Regulation of Receptor Signaling in Breast and

Endometrial Cancer by the Src Kinase Pathway, the

Micronutrient Selenium, and by Novel -regulated

Biomarkers

Yatrik M. Shah

Medical College of Ohio

2005 ACKNOWLEDGEMENTS

I would like to thank my major advisor for his support and valuable instructions. I would

like to thank the members of my advisory committee, Drs. Manohar Ratnam, Sonia

Najjar, Kam Yeung, and Douglas Pittman for their advice and guidance throughout my

graduate school years. I would like to acknowledge my appreciation to our collaborators

Drs. Yan Dong and Clement Ip on the selenium projects. I like to acknowledge Dr.

Fernand Labrie for the generous gift of EM-652, and Dr. Robert Clarke for the MCF-7-

LCC2 cell line. I like to express thanks to all the members of Dr. Rowan’s lab for their assistance and support.

ii TABLE OF CONTENTS

Acknowledgements------ii

Table of Contents------iii

Introduction------1

Literature------5

Manuscript 1 Title: Selective Modulator Regulated

Proteins in Endometrial Cancer Cells. ------33

Manuscript 2 Title: The Src Kinase Pathway Promotes Tamoxifen

Agonist Action in Ishikawa Endometrial Cells through Phosphorylation-

Dependent Stabilization of Estrogen Receptor α Promoter

Interaction and Elevated SRC-1 Activity. ------79

Manuscript 3 Title: Attenuation of Estrogen Receptor α (ERα)

Signaling by Selenium in Cells via Downregulation of ERα Gene Expression.------142

Manuscript 4 Title: Selenium Disrupts Estrogen Receptor α Signaling and

Restores Tamoxifen Sensitivity in Tamoxifen Resistant

Breast and Endometrial Cancer Cells. ------180

Summary------223

Bibliography------226

Abstract------292

iii INTRODUCTION

Estrogens are important in the growth and maintenance of female reproductive

tissues and other non-reproductive tissues such as bone, cardiovascular tissue, and the

central nervous system. Estrogen action is mediated through binding to its cognate

receptor, estrogen receptor (ER). Two forms of ER have been identified, ERα and ERβ,

both the product of separate genes (Kuiper et al., 1996; Mosselman et al., 1996; Tremblay

et al., 1997). The ER is a ligand-dependent transcription factor, and upon estrogen

binding the receptor either forms heterodimers or homodimers. Upon dimerization, ER

binds to the promoter region of target genes where subsequent recruitment of coactivators

and local chromatin modifications facilitate gene transcription (Evans, 1988; Klein-

Hitpass et al., 1986). In addition ER is activated by ligand-independent mechanisms that

involve crosstalk from peptide and growth factor signal transduction pathways (Levin,

2003). In the absence of the physiological ligand 17β-, cellular kinases can activate ER and modulate ER-regulated gene transcription.

The ER plays a major role in the development and growth of breast cancer. As a treatment for breast cancer, the selective estrogen receptor modifier (SERM) tamoxifen binds with high affinity to the ER and blocks estrogen induced cellular growth (Dutertre et al., 2000). Tamoxifen is the most widely used hormonal therapy for breast cancer and is approved as a chemopreventive agent in high risk women (Jordan, 2000). As an ER antagonist, tamoxifen inhibits estrogen dependent gene transcription that is required for cellular growth in breast tissue and breast-derived cell lines (Dutertre et al., 2000; Jordan,

2000; Shang et al., 2002). Despite the benefits of tamoxifen therapy, almost all

1 tamoxifen-responsive breast cancer patients develop resistance to therapy (Osborne,

1998). In addition, tamoxifen exhibits ER agonist action in the uterus that manifests in an

increase incidence of endometrial cancer (Fornander et al., 1989; Harper et al., 1967;

Terenius, 1971).

Several hypotheses are proposed to explain tamoxifen resistance and the estrogen-

like activity exhibited in the endometrium. Coregulators are important in the mechanism

of tamoxifen resistance. Elevated levels of amplified in breast cancer 1 (AIB-1) (RAC-

3/ACTR/SRC-3) in patients receiving tamoxifen treatment are correlated with tamoxifen resistance (Osborne et al., 2003). Elevated receptor coactivator-1 (SRC-1) (NcoA-

1), but not glucocorticoid receptor interacting protein-1 (GRIP-1) (TIF-2/NcoA-2/ SRC-

2) or AIB-1 correlate with tamoxifen agonist activity in the Ishikawa endometrial cell line (Shang et al., 2002). In addition to coactivators, there is a decrease in nuclear

corepressor (N-CoR) levels with the onset of tamoxifen resistance in both human breast

cancer samples and in mouse models of breast cancer (Girault et al., 2003; Lavinsky et

al., 1998). Also, 4-hydroxytamoxifen acts as a full agonist on ER-dependent transcription

in fibroblast cells isolated from the N-CoR null mouse. However, in wild-type mouse

embryo fibroblasts containing normal N-CoR levels, 4-hydroxytamoxifen did not activate

ER-dependent transcription (Jepsen et al., 2000).

In addition to coregulator protein expression, several deregulated cellular kinase

pathways play an important role in tamoxifen resistance and tamoxifen-mediated

endometrial proliferation. As mentioned above ligand-dependent or -independent

pathways can activate ER and both modes of ER activation are modulated by receptor

2 phosphorylation. Estrogen receptor is a phosphoprotein and the major phosphorylation

sites of ER reside in the N-terminal domain (NTD) at serines 104, 106, 118, and 167

(Arnold et al., 1994b; Kato et al., 1995; Le Goff et al., 1994). Overexpression of erb-

2/HER2 an epidermal growth factor receptor (EGFR) family member are associated with tamoxifen resistance (Benz et al., 1993; Liu et al., 1995; Pietras et al., 1995). Erb-

2/HER2 are upstream of extracellular regulated kinase (ERK)-1 and ERK-2, which phosphorylate ERα on serine 118 and enhance its transcriptional activity upon estrogen

and tamoxifen incubation (Kato et al., 1995). In addition, AKT kinase protects breast

cancer cells from tamoxifen-mediated apoptosis, and the consensus AKT site serine 167

on ERα is required (Campbell et al., 2001). MEKK1 increases the agonist activity of

tamoxifen in endometrial cells implicating downstream mitogen activated protein kinases

(MAPKs) in regulating tamoxifen agonist/antagonist action (Lee et al., 2000). Src kinase, which activates both MAPK and AKT can enhance the transcriptional activity of the tamoxifen in breast and cervical cancer cell lines (Feng et al., 2001).

Coregulator proteins are also substrates for cellular signaling pathways. SRC-1 is phosphorylated on seven consensus sites for proline-directed protein kinases in vivo

(Rowan et al., 2000a;b). The GRIP-1 and AIB-1 are phosphorylated in vitro by MAP kinases (Font et al., 2000; Lopez et al., 2001). In breast cancer cells the transcriptional activity of AIB-1 was increased by MAPK phosphorylation that stimulated recruitment of histone acetyltransferases (Font et al., 2000). Recently, it was shown that AIB-1 is phosphorylated on six sites important for its full transcriptional activity (Wu et al., 2004).

Furthermore, cellular signaling cascades also phosphorylate corepressors. Interaction of

3 N-CoR and silencing mediator for retinoid and thyroid hormone (SMRT) with progesterone receptor (PR) decreased after incubation with 8-bromo cAMP (Wagner et al., 1998). In vitro phosphorylation by MEKK decreased the interaction of SMRT with thyroid receptor (Hong et al., 1998).

Currently the mechanisms of tamoxifen resistance and tamoxifen agonist actions in the endometrium are undefined. An increased use of tamoxifen for breast cancer therapy and chemoprevention highlights an urgent need to 1) identify reliable biomarkers that can predict with high certainty the response of breast cancer to tamoxifen therapy, 2) understand the precise molecular mechanism which contributes to the development of acquired tamoxifen resistance as well as estrogen-like agonist action in the endometrium and, 3) develop non-cross-resistant therapies designed to deplete ERα and/or disrupt ER signaling that can be used alone or in combination with tamoxifen to alleviate the unwanted side-effects.

