Dynamics and Shocks from H $\Alpha $ Emission of Nearby Galaxy Mergers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reddening Map and Recent Star Formation in the Magellanic Clouds with the Earlier Studies (E.G., Besla Et Al
Astronomy & Astrophysics manuscript no. joshi c ESO 2019 June 19, 2019 Reddening map and recent star formation in the Magellanic Clouds based on OGLE IV Cepheids Y. C. Joshi1⋆⋆⋆, A. Panchal1 1Aryabhatta Research Institute of Observational Sciences (ARIES), Manora peak, Nainital 263002, India Received: 05 November 2018; accepted 11 June 2019 Abstract Context. The reddening maps of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are constructed using the Cepheid Period-Luminosity (P-L) relations. Aims. We examine reddening distribution across the LMC and SMC through largest data on Classical Cepheids provided by the OGLE Phase IV survey. We also investigate the age and spatio-temporal distributions of Cepheids to understand the recent star formation history in the LMC and SMC. Methods. The V and I band photometric data of 2476 fundamental mode (FU) and 1775 first overtone mode (FO) Cepheids in the LMC and 2753 FU and 1793 FO Cepheids in the SMC are analyzed for their P-L relations. We convert period of FO Cepheids to corresponding period of FU Cepheids before combining the two modes of Cepheids. Both galaxies are divided into small segments and combined FU and FO P-L diagrams are drawn in two bands for each segment. The reddening analysis is performed on 133 segments covering a total area of about 154.6 deg2 in the LMC and 136 segments covering a total area of about 31.3 deg2 in the SMC. By comparing with well calibrated P-L relations of these two galaxies, we determine reddening E(V − I) in each segment and equivalent reddening E(B − V) assuming the normal extinction law. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Extra-Nuclear Starbursts: Young Luminous Hinge Clumps In
Extra-Nuclear Starbursts: Young Luminous Hinge Clumps in Interacting Galaxies Beverly J. Smith1, Roberto Soria2, Curtis Struck3, Mark L. Giroux1, Douglas A. Swartz4, and Mihoko Yukita5 ABSTRACT Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope UV/optical/IR images and Chandra X-ray maps along with GALEX UV, Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. 1 The most extreme of these hinge clumps have star formation rates of 1 9 M yr− , comparable to or larger than the ‘overlap’ region of intense star formation between− the⊙ two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical ‘super-star clusters’ in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have diameters of 70 pc, compared to 3 pc in ‘ordinary’ super-star clusters. ∼ ∼ Their absolute I magnitudes range from MI 12.2 to 16.5, thus if they are individual star clusters they would lie near the top of the ‘super∼ − star cluster’− luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. -
Structure, Properties and Formation Histories of S0 Galaxies
Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare Thesis Supervisor Prof. Ajit K. Kembhavi A thesis presented for the degree of Doctor of Philosophy to IUCAA & Jawaharlal Nehru University India July, 2015 Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare c 2015 All rights reserved. Certificate This is to certify that the thesis entitled Structure, Properties and Formation Histories of S0 Galaxies submitted by Mr. Kaustubh Vaghmare for the award of the degree of Doctor of Philosophy to Jawaharlal Nehru University, New Delhi is his original work. This has not been published or submitted to any other University for any other Degree or Diploma. Pune July 30th, 2015 Prof. Ajit K. Kembhavi (Thesis Advisor & Director, IUCAA) Declaration I hereby declare that the work reported in this thesis is entirely original. This thesis is composed independently by me at the Inter-University Centre for Astronomy and Astrophysics, Pune under the supervision of Prof. Ajit K. Kembhavi. I further declare that the subject matter presented in the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title of any University or Institution. Pune July 30th, 2015 Prof. Ajit K. Kembhavi Mr. Kaustubh Vaghmare (Thesis Advisor) (Ph.D. Candidate) 3 Dedicated to ... Prathama & Prakash (my parents, my Gods) Rahul (my brother, whose ever presence with my parents and unquestioning support allowed me to work in peace) & Sneha (my beloved) 5 Acknowledgements For all students and regular visitors, it is clear that Prof. Ajit Kembhavi is one of the busiest people with frequent meetings, visits abroad, directorial duties and several other responsibilities. -
An Ultra-Deep Survey of Low Surface Brightness Galaxies in Virgo
' $ An Ultra-Deep Survey of Low Surface Brightness Galaxies in Virgo Elizabeth Helen (Lesa) Moore, BSc(Hons) Department of Physics Macquarie University May 2008 This thesis is presented for the degree of Master of Philosophy in Physics & % iii Dedicated to all the sentient beings living in galaxies in the Virgo Cluster iv CONTENTS Synopsis : :::::::::::::::::::::::::::::::::::::: xvii Statement by Candidate :::::::::::::::::::::::::::::: xviii Acknowledgements ::::::::::::::::::::::::::::::::: xix 1. Introduction ::::::::::::::::::::::::::::::::::: 1 2. Low Surface Brightness (LSB) Galaxies :::::::::::::::::::: 5 2.1 Surface Brightness and LSB Galaxies De¯ned . 6 2.2 Physical Properties and Morphology . 8 2.3 Cluster and Field Distribution of LSB Dwarfs . 14 2.4 Galaxies, Cosmology and Clustering . 16 3. Galaxies and the Virgo Cluster :::::::::::::::::::::::: 19 3.1 Importance of the Virgo Cluster . 19 3.2 Galaxy Classi¯cation . 20 3.3 Virgo Galaxy Surveys and Catalogues . 24 3.4 Properties of the Virgo Cluster . 37 3.4.1 Velocity Distribution in the Direction of the Virgo Cluster . 37 3.4.2 Distance and 3D Structure . 38 vi Contents 3.4.3 Galaxy Population . 42 3.4.4 The Intra-Cluster Medium . 45 3.4.5 E®ects of the Cluster Environment . 47 4. Virgo Cluster Membership and the Luminosity Function :::::::::: 53 4.1 The Schechter Luminosity Function . 54 4.2 The Dwarf-to-Giant Ratio (DGR) . 58 4.3 Galaxy Detection . 59 4.4 Survey Completeness . 62 4.5 Virgo Cluster Membership . 63 4.5.1 Radial Velocities . 64 4.5.2 Morphology . 65 4.5.3 Concentration Parameters . 66 4.5.4 Scale Length Limits . 68 4.5.5 The Rines-Geller Threshold . -
Cetus - the Whale
