile, facedown. 3. Players may look at their own cards but not at each others’ cards. 4. At the beginning or the end of their turn, players with three cards in their hand that make an addition sentence may place those three cards in a group, faceup on the table in front of them, as in the picture above. 5. On your turn, choose another player, and ask for a card. For example, “Janice, do you have a king?” If Janice has a king, she must give it to you.
    [Show full text]
  • DISTRIBUTIVE PROPERTY What Is the Distributive Property?
    DISTRIBUTIVE PROPERTY What Is the Distributive Property? • The distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. 4 x (5 + 6) = 4 x 11 = 44 4 x (5 + 6) = 20 + 24 = 44 • When applying the distributive property, you can add the numbers inside the parentheses first and then multiply, for instance: 8 x (2 + 7) = 8 x 9 = 72 • When applying the distributive property, you can multiply each of the numbers inside the parentheses by the same factor and then add the products, for instance:www.newpathlearning.com 8 x (2 + 7) = 16 +56 = 72 • Whichever method you choose to apply the distributive property, the result (answer) will be the same. Distributing the multiplication factor over each addend or over the sum of the addends is your choice. Sometimes the two numbers to be added are easy to solve: 15 + 25 or 17 + 20. This is when it is more efficient to add first. When the factor belongs to a familiar set, multiply first. This would be true if the factor was 2, 3, 4, 5, 10, 20, 100, etc. © Copyright NewPath Learning. All Rights Reserved. Permission is granted for the purchaser to print copies for non-commercial educational purposes only. Visit us at www.NewPathLearning.com. Examples: Here are a variety of examples in which the distributive law has been applied correctly: 7 x (6 + 7) = 42 +49 = 91 10 x (3+ 17) = 30 +170 = 200 8 x (6 + 5) = 8 x 11 = 88 12 x (2 + 7) = 12 x 9 = 108 Note: The distributive law can not be applied to subtraction or division.
    [Show full text]
  • Commutative Property
    Properties of Addition & Multiplication for Ms. Davis’s 5th-Grade Math Classes © Deanne Davis, 2012 Before We Begin… • What do these symbols mean? ( ) = multiply: 6(2) or group: (6 + 2) * = multiply = multiply ÷ = divide / = divide Before We Begin… • The numbers in number sentences have names. • ADDITION: 3 + 4 = 7 addend addend sum Before We Begin… • The numbers in number sentences have names. • MULTIPLICATION: 3 x 4 = 12 factor factor product (multiplier) (multiplicand) Before We Begin… • So, FACTORS are numbers that are multiplied together. • Factors of 12 are: 1, 2, 3, 4, 6, & 12 1 x 12 = 12 2 x 6 = 12 3 x 4 = 12 • To find factors of a number, just think of all the different numbers we can multiply together to get that number as a product. Before We Begin… • MULTIPLES are products of given whole numbers. • Multiples of 5 are: 5, 10, 15, 20, 25, 30… 5x1 5x2 5x3 5x4 5x5 5x6 • To find a multiple of a number, just take that number, and multiply it by any other whole number. Commutative Property • To COMMUTATE is to reverse the direction of something. • The COMMUTATIVE property says that the order of numbers in a number sentence can be reversed. • Addition & multiplication have COMMUTATIVE properties. Commutative Property Examples: 7 + 5 = 5 + 7 9 x 3 = 3 x 9 Note: subtraction & division DO NOT have commutative properties! Commutative Property Practice: Show the commutative property of each number sentence. 1. 13 + 18 = 2. 42 x 77 = 3. 5 + 4 = 4. 7(3) = 5. 137 48 = Commutative Property ANSWERS: Show the commutative property of each number sentence.
