George Forsythe and the Development of Computer Science by Donald E

Total Page:16

File Type:pdf, Size:1020Kb

George Forsythe and the Development of Computer Science by Donald E George Forsythe and the Development of Computer Science by Donald E. Knuth The sudden death of George Forsythe this spring was considered such combinatorial algorithms to be a part of a serious loss to everyone associated with computing. numerical analysis [46, p. 7], and he regarded automatic When we recall the many things he contributed to the programming as another branch [49, p. 655]. He began field during his lifetime, we consider ourselves fortunate to foresee the less obvious implications of programming: that computer science has had such an able leader. The use of practically any computing technique itself raises a My purpose in this article is to review George For- number of mathematical problems. There is thus a very con- sythe's contributions to the establishment of Computer siderable impact of computation on mathematics itself, and this may be expected to influence mathematical research to an in- Science as a recognized discipline. It is generally agreed creasing degree. [46, p. 5] that he, more than any other man, is responsible for the The automatic computer really forces that precision of thinking rapid development of computer science in the world's which is alleged to be a product of any study of mathematics. colleges and universities. His foresight, combined with his [49, p. 655l untiring efforts to spread the gospel of computing, have He also noticed that the rise of computers was being had a significant and lasting impact; one might almost accompanied by an unprecedented demand for young regard him as the Martin Luther of the Computer Re- mathematicians: formation! The majority of our undergraduate mathematics majors are lured Since George's publications express these ideas so at once into the marketplace, where they are greatly in demand well, I believe the best way to summarize his work is to as servants of the fast-multiplying family of fast-multiplying com- puters. [49, p. 651] repeat many of the things he said, in his own words. This article consists mainly of the quotations that particularly Therefore he began to argue th,at computers should struck me as I reread his papers recently. Indeed, much of play a prominent role in undergraduate mathematics edu- what follows belongs in a computer-science supplement cation. At this time he felt that only one new course was to Bartlett's Familiar Quotations. needed for undergraduates, namely an introduction to programming; he stressed that the best way to teach it From Numerical Analysis to Computer Science would be to combine computer programming with the George's early training and research in numerical traditional courses, instead of having separate training in analysis was a good blend of theory and practice: numerical analysis. His paper "The Role of Numerical The fact that the CPC was generally wrong when I knew the Analysis in an Undergraduate Program" [49] suggests answer made me wonder what it was like for someone who didn't over 50 good ways to mix computing into other courses; know what to expect. [76, p. 5] these suggestions ought to be required reading for all Starting in 1948 he worked for the National Bureau of teachers today, since they are now perhaps even more Standards' Institute for Numerical Analysis in Los Ange- relevant than they were in 1959. Indeed, the ad'aptation les, California, where he did extensive programming for of traditional courses has been painfully slow (probably the SWAC computer. In 1954 this Institute became part of because professors of the older generation have not U.C.L.A., and he put a great deal of energy into the teach- wanted to dirty their hands with the newfangled ma- ing of mathematics and numerical analysis. He also worked chines) ; in 1970 Forsythe was still strongly urging math- on nonnumerical problems, such as the tabulation of all ematics teachers to bend a little: possible semigroups on four elements; at this time, he Compared with most undergraduate subjects, mathematics courses 721 Communications August 1972 of Volume 15 the ACM Number 8 are very easy to prepare for, because they change so slowly. The gradually been working its way into the English language, computing part of it is probably the only part that changes much. but his influence was an important factor in the present Why not devote time to learning that? [80, p. 23] widespread acceptance of the term. In 1961 we find him using the term "computer sci- A brief digression into the history of computer sci- ence" for the first time in his writing: ence education seems appropriate at this point. Appar- [Computers] are developing so rapidly that even computer scien- ently computing courses got started in universities largely tists cannot keep up with them. It must be bewildering to most mathematicians and engineers...In spite of the diversity of the