May 18 2021 Cetus - The Whale Observed: No Object Her Type Mag Alias/Notes IC 5384 Non-Existent NGC 7813 MCG -2-1-16 MK 936 IRAS 15-1215 PGC 287 IC 1528 Non-Existent NGC 7826 H29-8 Non-Existent Asterism IC 1533 Non-Existent NGC 34 Non-Existent NGC 17 NGC 58 Non-Existent NGC 47 PGC 967 MCG -1-1-55 IRAS 119-726 NGC 54 Glxy SB(r)a? 14.6 MCG -1-1-60 PGC 1011 NGC 59 Glxy SA(rs)0-: 13.1 ESO 539-4 MCG -4-1-26 PGC 1034 NGC 62 Glxy (R)SB(r)a: 12.3 MCG -2-1-43 IRAS 145-1345 PGC 1125 NGC 64 Glxy SB(s)bc 14 MCG -1-1-68 IRAS 149-706 PGC 1149 IC 5 Glxy E 14.8 MCG -2-1-47 IRAS 148-951 PGC 1145 NGC 73 Glxy SAB(rs)bc: 13.5 MCG -3-1-26 PGC 1211 NGC 65 Glxy SAB(rs)0-: 14.4 ESO 473-10A MCG -4-2-1 PGC 1229 NGC 66 Glxy SB(r)b pec 14.2 ESO 473-10 MCG -4-2-2 IRAS 165-2312 PGC 1236 IC 9 Glxy Sb(r) 16.1 MCG -2-2-1 IRAS 171-1423 PGC 1271 NGC 77 Glxy SA0-: 15.7 ESO 473-15 PGC 1290 NGC 102 Glxy S0/a 14.4 MCG -2-2-11 PGC 1542 NGC 107 Glxy Sbc 14.6 MCG -2-2-14 PGC 1606 NGC 111 Non-Existent NGC 113 Glxy SA0-: 13.5 MCG -1-2-16 PGC 1656 NGC 114 Glxy SB(rs)0: 14.7 UGC 259 MCG 0-2-27 MK 946 CGCG 383-14 KUG 24-20A PGC 1660 NGC 116 Non-Existent MCG -1-2-17 PGC 1671 NGC 117 Glxy S0+: sp 15.3 MCG 0-2-29 CGCG 383-15 PGC 1674 NGC 118 Glxy I0? 14.8 UGC 264 MCG 0-2-32 MK 947 CGCG 383-16 UM244 3ZW9 IRAS 247-203 PGC 1678 NGC 120 Glxy SB0^: 14.4 UGC 267 MCG 0-2-33 CGCG 383-17 PGC 1693 NGC 122 Non-Existent NGC 123 Non-Existent NGC 124 Glxy SA(s)c 13.7 UGC 271 MCG 0-2-38 CGCG 383-18 IRAS 253-205 PGC 1715 IC 15 Non-Existent IC 16 Glxy E? 14.7 MCG -2-2-17 IRAS 255-1322 PGC 1730 IC 17 -
Spiral Galaxies Like the Milky Way and Andromeda Edge on and Face On
Spiral galaxies like the Milky Way and Andromeda Edge on and face on L of Milky Way ~ few x 10 10 Lsun SDSS image by D. Hogg The Sombrero galaxy 12 kpc 40,000 light years Cartoon of the edge‐on Milky Way galaxy Palomar 5 M5 M13 M15 Images of globular clusters (GCs) (Sloan Digital Sky Survey) Leo I Dwarf Galaxy A galaxy that has 1/10 or fewer the number of stars in a Milky Way sized galaxy Dwarf galaxies Halo of dark maer 250 kpc 800,000 LY Large Magellanic cloud Wei‐Hao Wan, UH image credit (Giant) ellipcal galaxies This type of galaxy is oen found at the centers of galaxy clusters Ellipcal galaxies have relavely less gas, dust, and star formaon than spiral galaxies. They look redder because the ages of their stars are on average older than the stars in a spiral galaxy It is believed that a 2 billion solar mass black hole lives at the center of M87. Electrons accelerang along the strong magnec field near the black hole produce this jet of light and charged parcles. Irregular galaxies forming lots of stars and/or interacng with other galaxies Large Magellanic Cloud – luminosity ~ 1/10 luminosity of the Milky Way The Mice Galaxies Many galaxies live in clusters or groups Hickson Group 87 Image taken at Gemini South Abell Cluster S0740 Image was obtained with the Hubble Space Telescope Map of the Local Group Of Galaxies A dozens of dwarf galaxies and 2 giant spirals (the Milky Way and Andromeda) NGC 205 image credit: www.noao.edu ~ 1/40 Milky Way luminosity Image credit: David W. -
Astronomy C SSSS 2018