The studies described in this dissertation include: the identification of proteins associated with the growth stimulatory effects of tamoxifen in the ERα-positive, tamoxifen resistant Ishikawa endometrial adenocarcinoma cell line using two- dimensional gel electrophoresis; examining the role of non-receptor tyrosine kinase src in promoting the tamoxifen agonist action in the endometrium; assessing the role of the micronutrient selenium in ER signaling and providing a mechanism-based rationale for combining selenium with tamoxifen as a therapeutic strategy to improve the efficacy of tamoxifen in both breast cancer treatment and chemoprevention.

4 LITERATURE

Nuclear Receptor Activation

Nuclear receptors (NR) are a superfamily of liganded transcription factors and are

important in a wide variety of cellular processes (Evans, 1988; Tsai et al., 1994). Nuclear

receptors can be classified into type 1 and type 2 receptors. Type 1 receptors consist of

PR, ER, receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR). Upon specific ligand binding, type 1 receptors dimerize and binds to specific elements termed response elements in the promoter of genes (Nelson et al.,

1999a). Subsequent recruitment of coactivator proteins initiates transcription. In contrast type 2 receptors such as thyroid receptor (TR), all-trans retinoic acid receptor (RAR), 9-

cis retinoic acid receptor (RXR), and vitamin D3 receptor (VDR) are already bound to

DNA in their unliganded state bound with corepressor proteins that repress basal transcription. Upon ligand binding the corepressor interaction is lost, coactivators are recruited, and transcription is initiated.

Estrogen Receptor

Estrogen is a female important in the female reproductive tract. The

main source of estrogen produced in the body is from the ovaries through a complex

series of hydroxylation, oxidation, and aromatization reactions that convert 21-carbon

cholesterol to 18-carbon estrogen. The production of ovarian estrogen is under control of

two hormones lutenizing hormone (LH) and follicle stimulating hormone (FSH). The LH

stimulates the production of , whereas FSH activates aromatase enzymes that

5 convert androgens to . Once formed, estrogen exerts it effects on female reproductive tissues. During the proliferative phase of the mentrual cycle when estrogen concentration is the highest, the endometrium becomes 3 to 5 fold thicker and uterine glands become enlarged. Estrogen stimulates proliferation and keritinization in the vagina. During puberty when estrogen concentrations begin to rise, the mammary gland becomes enlarged due to the increase in ductal size and accumulation of adipose tissue surrounding the ducts (Ryan, 1999).

The specificity of estrogen in tissues is due to the presence of a type 1 NR, ER.

Two isoforms of ER have been identified, ERα and ERβ (Kuiper et al., 1996; Mosselman et al., 1996; Tremblay et al., 1997). The ER is part of the nuclear receptor/ thyroid superfamily and like all NR, ERα and ERβ contain six modular domains each with a specific functional property (Kumar et al., 1987) (Figure 1). The N-terminal A/B domain

(NTD) contains a ligand-independent activation function 1 (AF-1) (Evans, 1988; Tora et al., 1989; Tsai et al., 1994; Webb et al., 1998). A centrally located DNA binding domain

(DBD) that contains two zinc fingers motifs is important in binding DNA (Evans, 1988;

McKenna et al., 1999; Tsai et al., 1994). A hinge region contains a nuclear localization sequence. The E/F domain or ligand binding domain (LBD) includes sites for hormone binding, ligand dependent activation function 2 (AF-2), and contains the dimerization domain (Evans, 1988; McKenna et al., 1999; Tsai et al., 1994). The ERα and ERβ are

84% to 97% homologous in the DBD, 54% homologous in the LBD but only 28% homologous in the NTD (Enmark et al., 1997; Mosselman et al., 1996) (Figure 1).

Targeted deletion of ER in mice demonstrated that ERα was the predominant ER isoform

6 Figure 1. Schematic Diagram of ERα and ERβ Structure Demonstrating Amino Acid Homology Between Different ER Domains

AF-1 DNA Ligand/AF-2 Domains A/B C D E F Amino Acid Homology 26% 84% 12% 58% 12%

1 180 263 302 552 593 ERα

1 144 227 255 504 530 ERβ

7 in the mammary gland and the uterus. The uterus is comprised of three tissue compartments (myometrium, endometrial stroma, luminal/glandular epithelium) and both

ERα and ERβ are expressed in all three compartments (Hiroi et al., 1999). ERα -/- mice are hypoplastic in all three compartments and whole uterine wet weight is half that of wild type mice whereas uteri of the ERβ -/- mice appear similar to wild type mice (Krege et al., 1998). In the mammary gland, ERβ -/- mice do not exhibit abnormalities compared to age matched wild type female mice (Krege et al., 1998). The ERα knockout mice exhibit decreased ductal growth and pregnancy differentiation of the mammary gland (Bocchinfuso et al., 1997). The presence of ERα and ERβ and estrogen synthesis in the fetal ovaries suggests a role for both ERα and ERβ in ovarian development (Sar et al.,

1999; Weniger, 1990); however, no histological abnormalities were found with either

ERα -/- or ERβ -/- mice. At sexual maturity discrete ovarian abnormalities became apparent. ERα -/- mice were not able to ovulate; whereas, ERβ -/- had considerably lower litter size compared to wild type mice (Krege et al., 1998; Lubahn et al., 1993;

Schomberg et al., 1999). Surprisingly, targeted deletions of both ERα and ERβ displayed a different phenotype than the individual ERα -/- or ERβ -/-, clearly demonstrating a role for both ER isoforms in the ovaries (Couse et al., 1999). In addition to estrogen effects on reproductive physiology, estrogens are important in non-classical estrogen target tissues.

Estrogens play an important role in brain function. Epidemiological studies demonstrate a protective effect of hormone replacement therapy (HRT) on neurodegenerative diseases such as Alzeiheimer’s disease (Wise et al., 2001). Estrogen-mediated protection of

8 neurons required ERα and not ERβ (Dubal et al., 2001), although the mechanisms are

undefined. Estrogens also exert effects on bone. It has been well characterized that an

increase in osteoporosis is correlated with a decrease of estrogen levels during

menopause (Watts, 1999). Both ERα and ERβ are expressed in localized areas of the

bone (Bord et al., 2001; Braidman et al., 2001; Vidal et al., 1999). Furthermore, both

ERα and ERβ are important in bone formation and remodeling (Jessop et al., 2004; Lee

et al., 2004). Estrogens are also important in the cardiovascular system (Bakir et al.,

2000; Dubey et al., 2000), adipose tissue (Homma et al., 2000), and in male reproduction

(Couse et al., 2001) via ERα and/or ERβ.

