Habilitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research on the Digitial Image Based on Hyper-Chaotic And
Research on digital image watermark encryption based on hyperchaos Item Type Thesis or dissertation Authors Wu, Pianhui Publisher University of Derby Download date 27/09/2021 09:45:19 Link to Item http://hdl.handle.net/10545/305004 UNIVERSITY OF DERBY RESEARCH ON DIGITAL IMAGE WATERMARK ENCRYPTION BASED ON HYPERCHAOS Pianhui Wu Doctor of Philosophy 2013 RESEARCH ON DIGITAL IMAGE WATERMARK ENCRYPTION BASED ON HYPERCHAOS A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Pianhui Wu BSc. MSc. Faculty of Business, Computing and Law University of Derby May 2013 To my parents Acknowledgements I would like to thank sincerely Professor Zhengxu Zhao for his guidance, understanding, patience and most importantly, his friendship during my graduate studies at the University of Derby. His mentorship was paramount in providing a well-round experience consistent with my long-term career goals. I am grateful to many people in Faculty of Business, Computing and Law at the University of Derby for their support and help. I would also like to thank my parents, who have given me huge support and encouragement. Their advice is invaluable. An extra special recognition to my sister whose love and aid have made this thesis possible, and my time in Derby a colorful and wonderful experience. I Glossary AC Alternating Current AES Advanced Encryption Standard CCS Combination Coordinate Space CWT Continue Wavelet Transform BMP Bit Map DC Direct Current DCT Discrete Cosine Transform DWT Discrete Wavelet Transform -
Chaos Machine: Different Approach to the Application and Significance of Numbers
CHAOS MACHINE: DIFFERENT APPROACH TO THE APPLICATION AND SIGNIFICANCE OF NUMBERS Maciej A. Czyzewski [email protected] May 16, 2016 Abstract. In this paper we describe a theoretical model of generating random data. The generation of pseudo-random chaos machine, which combines the benefits of hash function numbers is an important and common task in computer pro- and pseudo-random function, forming flexible one-way gramming. Cryptographers design algorithms such as RC4 push-pull interface. It presents the idea to create a universal and DSA, and protocols such as SET and SSL, with the as- tool (design pattern) with modular design and customiz- sumption that random numbers are available. able parameters, that can be applied where randomness Hash is the term basically originated from computer sci- and sensitiveness is needed (random oracle), and where ence where it means chopping up the arbitrary length mes- appropriate construction determines case of application sage into fixed length output. Hash tables are popular data and selection of parameters provides preferred properties structures for storing key-value pairs. A hash function is used and security level. Machine can be used to implement to map the key value to array index, because it has numer- many cryptographic primitives, including cryptographic ous applications from indexing, with hash tables and bloom hashes, message authentication codes and pseudo-random filters; to spell-checking, compression, password hashing and number generators. Additionally, document includes sample cryptography. They are used in many different kinds of set- implementation of chaos machine named Naive Czyzewski tings and accordingly their security requirement changes. Generator, abbreviated NCG, that passes all the Dieharder, Hash functions were designed for uniqueness, while pseudo- NIST and TestU01 test sets. -
The Dynamics of Runge–Kutta Methods Julyan H
The Dynamics of Runge±Kutta Methods Julyan H. E. Cartwright & Oreste Piro School of Mathematical Sciences Queen Mary and West®eld College University of London Mile End Road London E1 4NS U.K. The ®rst step in investigating the dynamics of a continuous-time system described by an ordinary differential equation is to integrate to obtain trajectories. In this paper, we attempt to elucidate the dy- namics of the most commonly used family of numerical integration schemes, Runge±Kutta methods, by the application of the techniques of dynamical systems theory to the maps produced in the numerical analysis. QMW preprint DYN #91-9, Int. J. Bifurcation and Chaos, 2, 427±449, 1992 ¡ A CONICET (Consejo Nacional de Investigaciones Cienti®cas y Tecnicas de Argentina) Fellow. Present address: Institut Nonlineaire de Nice, Universite de NiceÐSophia Antipo- lis, Parc Valrose, 06034 Nice Cedex, France. 1 1. Introduction UMERICAL solution of ordinary differential equations is the most important technique in continuous time dynamics. Since most or- N dinary differential equations are not soluble analytically, numeri- cal integration is the only way to obtain information about the trajectory. Many different methods have been proposed and used in an attempt to solve accurately various types of ordinary differential equations. However there are a handful of methods known and used universally (i.e., Runge± Kutta, Adams±Bashforth±Moulton and Backward Differentiation Formulae methods). All these discretize the differential system to produce a differ- ence equation or map. The methods obtain different maps from the same differential equation, but they have the same aim; that the dynamics of the map should correspond closely to the dynamics of the differential equa- tion. -