    [Show full text]
  • Commutative, Associative & Distributive
    READING MATERIAL Read About Multiplication Properties (Commutative, Associative & Distributive) WHAT ARE MULTIPLICATION PROPERTIES: COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE? Properties of multiplication are special facts about multiplication that you can use to find products. These properties can help you break down seemingly difficult multiplication problems into simpler ones. To better understand multiplication properties… LET’S BREAK IT DOWN! Basketball April and Marcos are playing basketball. April scored two 3-point shots and Marcos scored three 2-point shots. Who scored more points? April’s score can be expressed as 2 × 3, which equals 6. Marcos’ score can be expressed as 3 × 2, which also equals 6. Their scores are the same, and we have discovered the commutative property of multiplication: The order in which we multiply two factors does not change the product. Try this one yourself: You have 3 boxes that each contain 5 cookies and your friend has 5 boxes that each contain 3 cookies. Show that you and your friend have the same number of cookies. Page 1 Postcards Adesina, April, and Marcos have postcards arranged in a 12 by 6 grid. How many postcards do they have? The distributive property will help to solve this multiplication problem more easily than multiplying 12 by 6. is the grid can be divided into two smaller rectangles, so that one rectangle measures 10 by 6 postcards and the other measures 2 by 6. These calculations are easier than the original multiplication, and once we have the products, we can add them together to find the total number of postcards. This expression can be written as 10 × 6 + 2 × 6, and we can use parentheses to make the expression easier to read: (10 × 6) + (2 × 6) = 60 + 12 = 72.
    [Show full text]
  • De Morgan's Laws Revisited: to Be AND/OR NOT to Be
    Paper PO25 De Morgan’s Laws Revisited: To Be AND/OR NOT To Be Raoul A. Bernal, Amgen, Inc., Thousand Oaks, CA ABSTRACT De Morgan's Laws, named for the nineteenth century British mathematician and logician Augustus De Morgan (1806- 1871), are powerful rules of Boolean algebra and set theory that relate the three basic set operations (union, intersection and complement) to each other. If A and B are subsets of a universal set U, de Morgan’s laws state that (A ∪ B) ' = A' ∩ B' (A ∩ B) ' = A' ∪ B' where ∪ denotes the union (OR), ∩ denotes the intersection (AND) and A' denotes the set complement (NOT) of A in U, i.e., A' = U\A. The first law simply states that an element not in A ∪ B is not in A' and not in B'. Conversely, it also states that an element not in A' and not in B' is not in A ∪ B. The second law simply states that an element not in A ∩ B is not in A' or not in B'. Conversely, it also states that an element not in A' or not in B' is not in A ∩ B. This paper will demonstrate how the de Morgan’s Laws can be used to simplify complicated Boolean IF and WHERE expressions in SAS code. Using a specific example, the correctness of the simplified SAS code is verified using direct proof and tautology table. An actual SAS example with simple clinical data will be executed to show the equivalence and correctness of the results. INTRODUCTION In general, for any collection of subsets, de Morgan’s Laws are as follows: Theorem.
    [Show full text]
  • Intermediate Algebra This Course Covers the Topics Shown Below
    Intermediate Algebra This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular needs. Curriculum (495 topics + 307 additional topics) Real Numbers (54 topics) Plotting and Ordering (5 topics) Plotting integers on a number line Ordering integers Square root of a perfect square Using a calculator to approximate a square root Absolute value of a number Operations with Rational Numbers (24 topics) Integer addition: Problem type 1 Integer addition: Problem type 2 Integer subtraction: Problem type 1 Integer subtraction: Problem type 2 Integer subtraction: Problem type 3 Addition and subtraction with 3 integers Addition and subtraction with 4 or 5 integers Word problem with addition or subtraction of integers Integer multiplication and division Multiplication of 3 or 4 integers Division involving zero Identifying numbers as integers or non-integers Identifying numbers as rational or irrational Least common multiple of 2 numbers Signed fraction addition or subtraction: Basic Signed fraction subtraction involving double negation Signed fraction addition or subtraction: Advanced Addition and subtraction of 3 fractions involving signs Signed fraction multiplication: Basic Signed fraction multiplication: Advanced Signed fraction division Signed decimal addition and subtraction Signed decimal addition and subtraction with 3 numbers Operations with absolute value: Problem type 2 Exponents and Order of Operations (5 topics)
    [Show full text]
  • 2.2 Set Operations 127
    P1: 1 CH02-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:24 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of computer science majors at your school, we can form the set of students who are mathematics majors or computer science majors, the set of students who are joint majors in mathematics and computer science, the set of all students not majoring in mathematics, and so on. DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains those elements that are either in A or in B, or in both. An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B. This tells us that A ∪ B ={x | x ∈ A ∨ x ∈ B}. The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area that represents A ∪ B is the shaded area within either the circle representing A or the circle representing B. We will give some examples of the union of sets. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, {1, 3, 5}∪{1, 2, 3}={1, 2, 3, 5}. ▲ EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe- matics majors at your school is the set of students at your school who are majoring either in mathematics or in computer science (or in both).
