Chapter 2 NUMB3RS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Numbers - the Essence
Numbers - the essence A computer consists in essence of a sequence of electrical on/off switches. Big question: How do switches become a computer? ITEC 1000 Introduction to Information Technologies 1 Friday, September 25, 2009 • A single switch is called a bit • A sequence of 8 bits is called a byte • Two or more bytes are often grouped to form word • Modern laptop/desktop standardly will have memory of 1 gigabyte = 1,000,000,000 bytes ITEC 1000 Introduction to Information Technologies 2 Friday, September 25, 2009 Question: How do encode information with switches ? Answer: With numbers - binary numbers using only 0’s and 1’s where for each switch on position = 1 off position = 0 ITEC 1000 Introduction to Information Technologies 3 Friday, September 25, 2009 • For a byte consisting of 8 bits there are a total of 28 = 256 ways to place 0’s and 1’s. Example 0 1 0 1 1 0 1 1 • For each grouping of 4 bits there are 24 = 16 ways to place 0’s and 1’s. • For a byte the first and second groupings of four bits can be represented by two hexadecimal digits • this will be made clear in following slides. ITEC 1000 Introduction to Information Technologies 4 Friday, September 25, 2009 Bits & Bytes imply creation of data and computer analysis of data • storing data (reading) • processing data - arithmetic operations, evaluations & comparisons • output of results ITEC 1000 Introduction to Information Technologies 5 Friday, September 25, 2009 Numeral systems A numeral system is any method of symbolically representing the counting numbers 1, 2, 3, 4, 5, . -
On the Origin of the Indian Brahma Alphabet
- ON THE <)|{I<; IN <>F TIIK INDIAN BRAHMA ALPHABET GEORG BtfHLKi; SECOND REVISED EDITION OF INDIAN STUDIES, NO III. TOGETHER WITH TWO APPENDICES ON THE OKU; IN OF THE KHAROSTHI ALPHABET AND OF THK SO-CALLED LETTER-NUMERALS OF THE BRAHMI. WITH TIIKKK PLATES. STRASSBUKi-. K A K 1. I. 1 1M I: \ I I; 1898. I'lintccl liy Adolf Ilcil/.haiisi'ii, Vicniiii. Preface to the Second Edition. .As the few separate copies of the Indian Studies No. Ill, struck off in 1895, were sold very soon and rather numerous requests for additional ones were addressed both to me and to the bookseller of the Imperial Academy, Messrs. Carl Gerold's Sohn, I asked the Academy for permission to issue a second edition, which Mr. Karl J. Trlibner had consented to publish. My petition was readily granted. In addition Messrs, von Holder, the publishers of the Wiener Zeitschrift fur die Kunde des Morgenlandes, kindly allowed me to reprint my article on the origin of the Kharosthi, which had appeared in vol. IX of that Journal and is now given in Appendix I. To these two sections I have added, in Appendix II, a brief review of the arguments for Dr. Burnell's hypothesis, which derives the so-called letter- numerals or numerical symbols of the Brahma alphabet from the ancient Egyptian numeral signs, together with a third com- parative table, in order to include in this volume all those points, which require fuller discussion, and in order to make it a serviceable companion to the palaeography of the Grund- riss. -
Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS
Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS Students will be able to: Understand the meanings of Irrational Numbers Key Vocabulary: • Irrational Numbers • Examples of Rational Numbers and Irrational Numbers • Decimal expansion of Irrational Numbers • Steps for representing Irrational Numbers on number line IRRATIONAL NUMBERS A rational number is a number that can be expressed as a ratio or we can say that written as a fraction. Every whole number is a rational number, because any whole number can be written as a fraction. Numbers that are not rational are called irrational numbers. An Irrational Number is a real number that cannot be written as a simple fraction or we can say cannot be written as a ratio of two integers. The set of real numbers consists of the union of the rational and irrational numbers. If a whole number is not a perfect square, then its square root is irrational. For example, 2 is not a perfect square, and √2 is irrational. EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Rational Number The number 7 is a rational number because it can be written as the 7 fraction . 1 The number 0.1111111….(1 is repeating) is also rational number 1 because it can be written as fraction . 9 EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Irrational Numbers The square root of 2 is an irrational number because it cannot be written as a fraction √2 = 1.4142135…… Pi(휋) is also an irrational number. π = 3.1415926535897932384626433832795 (and more...) 22 The approx. value of = 3.1428571428571.. -
