Symposium on Telescope Science

Total Page:16

File Type:pdf, Size:1020Kb

Symposium on Telescope Science Proceedings for the 29th Annual Conference of the Society for Astronomical Sciences Joint Meeting of The Society for Astronomical Sciences The Center for Backyard Astrophysics Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote Robert Buchheim May 11-13, 2010 Big Bear Lake, CA Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply nor should it be inferred as an en- dorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2010 Table of Contents Table of Contents TABLE OF CONTENTS 3 PREFACE 1 CONFERENCE SPONSORS 3 SUBMITTED PAPERS 5 EPSILON AURIGAE IN TOTAL ECLIPSE, 2010 – A PROGRESS REPORT 7 ROBERT E. STENCEL EPSILON AURIGAE ECLIPSE 2009 - INGRESS 13 JEFFREY L. HOPKINS, ROBERT E. STENCEL, ROBIN LEADBEATER, PAUL J. BECKMANN, CHRISTIAN BUIL, DONALD COLLINS, TIZIANO COLOMBO, THIERRY GARREL, STANLEY GORODENSKI, SNAEVARR GUDMUNDSSON, THOMAS KARLSSON, DR. MUKUND KURTADIKAR, HANS-GORAN LINDBERG, DES LOUGHNEY, BENJI MAUCLAIRE, BRIAN E. MCCANDLESS, FRANK J. MELILLO, RICHARD MILES, ROBERT T. (TOM) PEARSON, GERARD SAMOLYK, LOTHAR SCHANNE, IAKOVOS MARIOS STRIKIS, FRANÇOIS TEYSSIER, OLIVIER THIZY RAPID CADENCE MONITORING OF AURIGAE 29 GARY BILLINGS DEVELOPING A POLARIMETER TO SUPPORT THE EPSILON AURIGAE CAMPAIGN 37 GARY M. COLE THE FIRST DECADAL SURVEY OF AMATEUR ASTRONOMY AND ASTROPHYSICS 43 AARON PRICE, ARNE HENDEN, MIKE SIMONSEN AAVSO PHOTOMETRIC ALL-SKY SURVEY IMPLEMENTATION AT THE DARK RIDGE OBSERVATORY 45 THOMAS C. SMITH, ARNE HENDEN, DIRK TERRELL EXAMINING ROTSE 1 RRC LYR VARIABLES 55 JERRY D. HORNE INTRODUCING ASTRONOMY RELATED RESEARCH INTO NON-ASTRONOMY COURSES 63 DOUGLAS WALKER Table of Contents HERE TODAY, GONE TOMORROW: THE STORY OF U SCO 71 JOHN L. MENKE THE UNUSUAL BEHAVIOR OF TT ARIETIS: 2009 OCTOBER DECLINE 83 ROBERT A. KOFF, JOE PATTERSON THE Z CAMPAIGN 87 MIKE SIMONSEN IO AND EUROPA ATMOSPHERE DETECTION THROUGH JOVIAN MUTUAL EVENTS 91 SCOTT DEGENHARDT, S. AGUIRRE, M. HOSKINSON, A. SCHECK, B. TIMERSON, D. CLARK, T. REDDING, J. TALBOT METHODS AND LESSONS LEARNED DETERMINING THE H-G PARAMETERS OF ASTEROID PHASE CURVES 101 ROBERT K. BUCHHEIM LIGHT BUCKET ASTRONOMY 117 RUSSELL M. GENET, ARNE A. HENDEN, BRUCE D. HOLENSTEIN 117 ASYNCHRONOUS METEOR OBSERVATIONS, DISCOVERY, AND CHARACTERIZATION OF SHOWER STATISTICS AND METEORITE RECOVERY 123 WAYNE GREEN IMAGING DENSE GLOBULAR CLUSTERS LIKE M3 AND M15 129 RODNEY HOWE, IDO BAREKET BAREKET, STOURAITIS DIMITRIOS A TALE OF TWO SPACE ROCKS 135 ROBERT STEPHENS, RALPH MEGNA POSTER PAPERS 143 AN AMATEUR’S SPATIAL MODEL OF THE EPSILON AURIGAE SYSTEM 145 MARINA GEMMA Preface Preface It takes many people to have a successful conference, starting with the Conference Committee. This year the regular committee members are: Lee Snyder Robert Stephens Robert Gill Jerry Foote Cindy Foote Margaret Miller Brian D. Warner Robert Buchheim Dale Mais There are many others involved in a successful conference. The editors take time to note the many volunteers who put in considerable time and resources. We also thank the staff and management of the Northwoods Resort in Big Bear Lake, CA, for their efforts at accommodating the Society and our activities. Membership dues alone do not fully cover the costs of the Society and annual conference. We owe a great debt of gratitude to our corporate sponsors: Sky and Telescope, Software Bisque, Santa Barbara Instruments Group, PlaneWave Instruments, and Apogee Instruments, Inc. Finally, there would be no conference without our speakers and poster presenters. We thank them for making the time to prepare and present the results of their research. Brian D. Warner Jerry Foote Robert Buccheim Dale Mais 1 Preface 2 Conference Sponsors Conference Sponsors The conference organizers thank the following companies for their significant contributions and financial support. Without them, this conference would not be possible. Apogee Instruments, Inc. Manufacturers