because IBM donated about 100 "free" computers dur- applications, the methods of attacking the difficult problems with ing the 1950s, with the stipulation that programming computers show a great unity, and the name of Computer Sciences is being attached to the discipline as it emerges. It must be under- courses must be taught. This strategy made it possible stood, however, that this is still a young field whose structure is for computing to get its foot in the academic door. Natur- still nebulous. The student will find a great many more problems ally there were many students and a few members of the than answers. [59, p. 177] faculty who were intrigued and became involved. Engi- He identified the "computer sciences" as the theory of neering departments, especially at schools like M.I.T., programming, numerical analysis, data processing, and Pennsylvania, and Illinois, where computers were being the design of computer systems, and observed that the built, also had a head start. Many ideas were exchanged latter three were better understood than the theory of during special summer school sessions at the University programming, and more available in courses. of Michigan, and later the Ford Foundation sponsored a project there on the use of computers in engineering The Establishment of Computer Science education. A good survey of these developments has By that time Forsythe knew that numerical analysis been given by Howard E. Tompkins in Advances in Com- was destined to be only a part of the computing milieu; a puters Vol. 4, Academic Press, New York, 1963, pp. new discipline was crystallizing which cried out to be 135-168. taught. He had come to Stanford as a professor of math- But these early stages hardly represented computer ematics in 1957, but now he and Professor John Herriot science as it is understood today, nor did many people wanted to hire colleagues interested in programming, regard it as the germ of a genuine discipline worthy of artificial intelligence, and such topics, which are not con- study on a par with other subjects. I myself was a gradu- sidered mathematics. Stanford's administration, espe- ate student in mathematics who enjoyed programming cially Dean Bowker (who is now Chancellor at Berkeley), as a hobby; I had written two compilers, but I had no idea also became convinced that computing is important; so that I would someday be teaching about data structures George was able to found the Division of Computer and relating all this to mathematics. A few people, like Science within the Mathematics Department in 1961. George Forsythe and Alan Perlis and Richard Hamming, During that academic year he lectured on "Edu- had no such mental blocks. Louis Fein had also perceived cational Implications of the Computer Revolution" at the eventual rise of computer science; he had recom- Brown University: mended in 1957 that Stanford establish a Graduate "Machine-held strings of binary digits can simulate a great many School of Computer Science, analogous to the Harvard kinds of things, of which numbers are just one kind. For example, they can simulate automobiles on a freeway, chess pieces, elec- Business School. (cf. reference [B] below.) trons in a box, musical notes, Russian words, patterns on a paper, George argued the case for computer science long human cells, colors, electrical circuits, and so on. To think of a and loud, and he won; at Stanford he was in fact "the computer as made up essentially of numbers is simply a carry- over from the successful use of mathematical analysis in studying producer and director, author, scene designer, and cast- models...Enough is known already of the diverse applications ing manager of this hit show." [A] Several more faGulty of computing for us to recognize the birth of a coherent body of members were carefully selected, and the Division be- technique, which I call computer science...Whether computers are used for engineering design, medical data processing, com- came a separate academic department in January 1965. posing music, or other purposes, the structure of computing is Since this was one of the first such departments, it much the same. We are extremely short of talented people in this naturally came under very close scrutiny. Now we realize field, and so we need departments, curricula, and research and degree programs in computer science...I think of the Computer that eventually every university will have such a depart- Science Department as eventually including experts in Program- ment. Although this development is inevitable in the long ming, Numerical Analysis, Automata Theory, Data Processing, run, it will happen sooner than might be expected largely Business Games, Adaptive Systems, Information Theory, Infor- mation Retrieval, Recursive Function Theory, Computer Linguis- because George was such an effective spokesman, espe- tics, etc., as these fields emerge in structure...Universities must cially to mathematicians and to people in the government.