Bifurcations, Mode Locking, and Chaos in a Dissipative System
The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System David K. Arrowsmith, School of Mathematical Sciences Queen Mary and Westfield College University of London Mile End Road London E1 4NS, UK Julyan H. E. Cartwright, Departament de F´ısica Universitat de les Illes Balears 07071 Palma de Mallorca, Spain Alexis N. Lansbury, Department of Physics Brunel, The University of West London Uxbridge, Middlesex UB8 3PH, UK &ColinM.Place.∗ Int. J. Bifurcation and Chaos, 3,803–842,1993 We investigate the bifurcations and basins of attraction in the Bog- danov map, a planar quadratic map which is conjugate to the Henon´ area-preserving map in its conservative limit. It undergoesaHopf bifurcation as dissipation is added, and exhibits the panoply of mode locking, Arnold tongues, and chaos as an invariant circle grows out, finally to be destroyed in the homoclinic tangency of the manifolds of aremotesaddlepoint.TheBogdanovmapistheEulermapofatwo- dimensional system of ordinary differential equations firstconsidered by Bogdanov and Arnold in their study of the versal unfolding of the double-zero-eigenvalue singularity, and equivalently of avectorfield invariant under rotation of the plane by an angle 2π.Itisauseful system in which to observe the effect of dissipative perturbations on Hamiltonian structure. In addition, we argue that the Bogdanov map provides a good approximation to the dynamics of the Poincaremaps´ of periodically forced oscillators. ∗Formerly: Department of Mathematics, Westfield College, University of London, UK. 1 1. Introduction Tisnowwellknownthatthestudyofsystemsofordinarydifferential equations, which commonly arise in dynamical systems investigated in I many fields of science, can be aided by utilizing the surface-of-section technique of Poincaremaps.The´ Poincar´e or return map of a system of or- dinary differential equations reduces the dimension of the problem, replac- ing an n-dimensional set of ordinary differential equations with an (n 1)- dimensional set of difference equations. -
A Comprehensive Study of Various High Security Encryption Algorithms
© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162) A COMPREHENSIVE STUDY OF VARIOUS HIGH SECURITY ENCRYPTION ALGORITHMS 1J T Pramod, 2N Gayathri, 3N Jayaram, 4T Geethanjali, 5M Anusha 1Assistant Professor, 2,3,4,5Student 1Department of Electronics and Communication Engineering 1Aditya College of Engineering, Madanapalle, Andhra Pradesh, India Abstract: It is well known that with the rapid technological development in the areas of multimedia and data communication networks, the data stored in image format has become so common and necessary. As digital images have become a vital mode of information transfer for confidential data, security has become a vital issue. Images containing sensitive data can be encrypted to another suitable form in order to preserve the information in a secure way. Modern cryptography provides various essential methods for securing the vital information available in the multimedia form. This paper outlines various high secure encryption algorithms. Considerable amount of research has been carried out in confusion and diffusion steps of cryptography using various chaotic maps for image encryption. The chaos-based image encryption scheme employs various pixel mapping methods applied during the confusion and diffusion stages of encryption. Following the same steps of cryptography but performing pixel scrambling and substitution using Genetic Algorithm and DNA Sequence respectively is another way to securely encrypt an image. Generalized Singular Value Decomposition a matrix decomposition method a generalized version of Singular Value Decomposition suits well for encrypting images. Using the similar guidelines, by employing Quadtree Decomposition to partially encrypt an image is yet another method used to secure a portion of an image containing confidential information. -
Bibliography
Bibliography [1] V.S. Afraimovich and L.P. Shil'nikov, Invariant tori, their break-down and stochasticity, Amer. Math. Soc. Transl, 149 (1991), 201{211, Originally published in: Methods of qualitative theory of diff. eqs., Gorky State Univ. (1983), pp. 3-26. [2] A. Agliari, G.-I. Bischi, R. Dieci, and L. Gardini, Global bifurcations of closed invariant curves in two-dimensional maps: a computer assisted study, Int. J. Bif. Chaos 15 (2005), 1285{1328. [3] E.L. Allgower and K. Georg, Numerical Continuation Methods: An Intro- duction, Springer-Verlag, Berlin, 1990. [4] V.I. Arnol'd, Loss of stability of self-induced oscillations near resonance, and versal deformations of equivariant vector fields, Funkcional. Anal. i Priloˇzen. 11 (1977), no. 2, 1{10, 95. [5] , Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New-York, 1983. [6] V.I. Arnol'd, V.S. Afraimovich, Yu.S. Il'yashenko, and L.P. Shil'nikov, Bifurcation theory, Dynamical Systems V. Encyclopaedia of Mathematical Sciences (V.I. Arnol'd, ed.), Springer-Verlag, New York, 1994. [7] D.G. Aronson, M.A. Chory, G.R. Hall, and R.P. McGehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study, Comm. Math. Phys. 83 (1982), 303{354. [8] D. Arrowsmith and C. Place, An Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 1990. [9] D.K. Arrowsmith, J.H.E. Cartwright, A.N. Lansbury, and C.M. Place, The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative system, Int. J. Bif. -