of astronomical and scientific imaging cameras http://www.ccd.com Santa Barbara Instruments Group Makers of astronomical instrumentation http://www.sbig.com Sky Publishing Corporation Publishers of Sky and Telescope Magazine http://skyandtelescope.com Software Bisque Developers of TheSky Astronomy Software and the Paramount Telescope Mount http://www.bisque.com PlaneWave Instruments Makers of the CDK line of telescopes http://www.planewaveinstruments.com:80/index.php 3 Conference Sponsors 4 Submitted Papers 5 6 Stencel – epsilon Aurigae Progress Report Epsilon Aurigae in Total Eclipse, 2010 – A progress report Robert E. Stencel Meyer-Womble Observatory © University of Denver Observatories, Denver CO 80208 USA [email protected] Abstract The enigmatic eclipsing binary, epsilon Aurigae, has once more entered a rare eclipse phase, for the first time since 1983. A wonderful array of photometric and spectroscopic observations is underway, thanks to the eclipse observing campaign and its participants. In addition, breakthrough results have emerged from infrared and ultra- violet observations, and especially with interferometric imaging that revealed the long suspected dark disk in transit, plus new optical spectra that are revealing substructure inside the disk itself. Implications of many of these observations are discussed, but as the eclipse data are still being collected, I anticipate additional discov- eries still to come, throughout 2010, and beyond. 1. Introduction Photometry and spectroscopy campaign efforts, light curves and eclipse timing results to date are discussed Epsilon Aurigae (ep-si-lon Awe-rye-gee) is an in a companion paper by Jeff Hopkins, at this meet- Algol-like, very long period eclipsing binary. The 27 ing (recommended reading). year eclipse interval includes a nearly 2 year eclipse duration, wherein visual magnitude drops from 3.0 to 2. Development #1: The Complete 3.8. As of this year’s SAS symposium, we’ve seen Spectral Energy Distribution (SED). the start of the first eclipse of the millennium, during 2009 August, with totality reached during 2010 As reported by Hoard, Howell, and Stencel Janunary, predicted to last 15 months, through 2011 (2010, hereafter “HHS”), data have become available March. The end of eclipse is expected during 2011 that span a wide spectral range, from the far- May. For up-to-date details, see the online newslet- ultraviolet, through the visible range and out into the ters (Hopkins, 2010). This will be only the seventh far-infrared. Because of calibration efforts, it has documented eclipse in history (2010, 1983, 1956, proven possible to combine these well calibrated data 1930, 1902, 1874 and 1847). For additional detail into a complete and self-consistent picture of the about epsilon Aurigae, see Stencel and Hopkins sources of light in epsilon Aurigae. Key to under- (2009, SAS), along with the book about the star by standing this result is that interlocking requirements Hopkins and Stencel (2009), and feature articles in of distance and other constraints on F star diameter, the 2009 May issue of Sky & Telescope, 2009 Octo- drive us to these self-consistent conclusions. ber in Astronomy, and the 2010 February issue of Clearly the F star dominates much of the visible Astronomy Now and elsewhere. portion of the spectrum (Figure 1), and for the Hip- The bright eclipsing binary star, epsilon Aurigae, parcos distance of 625pc, given the interferometri- has long fascinated astronomers who could determine cally determined diameter, 2.27 ± 0.11 milli-arcsec, the nature of one companion star in the system, but then the F star radius is 135 ± 5 solar radii. The en- not the other (Guinan and Dewarf, 2002). The crux of ergy distribution is well described by a 7750K sur- the problem was that the apparent early F supergiant face temperature and log gravity = 1.0 atmospheric star in this single lined spectroscopic binary, should model. Subtracting this well-defined F star leaves