Recommended publications
  • RESOURCES in NUMERICAL ANALYSIS Kendall E
    RESOURCES IN NUMERICAL ANALYSIS Kendall E. Atkinson University of Iowa Introduction I. General Numerical Analysis A. Introductory Sources B. Advanced Introductory Texts with Broad Coverage C. Books With a Sampling of Introductory Topics D. Major Journals and Serial Publications 1. General Surveys 2. Leading journals with a general coverage in numerical analysis. 3. Other journals with a general coverage in numerical analysis. E. Other Printed Resources F. Online Resources II. Numerical Linear Algebra, Nonlinear Algebra, and Optimization A. Numerical Linear Algebra 1. General references 2. Eigenvalue problems 3. Iterative methods 4. Applications on parallel and vector computers 5. Over-determined linear systems. B. Numerical Solution of Nonlinear Systems 1. Single equations 2. Multivariate problems C. Optimization III. Approximation Theory A. Approximation of Functions 1. General references 2. Algorithms and software 3. Special topics 4. Multivariate approximation theory 5. Wavelets B. Interpolation Theory 1. Multivariable interpolation 2. Spline functions C. Numerical Integration and Differentiation 1. General references 2. Multivariate numerical integration IV. Solving Differential and Integral Equations A. Ordinary Differential Equations B. Partial Differential Equations C. Integral Equations V. Miscellaneous Important References VI. History of Numerical Analysis INTRODUCTION Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry, and calculus, and they involve variables that vary continuously; these problems occur throughout the natural sciences, social sciences, engineering, medicine, and business. During the second half of the twentieth century and continuing up to the present day, digital computers have grown in power and availability.
    [Show full text]
  • You and Your Research & the Elements of Style
    You and Your Research & The Elements of Style Philip Wadler University of Edinburgh Logic Mentoring Workshop Saarbrucken,¨ Monday 6 July 2020 Part I You and Your Research Richard W. Hamming, 1915–1998 • Los Alamos, 1945. • Bell Labs, 1946–1976. • Naval Postgraduate School, 1976–1998. • Turing Award, 1968. (Third time given.) • IEEE Hamming Medal, 1987. It’s not luck, it’s not brains, it’s courage Say to yourself, ‘Yes, I would like to do first-class work.’ Our society frowns on people who set out to do really good work. You’re not supposed to; luck is supposed to descend on you and you do great things by chance. Well, that’s a kind of dumb thing to say. ··· How about having lots of ‘brains?’ It sounds good. Most of you in this room probably have more than enough brains to do first-class work. But great work is something else than mere brains. ··· One of the characteristics of successful scientists is having courage. Once you get your courage up and believe that you can do important problems, then you can. If you think you can’t, almost surely you are not going to. — Richard Hamming, You and Your Research Develop reusable solutions How do I obey Newton’s rule? He said, ‘If I have seen further than others, it is because I’ve stood on the shoulders of giants.’ These days we stand on each other’s feet! Now if you are much of a mathematician you know that the effort to gen- eralize often means that the solution is simple.
    [Show full text]
  • History of Modern Applied Mathematics in Mathematics Education
    HISTORY OF MODERN APPLIED MATHEMATICS IN MATHEMATICS EDUCATION UFFE THOMAS JANKVISI [I] When conversations turn to using history of mathematics in in-issues, of mathematics. When using history as a tool to classrooms, the rnferent is typically the old, often antique, improve leaining or instruction, we may distinguish at least history of the discipline (e g, Calinger, 1996; Fauvel & van two different uses: history as a motivational or affective Maanen, 2000; Jahnke et al, 1996; Katz, 2000) [2] This tool, and histmy as a cognitive tool Together with history tendency might be expected, given that old mathematics is as a goal these two uses of histoty as a tool are used to struc­ often more closely related to school mathematics However, ture discussion of the educational benefits of choosing a there seem to be some clear advantages of including histo­ history of modern applied mathematics ries of more modern applied mathematics 01 histories of History as a goal 'in itself' does not refor to teaching his­ modem applications of mathematics [3] tory of mathematics per se, but using histo1y to surface One (justified) objection to integrating elements of the meta-aspects of the discipline Of course, in specific teach­ history of modetn applied mathematics is that it is often com­ ing situations, using histmy as a goal may have the positive plex and difficult While this may be so in most instances, it side effect of offering students insight into mathematical is worthwhile to search for cases where it isn't so I consider in-issues of a specific history But the impo1tant detail is three here.