Astronomy C SSSS 2018 Galaxies and Stellar Evolution Written by Anna1234 School _______________________________________________________________________ Team # _______________________________________________________________________ Names _______________________________________________________________________ _______________________________________________________________________ 1 Instructions: 1. There are pictures of a number of galaxies in this test. However, as the DSO list for 2019 hasn’t been released yet, the questions asked will not require any knowledge of the galaxies themselves. 2. No partial credit will be given. Math questions will have a range of acceptable answers 3. Tiebreaker questions are in the following order: a. Section A: #2, 6, 16; Section B: #1, 5, 9; Section C: #5b, 11, 14 4. Constants that will be used throughout the test: a. 1 Parsec = 3.1 x 1016 meters b. Mass of the sun = 1.989 x 1030 kg c. Hubble’s Constant = 65 km/s/Mpc d. Absolute Magnitude of Type 1a supernova = -19.3 2 Section A: Pseudo-DSOs M87 M87 has an active galactic nucleus (AGN). 1. Briefly explain what an AGN is and what is thought to cause it. 2. In 1999, a relativistic jet of matter beaming out from the center of this galaxy was measured to be moving much faster than the speed of light. What is the name of this phenomenon? 3. The M in “M87” signifies which classification catalog? Pinwheel Galaxy 4. Using Hubble’s Classification Scheme, classify this galaxy 5. The pinwheel galaxy is known for having a high number of HII regions... a. HII regions are also known as what 2 different categories of nebulas.? b. HII regions are ionized by stars of which spectral class? 6. -
The Mice at Play in the CALIFA Survey a Case Study of a Gas-Rich Major Merger Between first Passage and Coalescence
A&A 567, A132 (2014) Astronomy DOI: 10.1051/0004-6361/201321624 & c ESO 2014 Astrophysics The Mice at play in the CALIFA survey A case study of a gas-rich major merger between first passage and coalescence Vivienne Wild1,2, Fabian Rosales-Ortega3,4, Jesus Falcón-Barroso5,6, Rubén García-Benito7, Anna Gallazzi11,12, Rosa M. González Delgado7, Simona Bekeraite˙8, Anna Pasquali10, Peter H. Johansson13 , Begoña García Lorenzo5,6, Glenn van de Ven14, Milena Pawlik1, Enrique Peréz7, Ana Monreal-Ibero8,15 , Mariya Lyubenova14, Roberto Cid Fernandes16, Jairo Méndez-Abreu1, Jorge Barrera-Ballesteros5,6 , Carolina Kehrig7, Jorge Iglesias-Páramo7,17, Dominik J. Bomans18,19, Isabel Márquez7, Benjamin D. Johnson20, Robert C. Kennicutt21, Bernd Husemann9,8, Damian Mast23, Sebastian F. Sánchez7,17,22, C. Jakob Walcher8,JoãoAlves24, Alfonso L. Aguerri5,6, Almudena Alonso Herrero25, Joss Bland-Hawthorn26, Cristina Catalán-Torrecilla27 , Estrella Florido28, Jean Michel Gomes29, Knud Jahnke14, Á.R. López-Sánchez31,32, Adriana de Lorenzo-Cáceres1, Raffaella A. Marino29, Esther Mármol-Queraltó2, Patrick Olden1, Ascensión del Olmo7, Polychronis Papaderos29, Andreas Quirrenbach30, Jose M. Vílchez7, and Bodo Ziegler24 (Affiliations can be found after the references) Received 2 April 2013 / Accepted 27 May 2014 ABSTRACT 11 We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (10 M) gas-rich spirals NGC 4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties, and stellar population diagnostics, over the full optical extent of both galaxies with ∼1.6 kpc spatial resolution. The Mice galaxies provide a perfect case study that highlights the importance of IFS data for improving our understanding of local galaxies. -
190 Index of Names
Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea -
ARP Peculiar Galaxies
October 25, 2012 ARP Peculiar Galaxies Observed: No ARP Object Con Type Mag Alias/Notes 249 PGC 25 Peg Glxy Double System 15 UGC 12891 MCG 4-1-7 CGCG 477-37 CGCG 478-9 4ZW177 VV 186 ARP 249 112 PGC 111 Peg Glxy S 16.6 MCG 5-1-26 VV 226 ARP 112 130 PGC 178 Peg Glxy SB 15.3 UGC 1 MCG 3-1-16 CGCG 456-18 VV 263 ARP 130 130 PGC 177 Peg Glxy S 14.9 UGC 1 MCG 3-1-15 CGCG 456-18 VV 263 ARP 130 51 PGC 475 Cet Glxy 15 ESGC 144 NGC 7828 Cet Glxy Ring B 14.4 MCG -2-1-25 VV 272 ARP 144 IRAS 38-1341 PGC 483 144 NGC 7829 Cet Glxy Ring A 14.6 MCG -2-1-24 VV 272 ARP 144 PGC 488 146 PGC 510 Cet Glxy Ring A 16.3 ANON 4-6A 146 PGC 509 Cet Glxy Ring B 16.3 ANON 4-6B 246 NGC 7837 Psc Glxy Sb 15.4 MCG 1-1-35 CGCG 408-34 ARP 246 IRAS 42+804 PGC 516 246 NGC 7838 Psc Glxy Sb 15.3 MCG 1-1-36 CGCG 408-34 ARP 246 PGC 525 256 PGC 1224 Cet Glxy SB(s)b pec? 14.8 MCG -2-1-51 VV 352 ARP 256 8ZW18 256 PGC 1221 Cet Glxy SB(s)c pec 13.6 MCG -2-1-52 VV 352 ARP 256 IRAS 163-1039 8ZW18 35 PGC 1431 Psc Glxy S 15.5 KUG 19-16 35 PGC 1434 Psc Glxy SB 14.7 UGC 212 MCG 0-2-14 MCG 0-2-15 CGCG 383-4 UM231 VV 257 ARP 35 IRAS 198-134 201 PGC 1503 Psc Glxy Disrupted 15.4 UGC 224 MCG 0-2-18 CGCG 383-6 VV 38 ARP 201 201 PGC 1504 Psc Glxy L 15.4 UGC 224 MCG 0-2-19 VV 38 ARP 201 100 IC 18 Cet Glxy Sb 15.4 MCG -2-2-23 VV 234 ARP 100 8ZW25 PGC 1759 100 IC 19 Cet Glxy E 15 MCG -2-2-24 MK 949 PGC 1762 19 NGC 145 Cet Glxy SB(s)dm 13.2 MCG -1-2-27 ARP 19 IRAS 292-525 PGC 1941 282 IC 1559 And Glxy SAB0 pec: 14 MCG 4-2-34 MK 341 CGCG 479-44 ARP 282 PGC 2201 127 IC 1563 Cet Glxy S0 pec sp 13.6 MCG -
£5.99 WARNING! Not Suitable for Children Under 36 Months, CAD $10.95 Due to Small Parts
Usborne publishing for review only This book is an exciting introduction to the wonders of space. Find out how stars are born, what it’s like to live in space, and lots more. To discover more titles from Usborne Publishing, visit www.usborne.com Emily Bone and Hazel Maskell and Hazel Bone Emily £5.99 WARNING! Not suitable for children under 36 months, CAD $10.95 due to small parts. Choking hazard. JFMAMJJ SOND/12 02228/1 ATTENTION! Ne convient pas aux enfants de Printed in Perai, Penang, Malaysia. moins de 36 mois en raison des petites pièces. Risque de suffocation par ingestion. Made with paper from a sustainable source. Astronomy and Space Sticker Book Cover.indd 1 31/07/2012 10:20:07 Usborne publishing for review only Emily Bone and Hazel Maskell Illustrated by Paul Weston and Adam Larkum Designed by Stephen Moncrieff and Emily Barden Space experts: Stuart Atkinson and Professor Alec Boksenberg CONTENTS 2 What’s in space? 16 Earth’s moon 4 Going into space 18 A home in space 6 Stars 20 Inner planets 8 Great galaxies 22 Mars 10 The Solar System 24 Gas giants 12 Burning Sun 26 Space lumps 14 Our planet 28 Watching space 30 Stargazing 32 Acknowledgements 01 Contents.indd 1 26/07/2012 10:33:54 Usborne publishing for review only WHAT’S IN SPACE? Space is enormous – our Earth and what we can see in the sky make up just a tiny part of what’s out there. Everything that exists is known as the universe. Filled with billions and billions of galaxies, stars, planets and moons, the universe is so vast, scientists think they’ve only discovered around a tenth of it.