have a comparably massive secondary. However, the two residual signals: In the far-ultraviolet, extra flux secondary is vastly under-luminous for the presumed beyond the well-fit optical region can be fitted by a mass. Various models have been proposed, but the B5V star, with a nominal mass equal to 5.9 solar preferred model involves a disk of material obscuring masses and radius of only 4 solar radii. a fairly normal companion star (Huang, 1965, 1974). In the infrared, clearly an excess signal is present I am happy to report that an unprecedented series above the F star, and this is the cold disk previously of observations are underway in photometric, spec- measured to have a 550K temperature. The total flux troscopic, polarimetric and interferometric modes. from the disk defines a luminosity and hence a total Theory is advancing as well, as discussed below. surface area. Using eclipse length as a width con- 7 Stencel – epsilon Aurigae Progress Report straint (radius 3.8 AU), the implied thickness is 0.9 AU, consistent with the depth of eclipse – that is, the disk does not fully cover the F star. Figure 2: Ingress images of epsilon Aurigae, on the sub- milli arcsecond spatial scale, during ingress 2009 No- vember and December. This pair of images, and hopefully more to fol- Figure 1: The ultraviolet-optical-infrared spectral energy low, already demonstrate that the basic disk model distribution of epsilon Aurigae. (Huang, 1965) is correct, with modifications to ac- count for disk shape. As reported by Kloppenborg 3. Development #2
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • The Very Long Mystery of Epsilon Aurigae
    A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center.
    [Show full text]
  • Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2012 2
    Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2012 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 36 Lecturers…………………………………………………………………………………… p. 64 Research Scientists ……………………………………………………………………….. p. 76 Visiting Scientists ………………………………………………………………………... p. 86 IRAP Ph. D. Students ……………………………………………………………………. p. 103 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 123 Administrative and Secretarial Staff …………………………………………………… p. 135 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano University of Rome “Sapienza” and ICRANet Einasto Jaan Tartu Observatory, Estonia Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. University of Rome “Sapienza” and ICRANet Ruffini Remo University of Rome “Sapienza” and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics Moscow, Russia Damour Thibault Joseph-Louis
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The Inter-Eruption Timescale of Classical Novae from Expansion of the Z Camelopardalis Shell
    The Astrophysical Journal, 756:107 (6pp), 2012 September 10 doi:10.1088/0004-637X/756/2/107 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE INTER-ERUPTION TIMESCALE OF CLASSICAL NOVAE FROM EXPANSION OF THE Z CAMELOPARDALIS SHELL Michael M. Shara1,4, Trisha Mizusawa1, David Zurek1,4, Christopher D. Martin2, James D. Neill2, and Mark Seibert3 1 Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA 2 Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125, USA 3 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA Received 2012 May 14; accepted 2012 July 9; published 2012 August 21 ABSTRACT The dwarf nova Z Camelopardalis is surrounded by the largest known classical nova shell. This shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts. The current size of the shell, its known distance, and the largest observed nova ejection velocity set a lower limit to the time since Z Cam’s last outburst of 220 years. The radius of the brightest part of Z Cam’s shell is currently ∼880 arcsec. No expansion of the radius of the brightest part of the ejecta was detected, with an upper limit of 0.17 arcsec yr−1. This suggests that the last Z Cam eruption occurred 5000 years ago.