Stable Manifolds for Hybrid Maps: Implementation and Applications
High-order parameterization of (un)stable manifolds for hybrid maps: implementation and applications Vincent Naudot ∗1, J.D. Mireles James y1, and Qiuying Lu z3 1Florida Atlantic University, Department of Mathematical Sciences, 777 Glades Road, 33431 Boca Raton, FL, USA 3Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, CN March 29, 2016 Abstract In this work we study, from a numerical point of view, the (un)stable manifolds of a certain class of dynamical systems called hybrid maps. The dynamics of these systems are generated by a two stage procedure: the first stage is continuous time advection under a given vector field, the sec- ond stage is discrete time advection under a given diffeomorphism. Such hybrid systems model physical processes where a differential equation is occasionally kicked by a strong disturbance. We propose a numerical method for computing local (un)stable manifolds, which leads to high or- der polynomial parameterization of the embedding. The parameterization of the invariant manifold is not the graph of a function and can follow folds in the embedding. Moreover we obtain a representation of the dynamics on the manifold in terms of a simple conjugacy relation. We illustrate the utility of the method by studying a planar example system. 1 Introduction Stable and unstable manifolds associated with hyperbolic invariant sets are fun- damental objects of study in dynamical systems theory [1]. In addition to describing the motion of orbits near invariant sets, intersections between stable and unstable manifolds provide global information about movement between ∗Email: [email protected] yJ.M.J partially supported by NSF grant DMS - 1318172 Email: [email protected] zL. -
Width of the Homoclinic Zone in the Parameter Space for Quadratic Maps V
This article was downloaded by: [Florida Atlantic University] On: 21 March 2012, At: 13:05 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Experimental Mathematics Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uexm20 Width of the Homoclinic Zone in the Parameter Space for Quadratic Maps V. Gelfreich a & V. Naudot a a Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK Available online: 30 Jan 2011 To cite this article: V. Gelfreich & V. Naudot (2009): Width of the Homoclinic Zone in the Parameter Space for Quadratic Maps, Experimental Mathematics, 18:4, 409-427 To link to this article: http://dx.doi.org/10.1080/10586458.2009.10129058 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
The Simplest Map with Three-Frequency Quasi-Periodicity and Quasi-Periodic Bifurcations
July 30, 2016 12:29 WSPC/S0218-1274 1630019 International Journal of Bifurcation and Chaos, Vol. 26, No. 8 (2016) 1630019 (12 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127416300196 The Simplest Map with Three-Frequency Quasi-Periodicity and Quasi-Periodic Bifurcations Alexander P. Kuznetsov∗ and Yuliya V. Sedova† Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelenaya 38, Saratov 410019, Russian Federation ∗[email protected] †[email protected] Received February 16, 2016 We propose a new three-dimensional map that demonstrates the two- and three-frequency quasi- periodicity. For this map, all basic quasi-periodic bifurcations are possible. The study was real- ized by using Lyapunov charts completed by plots of Lyapunov exponents, phase portraits and bifurcation trees illustrating the quasi-periodic bifurcations. The features of the three-parameter structure associated with quasi-periodic Hopf bifurcation are discussed. The comparison with nonautonomous model is carried out. Keywords: Quasi-periodic oscillations; quasi-periodic bifurcations; torus map. 1. Introduction The basic ones are the next three bifurcations: Quasi-periodic oscillations are widespread in nature • the saddle-node bifurcation. Collision of stable and technology [Blekhman, 1988; Landa, 1996; and unstable tori leads to the abrupt birth of Pikovsky et al., 2001; Anishchenko et al., 2007a]. higher-dimensional torus. Examples of quasi-periodic behavior are found in • the quasi-periodic Hopf bifurcation. Torus of Int. J. Bifurcation Chaos 2016.26. Downloaded from www.worldscientific.com electronics [Glazier & Libchaber, 1988], neurody- higher dimension is born softly. by NANYANG TECHNOLOGICAL UNIVERSITY on 08/08/16. For personal use only. -
The Dynamical Properties of Modified of Bogdanov Map
Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 13(2) 2021 , pp Math. 14–21 14 The Dynamical Properties of Modified of Bogdanov Map (1) (2) Wafaa H. Al-Hilli , Rehab Amer Kamel Department of Mathematics, College of Education University of AL-Qadisiyah, Iraq,[email protected] Department of Mathematics, College of Education for pure Sciences, University of Babylon,Iraq, Email: [email protected] A R T I C L E I N F O A B S T R A C T Article history: In the work, we study the general properties of modified of the Received: 26 /03/2021 Bogdanov map in the form Fa,m,k . Rrevised form: 05 /04/2021 푥 푥 + 푦 Accepted : 15 /04/2021 ( ) = ( ) 푦 푦 + 푎푦 + 푘 푐표푠푥 − 푘푥 + 푚푥푦 Available online: 07 /05/2021 Keywords: We prove it has sensitive dependence on initial conditions and positive Lyapunov exponent with some conditions . So we give estimate of Sensitive dependence on topological entropy of modified Bogdanov map . initial conditions, Lyapunov exponent, MSC. 41A25; 41A35; 41A36. Topological entropy. DOI : https://doi.org/10.29304/jqcm.2021.13.2.790 _________________________________________________________________________________________________________________________________________________________________________ 1. Introduction Chaos theory is a branch of mathematics concern with studying the properties of deterministic systems that depend on their behavior on a set of elementary conditions, making their study somewhat complex using traditional mathematical tools. Mathematicians use chaos theory to model these systems in ways Different in order to arrive at a specific mathematical description of it and its behavior depending on all possible initial conditions. The Bogdanov map provides a good approximation to the dynamics of the Poincaré map of periodically forced oscillators, first considered by Bogdanov [5]. -
Bogdanov Map for Modelling a Phase-Conjugated Ring Resonator
entropy Article Bogdanov Map for Modelling a Phase-Conjugated Ring Resonator Vicente Aboites 1,* , David Liceaga 2, Rider Jaimes-Reátegui 3 and Juan Hugo García-López 3 1 Centro de Investigaciones en Óptica, Loma del Bosque 115, 37150 León, Mexico 2 División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 107, 37150 León, Mexico; [email protected] 3 Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de León 1144, Paseos de la Montaña, Lagos de Moreno, 47460 Jalisco, Mexico; [email protected] (R.J.-R.); [email protected] (J.H.G.-L.) * Correspondence: [email protected]; Tel.: +52-4774414200 Received: 24 October 2018; Accepted: 4 December 2018; Published: 10 April 2019 Abstract: In this paper, we propose using paraxial matrix optics to describe a ring-phase conjugated resonator that includes an intracavity chaos-generating element; this allows the system to behave in phase space as a Bogdanov Map. Explicit expressions for the intracavity chaos-generating matrix elements were obtained. Furthermore, computer calculations for several parameter configurations were made; rich dynamic behavior among periodic orbits high periodicity and chaos were observed through bifurcation diagrams. These results confirm the direct dependence between the parameters present in the intracavity chaos-generating element. Keywords: spatial dynamics; Bogdanov Map; chaos; laser; resonator 1. Introduction Matrix description of optical systems through ABCD matrices (Equation (8)) naturally produces iterative maps with -
Empirical Analysis of Robust Chaotic Maps for Image Encryption
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-11, September 2020 Empirical Analysis of Robust Chaotic Maps for Image Encryption Sonal Ayyappan, C Lakshmi Abstract: The rate of transferring data in the form of text, image, video or audio over an open network has drastically increased. As these are carried out in highly sophisticated fields of medicine, military and banking, security becomes important. In- order to enhance security for transmission, encryption algorithms play a vital role. So as to enhance the proficiency of the existing Images are represented as 2-dimensional arrays of encryption methods and for stronger anti attack abilities, chaotic data. Hence to apply encryption algorithms it must be based cryptography is essential. Chaotic based encryption has considered as one-dimensional array of data[3]. One- advantages of being sensitive to initial conditions and control parameters. Images have features like bulk data capacity and high dimensional image array consumes more space when inter pixel correlation. Transmission of such medical data should compared to one dimensional text data which leads to be highly confidential, integral and authorized. Hence chaos-based compression. It results in reduced space and reduced time for image encryption is an efficient way of fast and high-quality image transmission. But this may cause loss of some data which encryption. It has features like good speed, complexity, highly may be agreeable for general images but may be costly for secure, reasonable computational overhead and power. In this medical images. This results to wrong diagnosis of these paper a comprehensive analysis and an evaluation regarding the medical images [4].