Nuclear Receptor Coactivators

Estrogen Receptor action is potentiated by a group of proteins termed coactivators. Numerous NR coactivator proteins have been identified in recent years. A coactivator is a protein that interacts with NR and potentiates nuclear receptor activity. A coactivator interacts with the NR through an LXXLL motif (where L is leucine and X is any amino acid) termed the NR box or receptor interaction domain (RID) (Heery et al.,

1997) (Figure 2). Chromatin structure is a key regulator of basal transcription. Histones

repress transcription through tight binding of the negatively charged DNA by positively

charged lysine side chains. By acetylation of lysine residues in histones, the interaction is disrupted and the DNA is no longer tightly bound to histone proteins. When the chromatin is in a relaxed conformation it is more conducive to transcription due to accessibility of the transcription machinery. The well characterized p160 family of

9 Figure 2. General Schematic Diagram of p160 Coactivators and N-CoR and SMRT Corepressors.

P160 Coactivator 160 kDa

S S

H T

L

A A Q

H

P P S/

b

RID RID RID

Corepressor 250-300 kDa

RD1 RD2 RD3

RID SANT Domains bHLH: helix loop helix region; PAS: Per=ARNT-Sim Domain; S/T: Serine Threonine rich region; Q: Glutamine rich region; RID: Receptor Interaction Domain; RD: Repressor Domain

10 coactivators include SRC-1 (Kamei et al., 1996; Onate et al., 1995), GRIP-1 (Hong et al.,

1996; Voegel et al., 1996), and AIB-1 (Anzick et al., 1997; Chen et al., 1997; Li et al.,

1997; Takeshita et al., 1996; Torchia et al., 1997). The p160 family of coactivators either contain intrinsic histone acetyltransferase (HAT) activity or recruit other HATs such as p300/CBP associated factor (P/CAF) and Creb Binding Protein (CBP) (Chakravarti et al.,

1996; Kamei et al., 1996; Spencer et al., 1997). The p160 family of coactivators and CBP function synergistically in enhancing transcription (Chen et al., 1997; Liu et al., 2001;

Spencer et al., 1997). However, site-directed mutagenesis targeting the HAT motif on p160 coactivators did not significantly affect its ability to coactivate nuclear receptors

(Liu et al., 2001; Spencer et al., 1997), suggesting that p160 family members may be important in the assembly of other transcriptions factors and coactivators on the promoter. Recent studies demonstrate a dynamic model of coactivator recruitment where

ER immediately binds to DNA followed by the sequential recruitment of p160 coactivators, P300, and the TR associated protein (TRAP)/VDR interacting protein

(DRIP) complex. Local chromatin structure is modified that facilitates RNA polymerase

II binding. Subsequently, CBP acetylation of p160 coactivators leads to coactivator and

ER release. Following ER release, CBP and pCAF disassemble and the cycle is repeated

(Burakov et al., 2002; Shang et al., 2000).

In addition to histone acetylases, recently identified coactivator-associated arginine methyltransferase 1 (CARM1) and protein arginine N-methyltransferases

(PMRTs) provide yet another mechanism of chromatin remodeling. The CARM1 and

PRMT bind to the c-terminal region of SRC-1 and methylate histones H3 and H4. The

11 intrinsic methyltransferase property of these proteins is required for coactivator activity

(Chen et al., 1999; Wang et al., 2001b). In contrast the ubiquitin ligase activity of

coactivator E6-associated protein (E6-AP) is not required for coactivation of NR in vitro

and in vivo (Nawaz et al., 1999a; Sivaraman et al., 2000; Smith et al., 2002). Another

essential group of coactivators are represented by the TRAP/DRIP complex (Burakov et

al., 2000; Fondell et al., 1996; Rachez et al., 1998). The TRAP/DRIP complex acts to

stabilize the nuclear receptor:coactivator complex at the promoter and bridge the NR

complex to the basal transcriptional machinery (Burakov et al., 2000; Gu et al., 1999;

Kim et al., 1994).

The importance of each p160 family member on ER action has been demonstrated

in vivo with targeted deletions of SRC-1, GRIP-1, and AIB-1. SRC-1 -/- mice exhibit normal growth and fertility; however, these mice exhibit decreased uterine growth following exposure to estrogen. In addition, there is decreased mammary gland formation and partial resistance to estrogen (Xu et al., 1998). Interestingly, in adult rats an acute knockdown of SRC-1 in the brain results in an increase of GRIP-1 expression

(Apostolakis et al., 2002). Similar compensatory expression of GRIP1 was demonstrated in sertoli cells (Mark et al., 2004). Therefore, the modest effects on reproductive phenotypes in SRC-1-/- mice may be due to genetic compensation by GRIP-1. The

GRIP-1 -/- mice display a decrease in male and female fertility (Gehin et al., 2002). In

addition, GRIP-1 also affects thermogenesis and energy expenditure (Picard et al., 2002).

The AIB-1 -/- mice exhibit significant growth retardation and reduced body size. There is a decrease in the estrogen levels of AIB-1 -/- mice that delay pubertal development and

12 mammary gland growth (Wang et al., 2000; Xu et al., 2000). In a mammary gland tumor

model, AIB-1 -/- mice exhibited reduced tumor formation compared to wild-type mice

(Kuang et al., 2004).

Nuclear Receptor Corepressor

In contrast to coactivators, corepressors are NR interacting proteins that repress

NR activity. Corepressors are associated with unliganded type II receptors or antagonist bound type I receptors. Two well-studied corepressors are N-CoR and SMRT (Chen et al., 1995; Horlein et al., 1995) (Figure 2). Similar to coactivators, corepressors contain

RID domains important in interaction with the NR. The RID domain, of corepressors share similar homology to the coactivator-RID domain, and consist of LXXI/HIXXXI/L

(where L is leucine, I is isoleucine, histidine, and X is any amino acid). The SMRT and

N-CoR mediate transcriptional repression by recruiting histone deacetylase complexes that remove acetyl groups from histone proteins, and thus confer a tight conformation repressing basal transcription (Heinzel et al., 1997; Nagy et al., 1997). Targeted deletion of N-CoR demonstrated the importance of transcriptional repression for mammalian development. The N-CoR deficient embryos died at day 15.5. The N-CoR is needed for

active repression of several NR and other transcription factors. In addition, N-CoR was

required for the antagonist activity of compounds (Jepsen et al., 2000).

Classical Ligand-Dependent ER Activation

Estrogen is a lipophilic molecule that crosses the cell membrane and binds to the

LBD of the ER. Upon ligand binding the receptor dissociates from heat shock protein-90

(HSP-90) and other chaperone proteins. The receptor either forms heterodimers

13 consisting of ERα-ERβ or homodimers of two ERα or ERβ (Cowley et al., 1997; Ogawa et al., 1998; Pettersson et al., 1997). Upon dimerization, ER binds to an estrogen response element (ERE) 5′ GGTCAnnnTGACC 3′, a palidromic inverted repeat in the promoters of estrogen dependent genes (Klein-Hitpass et al., 1986). The binding of an agonist to the

ER stabilizes helix 12 in the AF-2 region. The conformation allows coactivator proteins to recognize an amphipathic α-helix on the surface of the agonist-bound LBD formed by helix 3,4,5, and 12 via the NR box (Shang et al., 2000; Steinmetz et al., 2001;

Weatherman et al., 1999) (Figure 3).

In addition to activating transcription at an ERE, ERα and ERβ activate transcription at AP1 sites (Figure 3). In contrast to the classical mechanism of ER activation, ER regulation of transcription via AP1 sites does not involve direct binding to

DNA, but instead ER binds to jun/fos proteins that, in turn, bind to AP-1 consensus sequences on DNA (Paech et al., 1997b; Webb et al., 1995, 1999). It is hypothesized that

ER binds to coactivator proteins recruited by jun/fos and this interaction increases the transactivation capacity of the coactivators. The ER also activates transcription at ERE half sites adjacent to SP1 sites. ER interacts with the c-terminal binding domain of SP1 proteins to transactivate genes (Porter et al., 1997). Additionally, it is found that ER/SP1 complexes activated transcription at GC rich elements independent of ER binding to

DNA, similar to what is observed in the ER/AP1 paradigm (Dong et al., 1999; Qin et al.,

1999; Samudio et al., 2001; Wang et al., 2001a; Xie et al., 1999). A transgenic mouse model has been developed that does not allow ERα binding through the

14 Figure 3. Estrogen Receptor Activation

E2 EGF

mER

Non- genomic Ligand-Dependent Ligand-Independent Cellular Response Kinases HSP HSP ER ER P

r o at iv ER ct ER oa C R E E R Coactivator P E R

Coactivator E n

s

u J ERER Fo ERE AP-1

ER is activated by four pathways. 1) Activation of ER at ERE- containing promoters by the classical ligand-dependent pathway. 2) Activation of ER at ERE-containing promoters by ligand-independent pathways. 3) Activation of ERE-independent promoters by either ligand- dependent or independent pathways. 4) Nongenomic signaling by a membrane-associated binding site. E : Estradiol; mER:Membrane ER 2

15 classical ERE-mediated mechanism but retains the ability of ERα to bind to AP1 and SP1

proteins. Mice heterozygous for the mutant ERα are infertile preventing generation of

homozygous mice. Although more studies are needed, the transgenic model provides

strong evidence for ERE-independent mechanisms in vivo. Interestingly, mice

heterozygous for ERα +/- are fertile suggesting that the mutant allele act in a dominant

negative manner to inhibit estrogen-regulated physiology (Jakacka et al., 2002).