    [Show full text]
  • Efficient Space-Time Sampling with Pixel-Wise Coded Exposure For
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Efficient Space-Time Sampling with Pixel-wise Coded Exposure for High Speed Imaging Dengyu Liu, Jinwei Gu, Yasunobu Hitomi, Mohit Gupta, Tomoo Mitsunaga, Shree K. Nayar Abstract—Cameras face a fundamental tradeoff between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this tradeoff without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing and reconstructing the space-time volume in order to overcome this tradeoff. Our approach has two important distinctions compared to previous works: (1) we achieve sparse representation of videos by learning an over-complete dictionary on video patches, and (2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach - sampling function and sparse representation by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a Liquid Crystal on Silicon (LCoS) device. System characteristics such as field of view, Modulation Transfer Function (MTF) are evaluated for our imaging system. Both simulations and experiments on a wide range of
    [Show full text]
  • Applied Analysis & Scientific Computing Discrete Mathematics
    CENTER FOR NONLINEAR ANALYSIS The CNA provides an environment to enhance and coordinate research and training in applied analysis, including partial differential equations, calculus of Applied Analysis & variations, numerical analysis and scientific computation. It advances research and educational opportunities at the broad interface between mathematics and Scientific Computing physical sciences and engineering. The CNA fosters networks and collaborations within CMU and with US and international institutions. Discrete Mathematics & Operations Research RANKINGS DOCTOR OF PHILOSOPHY IN ALGORITHMS, COMBINATORICS, U.S. News & World Report AND OPTIMIZATION #16 | Applied Mathematics Carnegie Mellon University offers an interdisciplinary Ph.D program in Algorithms, Combinatorics, and #7 | Discrete Mathematics and Combinatorics Optimization. This program is the first of its kind in the United States. It is administered jointly #6 | Best Graduate Schools for Logic by the Tepper School of Business (Operations Research group), the Computer Science Department (Algorithms and Complexity group), and the Quantnet Department of Mathematical Sciences (Discrete Mathematics group). #4 | Best Financial Engineering Programs Carnegie Mellon University does not CONTACT discriminate in admission, employment, or Logic administration of its programs or activities on Department of Mathematical Sciences the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation, 5000 Forbes Avenue gender identity, religion, creed, ancestry,
    [Show full text]
  • Metal Complexes of Penicillin and Cephalosporin Antibiotics
    I METAL COMPLEXES OF PENICILLIN AND CEPHALOSPORIN ANTIBIOTICS A thesis submitted to THE UNIVERSITY OF CAPE TOWN in fulfilment of the requirement$ forTown the degree of DOCTOR OF PHILOSOPHY Cape of by GRAHAM E. JACKSON University Department of Chernis try, University of Cape Town, Rondebosch, Cape, · South Africa. September 1975. The copyright of th:s the~is is held by the University of C::i~r:: To\vn. Reproduction of i .. c whole or any part \ . may be made for study purposes only, and \; not for publication. The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University '· ii ACKNOWLEDGEMENTS I would like to express my sincere thanks to my supervisors: Dr. L.R. Nassimbeni, Dr. P.W. Linder and Dr. G.V. Fazakerley for their invaluable guidance and friendship throughout the course of this work. I would also like to thank my colleagues, Jill Russel, Melanie Wolf and Graham Mortimor for their many useful conrrnents. I am indebted to AE & CI for financial assistance during the course of. this study. iii ABSTRACT The interaction between metal"'.'ions and the penici l)in and cephalosporin antibiotics have been studied in an attempt to determine both the site and mechanism of this interaction. The solution conformation of the Cu(II) and Mn(II) complexes were determined using an n.m.r, line broadening, technique.
    [Show full text]
  • Computing As Engineering
    Journal of Universal Computer Science, vol. 15, no. 8 (2009), 1642-1658 submitted: 14/3/09, accepted: 27/4/09, appeared: 28/4/09 © J.UCS Computing as Engineering Matti Tedre (Tumaini University, Iringa, Tanzania fi[email protected]) Abstract: Computing as a discipline is often characterized as a combination of three major traditions: theoretical, scientific, and engineering tradition. Although the three traditions are all considered equally necessary for modern computing, the engineering tradition is often considered to be useful but to lack intellectual depth. This article discusses the basic intellectual background of the engineering tradition of computing. The article depicts the engineering aims manifest in the academic field of computing, compares the engineering tradition with the other traditions of computing as a disci- pline, and presents some epistemological, ontological, and methodological views con- cerning the engineering tradition of computing. The article aims at giving the reader an overview of the engineering tradition in computing and of some open questions about the intellectual foundations and contributions of the engineering tradition in computing. Key Words: information technology, philosophy of computer science, philosophy of technology, computing, engineering Category: K.7, K.7.1, K.7.m 1 Introduction The juxtaposing of science and technology is perhaps nowhere else as marked as in the computing disciplines. The division of computing into its mathemat- ical/theoretical, scientific/empirical, and design/engineering traditions ([Weg- ner, 1976], [Denning et al., 1989]) has spurred fiery debates about the merits and shortcomings of each tradition. In those debates, the theoretical tradition leans on the recognition of mathematics and logic as the theoretical cornerstones of computing, the scientific tradition draws support from arguments from the philosophy of science, but the design/engineering tradition is usually only rec- ognized for its utility and not for its intellectual foundations.