    [Show full text]
  • Exodata: a Python Package to Handle Large Exoplanet Catalogue Data
    ExoData: A Python package to handle large exoplanet catalogue data Ryan Varley Department of Physics & Astronomy, University College London 132 Hampstead Road, London, NW1 2PS, United Kingdom [email protected] Abstract Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in an arti- cles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Cata- logue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary etc) from which common orbital and system equations can be calculated and measured parame- ters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets are possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets.
    [Show full text]
  • Perturbations in the Motion of the Quasicomplanar Minor Planets For
    Publications of the Department of Astronom} - Beograd, N2 ID, 1980 UDC 523.24; 521.1/3 osp PERTURBATIONS IN THE MOTION OF THE QUASICOMPLANAR MI­ NOR PLANETS FOR THE CASE PROXIMITIES ARE UNDER 10000 KM J. Lazovic and M. Kuzmanoski Institute of Astronomy, Faculty of Sciences, Beograd Received January 30, 1980 Summary. Mutual gravitational action during proximities of 12 quasicomplanar minor pla­ nets pairs have been investigated, whose minimum distances were under 10000 km. In five of the pairs perturbations of several orbital elements have been stated, whose amounts are detectable by observations from the Earth. J. Lazovic, M. Kuzmanoski, POREMECAJI ELEMENATA KRETANJA KVAZIKOM­ PLANARNIH MALIH PLANETA U PROKSIMITETIMA NJIHOVIH PUTANJA SA DA­ LJINAMA MANJIM OD 10000 KM - Ispitali smo medusobna gravitaciona de;stva pri proksi­ mitetima 12 parova kvazikomplanarnih malih planeta sa minimalnim daljinama ispod 10000 km. Kod pet parova nadeni su poremecaji u vi~e putanjskih elemenata, ~iji bi se iznosi mogli ustano­ viti posmatranjima sa Zemlje. Earlier we have found out 13 quasicomplanar minor planets pairs (the angle I between their orbital planes less than O~500), whose minimum mutual distances (pmin) were less than 10000 km (Lazovic, Kuzmanoski, 1978). The shortest pro­ ximity distance of only 600 km among these pairs has been stated with minor planet pair (215) Oenone and 1851 == 1950 VA. The corresponding perturbation effects in this pair have been calculated (Lazovic, Kuzmanoski, 1979a). This motivated us to investigate the mutual perturbing actions in the 12 remaining minor planets pairs for the case they found themselves within the proximities of their correspon­ ding orbits.
    [Show full text]
  • Z Cam Stars in the Twenty-First Century
    Simonsen et al., JAAVSO Volume 42, 2014 1 Z Cam Stars in the Twenty-First Century Mike Simonsen AAVSO, 49 Bay State Road., Cambridge, MA 02138; [email protected] David Boyd 5 Silver Lane, West Challow OX12 9TX, England; [email protected] William Goff 13508 Monitor Lane, Sutter Creek, CA 95685; [email protected] Tom Krajci Center for Backyard Astronomy, P.O. Box 1351, Cloudcroft, NM 88317; [email protected] Kenneth Menzies 318A Potter Road, Framingham MA, 01701; [email protected] Sebastian Otero AAVSO, 49 Bay State Road, Cambridge, MA 02138; [email protected] Stefano Padovan Barrio Masos SN, 17132 Foixà, Girona, Spain; [email protected] Gary Poyner 67 Ellerton Road, Kingstanding, Birmingham B44 0QE, England; [email protected] James Roe 85 Eikermann Road-174, Bourbon, MO 65441; [email protected] Richard Sabo 2336 Trailcrest Drive, Bozeman, MT 59718; [email protected] George Sjoberg 9 Contentment Crest, #182, Mayhill, NM 88339; [email protected] Bart Staels Koningshofbaan 51, Hofstade (Aalst) B-9308, Belgium; [email protected] Rod Stubbings 2643 Warragul, Korumburra Road, Tetoora Road, VIC 3821, Australia; [email protected] John Toone 17 Ashdale Road, Cressage, Shrewsbury SY5 6DT, England; [email protected] Patrick Wils Aarschotsebaan 31, Hever B-3191, Belgium; [email protected] Received October 7, 2013; revised November 12, 2013; accepted November 12, 2013 2 Simonsen et al., JAAVSO Volume 42, 2014 Abstract Z Cam (UGZ) stars are a small subset of dwarf novae that exhibit standstills in their light curves. Most modern literature and catalogs of cataclysmic variables quote the number of known Z Cams to be on the order of thirty or so systems.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Infrared Studies of Epsilon Aurigae in Eclipse