Ligand-Independent/Crosstalk with signaling Pathways

In the absence of estrogen, mitogenic growth factors stimulate ERα transcriptional activity (Figure 3). Both ligand-dependent and -independent ERα

activation is modulated by phosphorylation and site-specific phosphorylation of ERα

increases its transcriptional activity (Ali et al., 1993; Bunone et al., 1996; El Tanani et al.,

1997; Lahooti et al., 1994; Le Goff et al., 1994; Washburn et al., 1991; Weigel et al.,

1998). Major phosphorylation sites of ERα are in the NTD at serine 104 (Le Goff et al.,

1994), serine 106 (Le Goff et al., 1994), serine 118 (Kato et al., 1995), serine 167

(Arnold et al., 1994). In addition there is one site in the DBD at serine 236, one site in

the hinge region at serine 305 (Wang et al., 2002), and two sites in the LBD at threonine

311 (Lee et al., 2002) and tyrosine 537 (Arnold et al., 1997). Numerous signaling

pathways phosphorylate ER (REVIEWED IN Coleman et al., 2001; Lannigan, 2003).

Mutation of serines 104, 106, 118, and 167 to alanine results in a general decrease in

ERα transcriptional activity (Arnold et al., 1995a; Castano et al., 1997; Le Goff et al.,

1994; Tzeng et al., 1996). Serine 118 is phosphorylated by MAPK and is important for

coactivator binding (Bunone et al., 1996; Dutertre et al., 2003; Endoh et al., 1999; Kato et

16 al., 1995). Serine 167 is a consensus AKT site and phosphorylation mediates DNA

binding (Arnold et al., 1995a; Castano et al., 1997; Martin et al., 2000; Sun et al., 2001b;

Tzeng et al., 1996) and promoter interaction. Serine 305 is phosphorylated by protein

kinase A (PKA) and p21 activated kinase-1 (PAK1) and is important in the

transcriptional activity of ERα (Balasenthil et al., 2004; Michalides et al., 2004).

Threonine 311 is downstream of P38 kinase and is important for nuclear export of the

receptor (Lee et al., 2002). Tyrosine 537 is phosphorylated by src kinase in vitro (Arnold

et al., 1995b) and important in DNA binding (Arnold et al., 1995c). In addition specific

amino acid substitutions (Y537S and Y537A) have led to constitutive activation of ERα

(Weis et al., 1996).

There is a well-characterized reciprocal crosstalk between ERα and growth factor

signaling pathways. Numerous in vitro experiments provide evidence of crosstalk

between ER and growth factor signaling (REVIEWED IN Levin, 2003). The best in vivo

examples of crosstalk were demonstrated in the uterus. Estrogen and growth factors

stimulate proliferation in the endometrium (Nelson et al., 1991). In the insulin-like growth factor-2 (IGF-1) knockout mouse, estrogen-induced uterotropic effects were

significantly retarded in spite of functional ERα present in the uterus (Adesanya et al.,

1999). Also in the ERα knockout mice, no uterotropic effects were detected upon

epidermal growth factor (EGF) treatment, even though EGF signaling was intact (Klotz

et al., 2002). The role of phosphorylation in ligand-independent crosstalk has been well

characterized for ERα. In contrast, phosphorylation and cellular signaling crosstalk is

not defined for ERβ; however, ERβ was activated via a ligand-independent pathway and

17 phosphorylated in the AF-1 region (Chu et al., 2004; Coleman et al., 2003; Tremblay et

al., 1999).

In addition to ER, coregulator proteins are targets of signaling pathways. SRC-1

contains seven in vivo phosphorylation sites and all seven sites contain a consensus

sequence for proline-directed protein kinases (Rowan et al., 2000b). In addition, the

induction of protein kinase A (PKA) enhanced ligand-independent activation of PR

through phosphorylation of SRC-1 (Rowan et al., 2000a). In in vitro studies both GRIP-1

and AIB-1 were phosphorylated by MAP kinase, ERK-2 (Font et al., 2000; Lopez et al.,

2001). In breast cancer cells the transcriptional activity of AIB-1 increased via MAPK

phosphorylation that stimulated the recruitment of other HATs (Font et al., 2000). The

AIB-1 contain six phosphorylation sites important for full transcriptional activation (Wu

et al., 2004). Also interaction of N-CoR and SMRT with PR decreased after incubation

with 8-bromo cAMP (Wagner et al., 1998) and in vitro phosphorylation by MEKK

decreased the interaction of SMRT with thyroid receptor (Hong et al., 1998).

Nongenomic Estrogen Signaling

Ligand-dependent and -independent ER-regulated actions are considered genomic pathways due to the involvement of ER-mediated gene transcription. A distinct estrogen- mediated pathway referred to as nongenomic signaling exists that does not require mRNA and protein synthesis (Figure 3). A membrane receptor is thought to mediate nongenomic estrogen signaling (Bression et al., 1986; Brubaker et al., 1994; Marquez et al., 2001). However, it is controversial whether a separate membrane receptor that is distinct from the classical ER exists (Filardo et al., 2000; Filardo et al., 2002), or a

18 receptor that contains homology to the classical ER stimulates the nongenomic estrogen response (Kim et al., 1999; Norfleet et al., 2000). Nongenomic estrogen signaling rapidly

(seconds-minutes) activate several signaling pathways that have significant physiological consequences (Filardo et al., 2000; Kahlert et al., 2000; Migliaccio et al., 1996; Sun et al.,

2001a). Estrogens rapidly activate the MAPK and AKT pathways that can induce a proliferative (Castoria et al., 1999; Migliaccio et al., 1996, 2000) and an anti-apoptotic response (Castoria et al., 2001). In addition, nongenomic estrogen signaling stimulated nitric oxide release (Stefano et al., 2000a), increased intracellular calcium levels (Stefano et al., 2000b) and enhanced secretion (Watson et al., 1999).

Breast Cancer

The mammary gland consist of 6 to 10 major ducts that are subdivided into lobules that are considered the functional unit of the mammary gland. Breast carcinomas are divided into noninvasive and invasive carcinomas. Noninvasive carcinomas can be subdivided into two major histological subtypes; ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS). The DCIS or LCIS do not have the capacity to infiltrate the basement membrane, and therefore do not produce distant metastases

(Swain, 1989a,b). However, untreated DCIS and LCIS have an increased risk for development of invasive carcinomas (Mallon et al., 2000; Stallard et al., 2001). Similar to carcinoma in situ, there are two major histological subtypes of invasive carcinomas, ductal and lobular, although other less frequent types exist (Dixon et al., 1982).

Epidemiological studies have shown age, diet, and genetic predispostions are risk factors for breast cancer (McPherson et al., 2000).

19 The best characterized risk factor for breast cancer is hormonal exposure. As early as 1896, it was shown that oophorectomy was a successful treatment for management of breast cancer (Leake, 1996). In addition, early menarche and late menopause that increase the exposure of estrogen in a lifetime can increase the risk of breast cancer (Kelsey et al., 1991). Also multiple pregnancies that interrupt the menstrual cycle and decrease the exposure to estrogen are protective against breast cancer (Hulka et al., 1994; Russo et al., 1982). Women who receive exogenous estrogen have an increased breast cancer risk (1997; Colditz et al., 1995; Magnusson et al., 1999).