    [Show full text]
  • Quality Improvement of Compressed Color Images Using a Probabilistic Approach
    QUALITY IMPROVEMENT OF COMPRESSED COLOR IMAGES USING A PROBABILISTIC APPROACH Nobuteru Takao, Shun Haraguchi, Hideki Noda, Michiharu Niimi Kyushu Institute of Technology, Dept. of Systems Design and Informatics, 680-4 Kawazu, Iizuka, 820-8502 Japan E-mail: {takao, haraguchi, noda, niimi}@mip.ces.kyutech.ac.jp ABSTRACT method using information on luminance component which is not downsampled. In compressed color images, colors are usually represented by luminance and chrominance (YCbCr) components. Con- The interpolation aims to recover only resolution of chromi- sidering characteristics of human vision system, chromi- nance components lost by downsampling. Alternatively, we nance (CbCr) components are generally represented more aim to recover not only resolution lost by downsampling coarsely than luminance component. Aiming at possible re- but also precision lost by a coarser quantization, if possi- covery of chrominance components, we propose a model- ble. Aiming at such recovery of chrominance components, based chrominance estimation algorithm where color im- we propose a model-based method where color images are ages are modeled by a Markov random field (MRF). A sim- modeled by a Markov random field (MRF). A simple MRF ple MRF model is here used whose local conditional proba- model is here used whose local conditional probability den- bility density function (pdf) for a color vector of a pixel is a sity function (pdf) for a color vector of a pixel is a Gaussian Gaussian pdf depending on color vectors of its neighboring pdf depending on color vectors of its neighboring pixels. pixels. Chrominance components of a pixel are estimated Chrominance components of a pixel are estimated by max- by maximizing the conditional pdf given its luminance com- imizing the conditional pdf given its luminance component ponent and its neighboring color vectors.
    [Show full text]
  • Numerical Analysis to Quantum Computing
    Credit: evv/Shutterstock.com and D-Wave, Inc. and D-Wave, Credit: evv/Shutterstock.com How NASA-USRA collaborations have advanced knowledge in and with the use of new computing technologies. When USRA was created in 1969, later its first task was the management the Chief Scientist at the FROM of the Lunar Science Institute near Center. In February of 1972, Duberg NASA’s Manned Spacecraft Center wrote a memorandum to the senior NUMERICAL (now the Johnson Space Center). management of LaRC, expressing A little more than three years his view that: TO later, USRA began to manage the ANALYSIS Institute for Computer Applications The field of computers and their in Science and Engineering (ICASE) application in the scientific QUANTUM at NASA’s Langley Research Center community has had a profound (LaRC). The rationale for creating effect on the progress of ICASE was developed by Dr. John aerospace research as well as COMPUTING E. Duberg (1917-2002), who was technology in general for the the Associate Director at LaRC and past 15 years. With the advent of “super computers,” based on parallel and pipeline techniques, the potentials for research and problem solving in the future seem even more promising and challenging. The only question is how long will it take to identify the potentials, harness the power, and develop the disciplines necessary to employ such tools effectively.1 Twenty years later, Duberg reflected on the creation of ICASE: By the 1970s, Langley’s computing capabilities had kept pace with the rapidly developing John E. Duberg, Chief Scientist, LaRC; George M.