Metrical Diophantine Approximation for Quaternions
This is a repository copy of Metrical Diophantine approximation for quaternions. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/90637/ Version: Accepted Version Article: Dodson, Maurice and Everitt, Brent orcid.org/0000-0002-0395-338X (2014) Metrical Diophantine approximation for quaternions. Mathematical Proceedings of the Cambridge Philosophical Society. pp. 513-542. ISSN 1469-8064 https://doi.org/10.1017/S0305004114000462 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1 Metrical Diophantine approximation for quaternions By MAURICE DODSON† and BRENT EVERITT‡ Department of Mathematics, University of York, York, YO 10 5DD, UK (Received ; revised) Dedicated to J. W. S. Cassels. Abstract Analogues of the classical theorems of Khintchine, Jarn´ık and Jarn´ık-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general ‘lim sup’ sets. -
MATH 15, CLS 15 — Spring 2020 Problem Set 1, Due 24 January 2020
MATH 15, CLS 15 — Spring 2020 Problem set 1, due 24 January 2020 General instructions for the semester: You may use any references you like for these assignments, though you should not need anything beyond the books on the syllabus and the specified web sites. You may work with your classmates provided you all come to your own conclusions and write up your own solutions separately: discussing a problem is a really good idea, but letting somebody else solve it for you misses the point. When a question just asks for a calculation, that’s all you need to write — make sure to show your work! But if there’s a “why” or “how” question, your answer should be in the form of coherent paragraphs, giving evidence for the statements you make and the conclusions you reach. Papers should be typed (double sided is fine) and handed in at the start of class on the due date. 1. What is mathematics? Early in the video you watched, du Sautoy says the fundamental ideas of mathematics are “space and quantity”; later he says that “proof is what gives mathematics its strength.” English Wikipedia tells us “mathematics includes the study of such topics as quantity, structure, space, and change,” while Simple English Wikipedia says “mathematics is the study of numbers, shapes, and patterns.” In French Wikipedia´ we read “mathematics is a collection of abstract knowledge based on logical reasoning applied to such things as numbers, forms, structures, and transformations”; in German, “mathematics is a science that started with the study of geometric figures and calculations with numbers”; and in Spanish, “mathematics is a formal science with, beginning with axioms and continuing with logical reasoning, studies the properties of and relations between abstract objects like numbers, geometric figures, or symbols” (all translations mine). -
Algebraic Numbers As Product of Powers of Transcendental Numbers
S S symmetry Article Algebraic Numbers as Product of Powers of Transcendental Numbers Pavel Trojovský Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; [email protected]; Tel.: +42-049-333-2801 Received: 17 June 2019; Accepted: 4 July 2019; Published: 8 July 2019 Abstract: The elementary symmetric functions play a crucial role in the study of zeros of non-zero polynomials in C[x], and the problem of finding zeros in Q[x] leads to the definition of algebraic and transcendental numbers. Recently, Marques studied the set of algebraic numbers in the form P(T)Q(T). In this paper, we generalize this result by showing the existence of algebraic Q (T) Qn(T) numbers which can be written in the form P1(T) 1 ··· Pn(T) for some transcendental number T, where P1, ... , Pn, Q1, ... , Qn are prescribed, non-constant polynomials in Q[x] (under weak conditions). More generally, our result generalizes results on the arithmetic nature of zw when z and w are transcendental. Keywords: Baker’s theorem; Gel’fond–Schneider theorem; algebraic number; transcendental number 1. Introduction The name “transcendental”, which comes from the Latin word “transcendˇere”, was first used for a mathematical concept by Leibniz in 1682. Transcendental numbers in the modern sense were defined by Leonhard Euler (see [1]). A complex number a is called algebraic if it is a zero of some non-zero polynomial P 2 Q[x]. Otherwise, a is transcendental. Algebraic numbers form a field, which is denoted by Q. The transcendence of e was proved by Charles Hermite [2] in 1872, and two years later Ferdinand von Lindeman [3] extended the method of Hermite‘s proof to derive that p is also transcendental. -
Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis
Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis Mike Krebs James Pommersheim Anthony Shaheen FOR THE INSTRUCTOR TO READ i For the instructor to read We should put a section in the front of the book that organizes the organization of the book. It would be the instructor section that would have: { flow chart that shows which sections are prereqs for what sections. We can start making this now so we don't have to remember the flow later. { main organization and objects in each chapter { What a Cfu is and how to use it { Why we have the proofcomment formatting and what it is. { Applications sections and what they are { Other things that need to be pointed out. IDEA: Seperate each of the above into subsections that are labeled for ease of reading but not shown in the table of contents in the front of the book. ||||||||| main organization examples: ||||||| || In a course such as this, the student comes in contact with many abstract concepts, such as that of a set, a function, and an equivalence class of an equivalence relation. What is the best way to learn this material. We have come up with several rules that we want to follow in this book. Themes of the book: 1. The book has a few central mathematical objects that are used throughout the book. 2. Each central mathematical object from theme #1 must be a fundamental object in mathematics that appears in many areas of mathematics and its applications. -
Rational Numbers Vs. Irrational Numbers Handout
Rational numbers vs. Irrational numbers by Nabil Nassif, PhD in cooperation with Sophie Moufawad, MS and the assistance of Ghina El Jannoun, MS and Dania Sheaib, MS American University of Beirut, Lebanon An MIT BLOSSOMS Module August, 2012 Rational numbers vs. Irrational numbers “The ultimate Nature of Reality is Numbers” A quote from Pythagoras (570-495 BC) Rational numbers vs. Irrational numbers “Wherever there is number, there is beauty” A quote from Proclus (412-485 AD) Rational numbers vs. Irrational numbers Traditional Clock plus Circumference 1 1 min = of 1 hour 60 Rational numbers vs. Irrational numbers An Electronic Clock plus a Calendar Hour : Minutes : Seconds dd/mm/yyyy 1 1 month = of 1year 12 1 1 day = of 1 year (normally) 365 1 1 hour = of 1 day 24 1 1 min = of 1 hour 60 1 1 sec = of 1 min 60 Rational numbers vs. Irrational numbers TSquares: Use of Pythagoras Theorem Rational numbers vs. Irrational numbers Golden number ϕ and Golden rectangle 1+√5 1 1 √5 Roots of x2 x 1=0are ϕ = and = − − − 2 − ϕ 2 Rational numbers vs. Irrational numbers Golden number ϕ and Inner Golden spiral Drawn with up to 10 golden rectangles Rational numbers vs. Irrational numbers Outer Golden spiral and L. Fibonacci (1175-1250) sequence = 1 , 1 , 2, 3, 5, 8, 13..., fn, ... : fn = fn 1+fn 2,n 3 F { } − − ≥ f1 f2 1 n n 1 1 !"#$ !"#$ fn = (ϕ +( 1) − ) √5 − ϕn Rational numbers vs. Irrational numbers Euler’s Number e 1 1 1 s = 1 + + + =2.6666....66.... 3 1! 2 3! 1 1 1 s = 1 + + + =2.70833333...333... -
The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g. -
Writing the History of Mathematics: Interpretations of the Mathematics of the Past and Its Relation to the Mathematics of Today