The ERα is expressed in normal breast epithelium, although these cells do not proliferate upon estrogen treatment. It is thought that estrogen induces the secretion of mitogenic growth factors that stimulate adjacent ER-negative cells to proliferate via a paracrine- mediated mechanism (Cunha et al., 1997). In contrast, the majority of premalignant breast cells express ERα and are sensitive to estrogen-mediated proliferation and regression upon estrogen ablation (Clarke et al., 1993, 1997; Johnston et al., 1994; Jordan et al., 1975). Several animal models demonstrate the importance of ERα in breast tumorigenesis. Transgenic overexpression of Erb2/Her2 or WNT under control of the mouse mammary tumor virus (MMTV) promoter increased the incidence of mammary tumors (Cardiff et al., 1993). Introduction of the MMTV-erb2/Her2 or MMTV-WNT transgene into an ERα null background significantly delayed tumor onset indicating that

ERα is important for mammary tumorigenesis (Bocchinfuso et al., 1999; Hewitt et al.,

2002).

20 In contrast to ERα, the role of ERβ in breast cancer remains undefined. The ERβ

is expressed in the majority of normal breast epithelial cells and is present as several

splice variants that differ in functional properties compared to the full-length ERβ (Speirs

et al., 2004). There is limited data on the role of ERβ in breast cancer, but as breast

cancers progress from a benign to a more malignant phenotype, the ERα/ERβ is

increased with a predominance of ERα expression in the more malignant tumors (Leygue

et al., 1998).

Selective Estrogen Receptor Modulators (SERM)

As a treatment for breast cancer SERMs bind with high affinity to ER and act in a tissue specific manner. Tamoxifen is a prototypic SERM and the most widely used hormonal therapy for breast cancer (Jordan, 2000) (Figure 4). Tamoxifen therapy profoundly improved the overall survival of breast cancer patients ( Breast Cancer

Trialists' Collaborative Group, 1998) without the adverse side-effects associated with

cytotoxic (Pritchard et al., 1997). Furthermore, tamoxifen is the only agent

approved for breast cancer chemoprevention in high risk women (Jordan, 2000). The

major mechanism of action for tamoxifen in breast cancer is as an ER antagonist.

Tamoxifen is a competitive inhibitor of estrogen and upon tamoxifen binding, ER recruits

a corepressor complex that inhibits estrogen dependent gene transcription (Dutertre et al.,

2000; Jordan, 2000; Shang et al., 2002). Tamoxifen is an estrogen antagonist in the

breast, but tamoxifen displays uterotropic effects in the endometrium (Harper et al., 1967;

Terenius, 1971). Tamoxifen therapy results in a 4-fold increase in the incidence of

endometrial cancer in postmenopausal women

21 Figure 4. Chemical Structure of SERMs and Aromatase Inhibitors.

Estradiol Tamoxifen

EM-652

22 (Fornander et al., 1989). New generation SERMs are being sought with the same or better

efficacy than tamoxifen but with fewer side effects.

Raloxifene, a SERM structurally distinct from tamoxifen, is approved for the

treatment and prevention of osteoporosis in postmenopausal women (Figure 4). In

addition, raloxifene does not display estrogen-like activity in the endometrium (Boss et

al., 1997; Delmas et al., 1997). Although, only modest effects of raloxifene were found in

ER-positive breast cancers (Gradishar et al., 2000), an on-going clinical trial is assessing

the effects of raloxifene on breast cancer incidence as a beneficial side effect to its anti-

osteoporosis activity (Cummings et al., 1999). Acolbifene (EM-652) is also in clinical

trial for breast cancer (Figure 4). EM-652 is a potent antiestrogen and does not display

estrogen-like action in mouse mammary gland and endometrium. Similar to raloxifene,

EM-652 preserves bone density in ovariectomized rats. In addition, EM-652 has

beneficial effects on plasma lipid profiles (Labrie et al., 2003) making EM-652 a

potentially attractive alternative to tamoxifen therapy. The search for SERMs with an

ideal tissue profile has been offset by the development of antiestrogenic agents that inhibit ER action in all tissues. Fulvestrant (faslodex, ICI 182,780) is an ER antagonist with no known agonist effects (Wakeling et al., 1991) (Figure 4). Fulvestrant binds to ER and promotes ER protein degradation (McClelland et al., 1996). Fulvestrant is approved for ER-positive metastatic breast cancer in postmenopausal women with disease

progression after tamoxifen therapy (Bross et al., 2003). Aromatase inhibitors have been

shown to be effective in inhibiting ER-positive breast cancers. Aromatase inhibitors

specifically target the rate-limiting enzyme needed for estrogen production. The

23 agent anastrozole was more effective than tamoxifen as an adjuvant

endocrine treatment for ER-positive breast cancers (Figure 4). However, anastrozole was

also associated with an increase in bone fractures in women receiving compared to

patients receiving tamoxifen therapy (Howell et al., 2005).

Mechanisms of Tissue Specific SERM Effects

Currently there are several proposed mechanisms that explain the tissue specific effects of SERMs. The different complement of coregulator proteins in the uterus vs. the breast has been suggested to underlie tamoxifen agonist activity in the uterus. An increase in corepressors levels decreased the agonist effect of tamoxifen. Whereas, an increase in coactivator levels promoted the agonist activity of tamoxifen (Smith et al.,

1997). Shang et al. (2002) have demonstrated a specific increase of SRC-1 expression in tamoxifen resistant Ishikawa endometrial cancer cells compared to tamoxifen sensitive

MCF-7 breast cancer cells. Ishikawa cells activated transcription of ER-dependent genes following incubation with estrogen and tamoxifen via recruitment of SRC-1. Tamoxifen treatment repressed transcription in MCF-7 cells via recruitment of corepressors (Shang et al., 2002). It has been hypothesized that expression of AF-1 interacting coactivators may regulate tissue-specificity of SERMs. Synergism between the AF-1 and AF-2 is required for full activity of ERα; however, AF-1 and AF-2 can activate genes to a certain extent independently (Kraus et al., 1995). Tamoxifen inhibits AF-2 but AF-1, a cell and

promoter specific activation function, is not blocked (Berry et al., 1990; Tzukerman et al.,

1994). It is suggested that if a cell contains a large number of AF-1 specific coactivators

24 such as p68 helicase and steroid receptor RNA activator (SRA) (Endoh et al., 1999; Lanz et al., 1999), the tamoxifen-ER complex in this context may activate transcription.

Another variable to consider in the tissue specific activity of SERMs is the

ERα/ERβ expression ratios. The ERα and ERβ act in opposite regulatory mode on ER- regulated AP1 elements upon estrogen and tamoxifen treatment (Paech et al., 1997a).

Moreover, ERβ is less transcriptionally active than ERα due to a decrease or absence of

AF-1 activity (Delaunay et al., 2000). In addition, ERβ can reduce the transcriptional activity of ERα through hetreodimerization and/or competitive binding to ER-regulated promoters (Hall et al., 1999). Therefore, tissue specific differences in the ERα/ERβ ratio may potentially alter the pharmological response and modulate the tissue specific activity

SERMs.

Differentially activated cellular signaling pathways may regulate tissue specificity of SERMs. As mentioned above, several signaling pathways target ER and coregulators and these pathways can alter the relative antagonist/agonist property of tamoxifen.

Activation of PKA in tamoxifen sensitive MCF-7 breast cancer cells increased the transcriptional activity of tamoxifen to levels similar to that of estrogen (Fujimoto et al.,

1994). Estrogen phosphorylation at serine 118 enhanced the transcriptional activation in response to estrogen and tamoxifen (Kato et al., 1995). MEKK1 increased the agonistic activity of tamoxifen implicating kinases downstream to be important in the cell specificity of tamoxifen (Lee et al., 2000). Feng et al (2001) demonstrated that the

Src/JNK pathway enhanced the transcriptional activity of the tamoxifen-ER complex through the AF-1 domain of the ER. It is doubtful that a single mechanism modulates the

25 tissue specific effect of SERMs. Rather, it is likely to be multifactorial encompassing several mechanisms described above.