    [Show full text]
  • OF the AMERICAN MATHEMATICAL SOCIETY 157 Notices February 2019 of the American Mathematical Society
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society February 2019 Volume 66, Number 2 THE NEXT INTRODUCING GENERATION FUND Photo by Steve Schneider/JMM Steve Photo by The Next Generation Fund is a new endowment at the AMS that exclusively supports programs for doctoral and postdoctoral scholars. It will assist rising mathematicians each year at modest but impactful levels, with funding for travel grants, collaboration support, mentoring, and more. Want to learn more? Visit www.ams.org/nextgen THANK YOU AMS Development Offi ce 401.455.4111 [email protected] A WORD FROM... Robin Wilson, Notices Associate Editor In this issue of the Notices, we reflect on the sacrifices and accomplishments made by generations of African Americans to the mathematical sciences. This year marks the 100th birthday of David Blackwell, who was born in Illinois in 1919 and went on to become the first Black professor at the University of California at Berkeley and one of America’s greatest statisticians. Six years after Blackwell was born, in 1925, Frank Elbert Cox was to become the first Black mathematician when he earned his PhD from Cornell University, and eighteen years later, in 1943, Euphemia Lofton Haynes would become the first Black woman to earn a mathematics PhD. By the late 1960s, there were close to 70 Black men and women with PhDs in mathematics. However, this first generation of Black mathematicians was forced to overcome many obstacles. As a Black researcher in America, segregation in the South and de facto segregation elsewhere provided little access to research universities and made it difficult to even participate in professional societies.
    [Show full text]
  • Mathematics (MATH) 1
    Mathematics (MATH) 1 MATHEMATICS (MATH) MATH 505: Mathematical Fluid Mechanics 3 Credits MATH 501: Real Analysis Kinematics, balance laws, constitutive equations; ideal fluids, viscous 3 Credits flows, boundary layers, lubrication; gas dynamics. Legesgue measure theory. Measurable sets and measurable functions. Prerequisite: MATH 402 or MATH 404 Legesgue integration, convergence theorems. Lp spaces. Decomposition MATH 506: Ergodic Theory and differentiation of measures. Convolutions. The Fourier transform. MATH 501 Real Analysis I (3) This course develops Lebesgue measure 3 Credits and integration theory. This is a centerpiece of modern analysis, providing a key tool in many areas of pure and applied mathematics. The course Measure-preserving transformations and flows, ergodic theorems, covers the following topics: Lebesgue measure theory, measurable sets ergodicity, mixing, weak mixing, spectral invariants, measurable and measurable functions, Lebesgue integration, convergence theorems, partitions, entropy, ornstein isomorphism theory. Lp spaces, decomposition and differentiation of measures, convolutions, the Fourier transform. Prerequisite: MATH 502 Prerequisite: MATH 404 MATH 507: Dynamical Systems I MATH 502: Complex Analysis 3 Credits 3 Credits Fundamental concepts; extensive survey of examples; equivalence and classification of dynamical systems, principal classes of asymptotic Complex numbers. Holomorphic functions. Cauchy's theorem. invariants, circle maps. Meromorphic functions. Laurent expansions, residue calculus. Conformal
    [Show full text]
  • GEORGE ELMER FORSYTHE January 8, 1917—April 9, 1972
    MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 120, OCTOBER 1972 GEORGE ELMER FORSYTHE January 8, 1917—April9, 1972 With the sudden death of George Forsythe, modern numerical analysis has lost one of its earliest pioneers, an influential leader who helped bring numerical analysis and computer science to their present positions. We in computing have been fortunate to have benefited from George's abilities, and we all feel a deep sense of personal and professional loss. Although George's interest in calculation can be traced back at least to his seventh grade attempt to see how the digits repeated in the decimal expansion of 10000/7699, his early research was actually in summability theory, leading to his Ph.D. in 1941 under J. D. Tamarkin at Brown University. A brief period at Stanford thereafter was interrupted by his Air Force service, during which he became interested in meteor- ology, co-authoring an influential book in that field. George then spent a year at Boeing, where his interest in scientific computing was reawakened, and in 1948 he began his fruitful association with the Institute for Numerical Analysis of the National Bureau of Standards on the UCLA campus, remaining at UCLA for three years after leaving the Institute in 1954. In 1957 he rejoined the Mathematics Department at Stanford as Professor, became director of the Computation Center, and eventually Chairman of the Computer Science Department when it was founded in 1965. George greatly influenced the development of modern numerical analysis, especially in numerical linear algebra where his 1953 classification of methods for solving linear systems gave structure to a field of great importance.
    [Show full text]