    [Show full text]
  • Thermodynamic Semirings
    J. Noncommut. Geom. 8 (2014), 337–392 Journal of Noncommutative Geometry DOI 10.4171/JNCG/159 © European Mathematical Society Thermodynamic semirings Matilde Marcolli and Ryan Thorngren Abstract. The Witt construction describes a functor from the category of Rings to the category of characteristic 0 rings. It is uniquely determined by a few associativity constraints which do not depend on the types of the variables considered, in other words, by integer polynomials. This universality allowed Alain Connes and Caterina Consani to devise an analogue of the Witt ring for characteristic one, an attractive endeavour since we know very little about the arithmetic in this exotic characteristic and its corresponding field with one element. Interestingly, they found that in characteristic one, theWitt construction depends critically on the Shannon entropy. In the current work, we examine this surprising occurrence, defining a Witt operad for an arbitrary information measure and a corresponding algebra we call a thermodynamic semiring. This object exhibits algebraically many of the familiar properties of information measures, and we examine in particular the Tsallis and Renyi entropy functions and applications to non- extensive thermodynamics and multifractals. We find that the arithmetic of the thermodynamic semiring is exactly that of a certain guessing game played using the given information measure. Mathematics Subject Classification (2010). 94A17, 13F35, 28D20. Keywords. Entropy (Shannon, Renyi, Tsallis, Kullback–Leibler divergence), semiring, Witt construction, multifractals, operads, binary guessing games, entropy algebras. Contents 1 Introduction ...................................... 338 2 Preliminary notions .................................. 340 3 Axioms for entropy functions ............................. 345 4 Thermodynamic semirings .............................. 348 5 Statistical mechanics ................................. 351 6 The Rényi entropy ................................... 353 7 The Tsallis entropy .................................
    [Show full text]
  • Properties Multiplicative Property of Zero Associative Property
    Properties Multiplicative Property of Zero What do you multiply a number by Statements that are true to get zero? for any number of variables. a • 0 = 0 (If you multiply by 0, the answer is 0.) Commutative Property Associative Property Commutative means that the order does not Associative means that the grouping does not make any difference. make any difference. a + b = b + a a • b = b • a (a + b) + c = a + (b + c) (ab) c = a (bc) Examples Examples 4 + 5 = 5 + 4 (1 + 2) + 3 = 1 + (2 + 3) 2 • 3 = 3 • 2 (2 • 3) • 4 = 2 • (3 • 4) The associative property does not work for The commutative property does not work for subtraction or division. subtraction or division. 1 Identity Properties 1) Additive Identity What do you add to a number to get Distributive the same number? Property a + 0 = a 2) Multiplicative Identity What do you multiply a number by to get the same number? a • 1 = a Name the property Inverse Properties 1) 5a + (6 + 2a) = 5a + (2a + 6) 1) Additive Inverse (Opposite) commutative (switching order) a + (-a) = 0 2) 5a + (2a + 6) = (5a + 2a) + 6 2) Multiplicative Inverse associative (switching groups) (Reciprocal) 1 3) 2(3 + a) = 6 + 2a a 1 a distributive 2 1. 4. 0 12 = 0 Multiplicative Prop. Of Zero 5. 6 + (-6) = 0 Additive Inverse 6. 1 m = m Multiplicative Identity (2 + 1) + 4 = 2 + (1 + 4) 7. x + 0 = x Additive Identity Associative Property 1 8. 11 1 Multiplicative Inverse 11 of Addition 2. 3. 3 + 7 = 7 + 3 8 + 0 = 8 Commutative Identity Property of Property of Addition Addition 3 5.
    [Show full text]