Tamoxifen Resistance

Clincial tamoxifen resistance is defined as the inability of tamoxifen to inhibit the growth of hormone dependent breast tissue. Thirty to fifty percent of patients with ERα- positive breast cancer are resistant to tamoxifen therapy (ERα-positive de novo resistance) (Osborne, 1998) and those patients that initially respond will eventually become resistant to tamoxifen therapy (acquired resistance) (Osborne, 1998). The majority of breast tumors that acquire tamoxifen resistance are ERα-positive (Johnston et al., 1995) and are sensitive to second line hormonal therapy (Howell et al., 1995;

Osborne, 1998). Therefore, loss of ERα is not a major mechanism for acquired tamoxifen resistance. Several ERα mRNA variants exist and many of these variant mRNAs are translated in breast tumors (Murphy et al., 1998). Moreover, there is cell-based evidence that tamoxifen can act as an agonist on specific ERα mutants (Jiang et al., 1992); however, ERα mutations occur at very low frequency in tamoxifen resistant breast tumors (Karnik et al., 1994). Thus it is unlikely that ERα mutations constitute a major mechanism for tamoxifen resistance.

Other mechanisms that modulate ERα function may be important in tamoxifen resistance. Overexpression of AIB-1 is a good prognostic marker of tamoxifen resistance. Samples of 316 frozen breast tumors were assessed for AIB-1 expression. It was found that patients receiving tamoxifen treatment who had elevated AIB-1 levels had a decrease in disease free survival (Osborne et al., 2003). In contrast, low corepressor

26 levels were associated with tamoxifen resistance. A decrease in N-CoR levels correlated

with a shorter relapse free survival in patients undergoing tamoxifen therapy suggesting

that N-CoR may be a good independent prognostic marker of tamoxifen resistance

(Girault et al., 2003). In addition, a decrease in N-CoR levels correlated with the onset of

tamoxifen resistance in a mouse model for human breast cancer (Lavinsky et al., 1998).

Finally, 4-hydroxytamoxifen was a full agonist for ER-dependent transcription in

fibroblasts isolated from the N-CoR null mice compared to its antagonist activity in

fibroblasts from wild type mice (Jepsen et al., 2000).

Several ERβ variants and mutations have been characterized, but the role of ERβ

in tamoxifen resistance remains unknown (Reviewed in Speirs et al., 2004). A few

reports have shown a decrease in ERβ levels in tamoxifen resistant breast cancers

(Esslimani-Sahla et al., 2004; Hopp et al., 2004); however, more studies will be needed to

confirm the role of ERβ in tamoxifen resistance.

In addition to ER and coregulator expression, several deregulated cellular kinase

pathways were involved in tamoxifen resistance. Overexpression of erb-2/HER2 was

associated with tamoxifen resistance (Benz et al., 1993; Liu et al., 1995; Pietras et al.,

1995). The HER2 receptor is a member of the EFGR (HER1) family of transmembrane

receptor tyrosine kinases that also includes HER3 and HER4. HER2 is recruited as the preferred partner of EGFR, HER3 or HER4 into an active, phosphorylated, heterodimeric complex that activates several signaling pathways involved in the proliferation and

enhanced survival of tumor cells (Olayioye et al., 2000; Yarden et al., 2001)

27 Increased activity of MAPK and PI3K/AKT pathways was associated with

tamoxifen resistance. As mentioned earlier, both MAPK and PI3K/AKT pathways

phosphorylate and increase the transcriptional activity of ERα. Several studies

demonstrated a deregulation of MAPK activity following long-term tamoxifen treatment

(Berstein et al., 2003; Donovan et al., 2001; Rabenoelina et al., 2002). Furthermore,

breast cancer samples from patients undergoing anti-hormonal therapies that display an

increased MAPK activity were associated with decreased survival (Gee et al., 2001). In

addition, several studies demonstrated that constitutively active AKT confered tamoxifen

resistance in breast cells (Campbell et al., 2001; Clark et al., 2002). Similar to the tissue

specific effects of SERMs, it is likely that several mechanisms contribute to ERα-positive

de novo and acquired tamoxifen resistance.

Therapeutic Role of Signal Transduction Inhibitors (STI)

In addition to SERMs, new therapies for cancer utilizing inhibitors of signaling

pathways are emerging and several agent have been approved for cancer therapy or are

currently in clinical trial (Agus et al., 2005; Ardizzoni et al., 2004; Drevs, 2003; Druker et al, 2001a, b; Elsayed et al., 2001; Graham et al., 2004; O'brien et al., 2004; Repp et al.,

2003; Slamon et al., 2001; Sridhar et al., 2003a, b; Traxler et al., 2001; Vogel et al.,

2002) (Table I). Numerous monoclonal antibodies targeting the extracellular domain of

EGFR have been developed (Crombet-Ramos et al., 2002; Overholser et al., 2000;

Wallace et al., 2000; Yang et al., 2001). As an alternative approach to antibody inhibitors of cell surface receptors, cell permeable small molecule inhibitor of EGFR such as

ZD1839 (Iressa) are currently in phase III

28

Table I Signal Tranduction Inhibitors Approved or in Clincal Trials.

Drug Company Tyrosine Kinase Target

Monoclonal Antibodies Herceptin Genentech HER2/Neu (Vogel C.L. et al., 2002) MDX-H210 Mederex HER2/Neu (Repp R. et al., 2003) 2C4 Genentech HER2/Neu (Agus D.B. et al., 2003) C225 Imclone EGFR (ErbB-1) (Graham J. et al., 2004) MDX-447 Mederex EGFR (ErbB-1) (Sridhar S.S. et al., 2003a)

Signal Transduction Inhibitor (STI)

STI-571(Gleevec) Novartis Abl, c-kit, PDGFR (O’brien S. et al., 2004) ZD1839 (Iressa) AstraZeneca EGFR (ErbB-1) (Elsayed Y.A. et al., 2001) OSI-774 OSI/Genentech EGFR (ErbB-1) (Ardizzoni A. et al., 2004) PKI-166 Novartis EGFR (ErbB-1); HER2 (Traxler P. et al., 2001) PTK-787 Novatis/Schering VEGFR (Drevs J. 2003) SU5416 Sugen/Pharmacia VEGFR (Sridhar S.S. et al., 2003b) SU6668 Sugen/Pharmacia VEGFR (Sridhar S.S. et al., 2003b)

29 clinical trials for non-small cell lung carcinomas (NSCLC) and are promising candidates

for breast cancer (Elsayed et al., 2001). Herceptin, an approved agent currently used for

HER2 over-expressing breast cancer has been shown to be effective as monotherpy for

advanced breast cancer (Vogel et al., 2002). Combination of herceptin with several

standard chemotherapeutic agents resulted in an ever greater tumor regression and

survival (Slamon et al., 2001). Clinical trials are currently assessing combination therapy

of STIs with anti-hormonal agents (Reviewed in Ellis, 2004).