    The Astronomical Journal, 142:174 (9pp), 2011 November doi:10.1088/0004-6256/142/5/174 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED STUDIES OF EPSILON AURIGAE IN ECLIPSE Robert E. Stencel1, Brian K. Kloppenborg1, Randall E. Wall, Jr.1, Jeffrey L. Hopkins2, Steve B. Howell3, D. W. Hoard4, John Rayner5, Schelte Bus5, Alan Tokunaga5, Michael L. Sitko6,7, Suellen Bradford6,7, Ray W. Russell8, David K. Lynch8, Heidi Hammel9, Barbara Whitney9, Glenn Orton10, Padma Yanamandra-Fisher10, Joseph L. Hora11,PhilipHinz12, William Hoffmann12, and Andrew Skemer12 1 Department of Physics & Astronomy, University of Denver, Denver, CO 80208 USA; [email protected] 2 Hopkins Phoenix Observatory, Phoenix, AZ 85033 USA 3 National Optical Astronomy Observatories, Tucson, AZ 85719, USA 4 Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA 5 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 6 Department of Physics, Cincinnati University, Cincinnati, OH, USA 7 Space Science Institute, Boulder, CO, USA 8 The Aerospace Corporation, Los Angeles, CA 90009, USA 9 Space Science Institute, Boulder, CO 80301, USA 10 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 11 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 12 Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA Received 2011 July 7; accepted 2011 September 16; published 2011 October 17 ABSTRACT We report here on a series of medium resolution spectro-photometric observations of the enigmatic long period eclipsing binary epsilon Aurigae, during its eclipse interval of 2009–2011, using near-infrared spectra obtained with SpeX on the Infrared Telescope Facility (IRTF), mid-infrared spectra obtained with BASS on AOES and IRTF, MIRSI on IRTF, and MIRAC4 on the MMT, along with mid-infrared photometry using MIRSI on IRTF and MIRAC4 on the MMT, plus 1995–2000 timeframe published photometry and data obtained with Denver’s TNTCAM2 at WIRO.
    [Show full text]
  • Phase Integral of Asteroids Vasilij G
    A&A 626, A87 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935588 & © ESO 2019 Astrophysics Phase integral of asteroids Vasilij G. Shevchenko1,2, Irina N. Belskaya2, Olga I. Mikhalchenko1,2, Karri Muinonen3,4, Antti Penttilä3, Maria Gritsevich3,5, Yuriy G. Shkuratov2, Ivan G. Slyusarev1,2, and Gorden Videen6 1 Department of Astronomy and Space Informatics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine e-mail: [email protected] 2 Institute of Astronomy, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine 3 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland 4 Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, 02430 Masala, Finland 5 Institute of Physics and Technology, Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia 6 Space Science Institute, 4750 Walnut St. Suite 205, Boulder CO 80301, USA Received 31 March 2019 / Accepted 20 May 2019 ABSTRACT The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G1, G2 parameters of the HG1G2 function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G1 and G2 parameters are in very good agreement with the available observational data.
    [Show full text]
  • Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
    Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing.
    [Show full text]