Writing the History of Mathematics: Interpretations of the Mathematics of the Past and Its Relation to the Mathematics of Today Johanna Pejlare and Kajsa Bråting Contents Introduction.................................................................. 2 Traces of Mathematics of the First Humans........................................ 3 History of Ancient Mathematics: The First Written Sources........................... 6 History of Mathematics or Heritage of Mathematics?................................. 9 Further Views of the Past and Its Relation to the Present.............................. 15 Can History Be Recapitulated or Does Culture Matter?............................... 19 Concluding Remarks........................................................... 24 Cross-References.............................................................. 24 References................................................................... 24 Abstract In the present chapter, interpretations of the mathematics of the past are problematized, based on examples such as archeological artifacts, as well as written sources from the ancient Egyptian, Babylonian, and Greek civilizations. The distinction between history and heritage is considered in relation to Euler’s function concept, Cauchy’s sum theorem, and the Unguru debate. Also, the distinction between the historical past and the practical past,aswellasthe distinction between the historical and the nonhistorical relations to the past, are made concrete based on Torricelli’s result on an infinitely long solid from -
The Evolution of Number in Mathematics Assad Ebrahim
THE EVOLUTION OF NUMBER IN MATHEMATICS ASSAD EBRAHIM Abstract. The number concept has evolved in a gradual process over ten millenia from concrete symbol association in the Middle East c.8000 BCE (“4 sheep-tokens are different than 4 grain-tokens”)1 to an hierarchy of number sets (N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O)2 the last four of which unify number with space and motion.3 In this paper we trace this evolution from whole numbers at the dawn of accounting with number-tokens through the paradoxes of algebraic irrationals, non-solvability by radicals4 , and uncountably many transcendentals, to the physical reality of imaginary numbers and the connection of the octonions with supersymmetry and string theory.5(FAQ3) Our story is of conceptual abstraction, algebraic extension, and analytic completeness, and reflects the modern transformation of mathematics itself. The main paper is brief (four pages) followed by supplements containing FAQs, historical notes, and appendices (holding theorems and proofs), and an annotated bibliography. A project supplement is in preparation to allow learning the material through self-discovery and guided exploration. For scholars and laymen alike it is not philosophy but active experience in mathematics itself that can alone answer the question: ‘What is Mathematics?’ Richard Courant (1941), book of the same title “One of the disappointments experienced by most mathematics students is that they never get a [unified] course on mathematics. They get courses in calculus, algebra, topology, and so on, but the division of labor in teaching seems to prevent these different topics from being combined into a whole. -
Solving a System of Linear Equations Using Ancient Chinese Methods
Solving a System of Linear Equations Using Ancient Chinese Methods Mary Flagg University of St. Thomas Houston, TX JMM January 2018 Mary Flagg (University of St. Thomas Houston,Solving TX) a System of Linear Equations Using Ancient ChineseJMM Methods January 2018 1 / 22 Outline 1 Gaussian Elimination 2 Chinese Methods 3 The Project 4 TRIUMPHS Mary Flagg (University of St. Thomas Houston,Solving TX) a System of Linear Equations Using Ancient ChineseJMM Methods January 2018 2 / 22 Gaussian Elimination Question History Question Who invented Gaussian Elimination? When was Gaussian Elimination developed? Carl Friedrick Gauss lived from 1777-1855. Arthur Cayley was one of the first to create matrix algebra in 1858. Mary Flagg (University of St. Thomas Houston,Solving TX) a System of Linear Equations Using Ancient ChineseJMM Methods January 2018 3 / 22 Gaussian Elimination Ancient Chinese Origins Juizhang Suanshu The Nine Chapters on the Mathematical Art is an anonymous text compiled during the Qin and Han dynasties 221 BCE - 220 AD. It consists of 246 problems and their solutions arranged in 9 chapters by topic. Fangcheng Chapter 8 of the Nine Chapters is translated as Rectangular Arrays. It concerns the solution of systems of linear equations. Liu Hui The Chinese mathematician Liu Hui published an annotated version of The Nine Chapters in 263 AD. His comments contain a detailed explanation of the Fangcheng Rule Mary Flagg (University of St. Thomas Houston,Solving TX) a System of Linear Equations Using Ancient ChineseJMM Methods January 2018 4 / 22 Chinese Methods Counting Rods The ancient Chinese used counting rods to represent numbers and perform arithmetic.