Selenium in Cancer Therapy and Chemoprevention

Selenium is a trace and an essential micronutrient shown to have beneficial effects in cancer chemoprevention. Organic selenium agents, methylselenocysteine (MSC) and seleno-L-methionine (Se-Met) used in clinical chemoprevention studies are metabolized in tissues to the active selenium metabolite, methylselenol (Clark et al., 1996; Ip et al.,

1999; Wang et al., 2002) (Figure 5). Methylseleninic acid (MSA), developed for assessing organic selenium effects in in vitro cell line experiments, is directly converted to the active metabolite, methylselenol, via a non-enzymatic reaction (Ip et al., 2000a)

(Figure 5). Organic selenium compounds inhibit cellular proliferation and induce apoptosis via modulation of cell cycle regulatory proteins and activation of several

caspases as well as reduction in bcl-2 (Dong et al., 2002a, b, 2003; Ip et al., 2000b, 2001;

Jiang et al., 2001, 2002; Lu et al., 1995; Sinha et al., 1996, 1997,1 999, 2001; Wang et al.,

2001c, 2002b; Zhu et al., 2002, 2003). A recent study demonstrated inhibition of AR

signaling by MSA that decreases the growth of prostate cancer cell lines (Dong et al.,

2004). An additional benefit of organic selenium compounds for chemoprevention is low

30 or absent toxicity (Clark et al., 1996; Ip et al., 2000a; Marshall, 2001; Nelson et al.,

1999b). In contrast, inorganic selenium compounds such as selenite are genotoxic and no

longer used for selenium chemoprevention (Ip et al., 1994; Medina et al., 2001; Patterson

et al., 1997; Sinha et al., 1996).

In a landmark clinical trial Clark et al. demonstrated the chemopreventative

effects of Se-Met against prostate, lung and colon cancer (Clark et al., 1996; Duffield-

Lillico et al., 2002). The protective effects of selenium have been demonstrated on several other cancers such as breast and colorectal carcinomas (El Bayoumy et al., 2004;

Patrick, 2004). Selenium use has been limited to the chemopreventative setting.

Recently, a synergistic interaction of organic selenium compounds with the

topoisomerase 1 inhibitor, irinotecan on in vivo xenograft tumors was demonstrated (Cao

et al., 2004). This study provides a strong rationale to utilize selenium as a novel therapy

for overt cancer through combination with well-established chemotherapeutic and

hormonal agents.

31 Figure 5. Selenium Activation

Organic Selenium Inorganic Selenium

Selenocysteine GS-Se-SG Reduction Reactions GS-SeH Hydrogen Selenide lyase (H2Se)

Methylselenol

(CH3SeH)

Methylseleninic Acid

Metabolic pathways of organic selenium compounds to its active metabolite methylselenol in cancer chemoprevention.

32 Selective Estrogen Receptor Modulator Regulated Proteins in Endometrial Cancer Cells

Yatrik M. Shah1, Venkatesha Basrur2, Brian G. Rowan1,3

Department of Biochemistry & Molecular Biology1, Department of Microbiology and

Immunology2 and Program in Bioinformatics & Proteomics/Genomics2,

Medical College of Ohio, Toledo, OH

3 Corresponding author:

Brian G. Rowan, Ph.D.

Department of Biochemistry & Molecular Biology

Medical College of Ohio

3035 Arlington Ave.

Toledo, OH 43614-5804

Tel#: 419-383-4134

Fax#: 419-383-6228

Email: [email protected]

33 Abstract

Tamoxifen is the primary hormonal therapy for breast cancer and is also used as a

breast cancer chemopreventative agent. A major problem with tamoxifen therapy is

undesirable endometrial proliferation. To identify proteins associated with the growth

stimulatory effects of tamoxifen in an ER-positive model, the present study profiled total

cellular and secreted proteins regulated by estradiol and selective estrogen receptor

modifiers (SERMs) in the Ishikawa endometrial adenocarcinoma cell-line using two-

-8 -7 dimensional gel electrophoresis. Following 24-hour incubation with 10 M estradiol, 10

-7 M 4-hydroxytamoxifen, or 10 M EM-652 (Acolbifene), nine proteins exhibited

significant increase in expression. The proteins identified were heat shock protein 90-α,

and -β, heterogeneous nuclear ribonucleoprotein F, RNA polymerase II-mediating

protein, cytoskeletal keratin 8, cytoskeletal keratin 18, ubiquitin-conjugating enzyme E2-

18kDa and nucleoside diphosphate kinase B. These protein profiles may serve as novel

indices of SERM response and may also provide insight into novel mechanisms of

SERM-mediated growth.

34 Introduction

Estrogens are vital regulators of growth and maintenance of female reproductive

physiology and other non-reproductive tissues such as bone, cardiovascular tissue, and

the central nervous system (Mueller and Korach, 2001). The specificity for estrogen

action in tissues requires the expression of the type 1 nuclear receptor, estrogen receptor

(ER) (Evans, 1988; Tsai and O'Malley, 1994). Two forms of ER have been identified,

ER-α and ER-β, both the product of separate genes (Kuiper et al., 1996; Mosselman et

al., 1996; Tremblay et al., 1997). Similar to all nuclear receptors, ER-α and ER-β are

comprised of modular domains, each with its own functional properties (Kumar et al.,

1987). The N-terminal A/B domain (NTD) contains a ligand-independent activation

function 1 (AF-1) (Evans, 1988; Tora et al., 1989; Tsai and O'Malley, 1994; Webb et al.,

1998). A centrally located DNA binding domain (DBD), contains two zinc fingers

important for DNA binding (McKenna et al., 1999; Tsai and O'Malley, 1994). The hinge

region, contains a nuclear localization sequence and the E/F domain (LBD) includes sites

for hormone binding and ligand-dependent activation function 2 (AF-2) (McKenna et al.,

1999; Tsai and O'Malley, 1994; Webb et al., 1998). ER is a ligand-dependent

transcription factor, and upon estrogen binding the receptor either forms heterodimers

consisting of ER-α -ER-β (Cowley et al., 1997; Ogawa et al., 1998; Pettersson et al.,

1997) or homodimers of two ER-α or ER-β proteins. Upon dimerization, ER binds to the promoter region of target genes where subsequent recruitment of coactivators and local chromatin modifications facilitate gene transcription (Klinge, 2000; Klinge, 2001;

McKenna et al., 1999; McKenna and O'Malley, 2000).

35 Estrogens play a major role in the development and growth of breast cancer and antiestrogen therapies have been devised to oppose estrogen action. Estrogen promotes cell proliferation that increases the chance for random genetic errors to be permanently introduced in the genome of somatic cells. As a treatment for breast cancer, the selective estrogen receptor modifier (SERM) tamoxifen binds with high affinity to the ER and blocks estrogen induced cellular growth (Dutertre and Smith, 2000; Jordan and Koerner,

1975). Tamoxifen is the most widely used hormonal therapy for breast cancer and has been approved as a chemopreventive agent in high risk women (Jordan, 2000). The major mechanism of action for tamoxifen is as an ER antagonist, although receptor-independent mechanisms have been proposed (Mandlekar and Kong, 2001). As an ER antagonist, tamoxifen inhibits estrogen dependent gene transcription that is required for cellular growth in breast tissue and breast-derived cell lines.

Although tamoxifen is an estrogen antagonist in the breast, tamoxifen displays estrogen-like uterotropic effects in the endometrium (Harper and Walpole, 1967;

Terenius, 1971). Tamoxifen therapy results in increased stromal thickening and endometrial hyperplasia and long-term tamoxifen treatment is associated with a 4 fold increase in endometrial cancer (Fisher et al., 1994; Fornander et al., 1989).

Several hypotheses have been proposed to explain the tissue specific actions of tamoxifen and other SERMs. Differential coregulator expression between tissues may account for SERM specificity. In experimental models, elevated corepressors facilitates the antagonist action of tamoxifen whereas an increase in coactivators promotes the tamoxifen agonist activity (Smith et al., 1997). It is also hypothesized that expression of

36 AF-1 interacting coactivators may drive the tissue-specificity of SERMs. Tamoxifen inhibits AF-2 (Berry et al., 1990), but AF-1 is not blocked suggesting that tamoxifen may display estrogen agonist action in tissues expressing AF-1 specific coactivators such as p68 helicase (Endoh et al., 1999) and steroid receptor RNA activator (SRA) (Lanz et al.,

1999). Finally, differentially activated cellular signaling pathways in the uterus vs. the breast may contribute to SERM specificity. (Feng et al., 2001; Kato et al., 1995; Lee et al., 2000).

The problems with tamoxifen therapy have led to the development of new generation SERMs, such as EM-652, that were developed to limit the estrogen-like action of tamoxifen in the uterus. EM-652, the active metabolite of EM-800, does not display estrogen-like action in mouse mammary gland and endometrium (Labrie et al., 1999;

Labrie et al., 2001; Luo et al., 1998; Martel et al., 1998; Sourla et al., 1997). In experimental cell culture models, EM-652 inhibits the growth of human breast and endometrial cancer cell lines (Couillard et al., 1998; Labrie et al., 1999; Labrie et al.,

2001; Simard et al., 1997). However, unlike other pure , EM-652 preserves bone density in ovariectomized rats (Martel et al., 2000) making EM-652 a potentially attractive alternative to tamoxifen therapy.

Coinciding with the widespread use of tamoxifen therapy and the development of novel SERMs, relatively few SERM-regulated proteins have been identified. We set out to identify novel biomarker proteins that are either direct mediators or surrogate markers of the estrogen agonist action of tamoxifen and the antagonist action of EM-652 in

Ishikawa endometrial cancer cells. By focusing on proteins that are regulated by SERMs

37 of varying estrogenicity using two-dimensional protein electrophoresis and mass spectrometry, we sought to identify proteins that may participate in novel pathways of tamoxifen sensitivity and resistance. Furthermore, these proteins may have predictive value for tamoxifen therapy and may themselves serve as novel tumor targets for therapy and tumor image analysis. By using this approach, we eliminated the problem of discordance between mRNA and protein inherent with the gene array approach.

38 Material and Methods

MTT Assay to measure cell proliferation

Ishikawa cells were plated in 24 well plates (6000 cells/well) and cultured in

phenol red free DMEM (Gibco, Grand Island, NY) containing 2% fetal bovine serum that

was charcoal stripped to remove endogenous . 24 h after plating, the cells were

incubated with vehicle, estradiol (10-8 M) (Sigma, St. Louis, MO), 4-hydroxytamoxifen

(10-7 M and 10-10 M) (Sigma) or EM-652 (10-7 M and 10-10 M). The medium, estrogen and antiestrogens were replaced every two days for a total of 9 days incubation. After 9 days, the medium was replaced with 0.5mL of MTT reagent (ICN, Aurora, OH) (1mg/ml of

2,5-diphenyl tetrazolium bromide in PBS). After 1 h, the MTT reagent was removed and

200 µL of DMSO (Fisher Biotech, Fairlawn, NJ) was added to each well. The plates were read at a wavelength of 595nm.

Luciferase assay to measure gene transcription.

Ishikawa cells were plated in 6-well plates as described above. The cells were transfected with 500 ng of EREe1b-luciferase reporter using Fugene transfection reagent

(Roche, Madison, WI). 24 h post transfection, the cells were incubated with vehicle, estradiol (10-8 M), 4-hydroxytamoxifen (10-7 M) or EM-652 (10-7 M) for 24 h. The cells were scraped from the plates and centrifuged at 500 x g for 4 min and the resulting cell pellet was lysed with luciferase cell lysis buffer (Promega, Indianapolis, IN). Following centrifugation at 20,000 x g for 5 min to remove cellular debris, the supernatant was used for standard luciferase assay measured using a Lumat luminometer (Perkin Elmer,

39 Downers Grove, IL). The luciferase values were normalized to protein measured by

Bradford assay (BioRad, Hercules, CA).

RNA extraction and cDNA synthesis.

Ishikawa cells were plated in 100 mm plates (2x106 cell/plate) in DMEM medium as described above. The cells were incubated with vehicle, estradiol (10-8 M), 4- hydroxytamoxifen (10-7 M) or EM-652 (10-7 M) for 2 hours. Cells were pelleted by centrifugation at 500 x g for 4 min and total RNA was extracted using Trizol

(Invitrogen). Briefly, 300 µL of Trizol was added to the cell pellets and vortexed for 1 min. After incubation at room temperature for 10 min, 100 µL of 100% chloroform was added and the solution was vortexed for 15 seconds. The solution was incubated at room temperature for 3 min and then centrifuged for 10 min at 20,000 x g. The top aqueous layer was removed and 600 µL of 100% isopropanol was added. After vortexing, the solution was incubated at room temperature for 10 min followed by centrifugation at

20,000 x g for 10 min. The supernatant was removed and the RNA pellet was washed with 300 µL of 70% ethanol in DEPC water. The pellet was resuspended in DEPC water and the RNA concentration was quantified using a DU 640 spectrophotometer (Beckman

Coulter, Palo Alto, CA). RNA was diluted to 52 ng/µL and reverse transcribed using

TaqMan Kit reagents (Applied Biosystems, Foster City, CA). Briefly, 1 µL 10X Buffer,

2.2 µL MgCl2, 2 µL dNTPs, 0.5 µL random hexamers, 0.2 µL RNase inhibitor, and 0.25

µL reverse transcriptase were added to 200 ng of diluted RNA for a final volume of 10

µL. Reverse transcription was performed using a PTC-0150 MiniCycler (MJ Research,

Waltham, MA) using conditions described in the TaqMan Kit.

40

Real time RT-PCR.

Primers and probes were designed using Primer Express Version 2.0 (Applied

Biosystems). All primers and probes, except GAPDH, were manufactured by Integrated

DNA Technologies, Inc. (Coralville, IA) Primers and probes for GAPDH were designed

and manufactured by Applied Biosystems. The probes were dual-labeled with the

fluorescent dye 56-FAM at the 5’ end and 3BHQ-1 at the 3’ end.

Progesterone Receptor (PR):

FWD-5’-CTATGCAGGACATGACAACACAAA-3’

REV-5’-TGCCTCTCGCCTAGTTGATTAAG-3’

Probe-5’-56FAM CCTGACACCTCCAGTTCTTTGCTGACAAG/3BHQ-1/-3’

Lactoferrin (LF) :

FWD-5’-GACGAGCAGGGTGAGATTAAGTG-3’

REV-5’-ACCGGAAAGCCCCAGTGTA-3’

Probe-5’-/56FAM/TGCCCAACAGCAACGAGAGATACTACGG/3BHQ-1/-3’

Fwd primer, rev primer and probe for PR, LF, or GAPDH and Taqman Universal Master

Mix (Applied Biosystems) were added to 200ng of cDNA. Real-time RT-PCR was

performed using a GeneAmp 5700 Sequence Detection System (Perkin Elmer). PCR

conditions were as follows: samples were heated at 50° C for 2 min, then 95° C for 10 min, followed by 40 cycles of 95° C for 15 sec and 60° C for 1 min. Values were quantified using the Comparative CT method. All samples were normalized to GAPDH and calibrated to vehicle treated samples.

41

Two-dimensional gel electrophoresis

Ishikawa cells were plated in 150 mm plates (5 x 106 cells/plate) in DMEM

containing 2% charcoal stripped serum for 48 h. After incubation the media was replaced

with DMEM containing no serum and the cells were incubated with vehicle, estradiol

(10-8 M), 4-hydroxytamoxifen (10-7 M) or EM-652 (10-7 M) for an additional 24 h. For the secreted proteins, the serum-free DMEM conditioned medium was removed following the 24 h incubation with estrogen and antiestrogens. The medium was dialyzed against

25mM ammonium bicarbonate, and then lyophilized. The lyophilized proteins were resuspended in 2D buffer (8 M urea, 2% chaps, 2% 3-10 non-linear carrier ampholytes,

60 mM DTT and a trace of bromophenol blue). To prepare proteins for the total cellular fraction, the medium was removed and the cells were washed with 1X PBS. Cells were scraped from the plates and centrifuged at 500 x g for 4 min. The resulting cell pellet was resuspended in 2D buffer and the cell extract was centrifuged at 100,000 x g for 30 min to remove cellular debris. Following protein determination by the Bradford assay, equal amounts of protein from each drug incubation were used to rehydrate the 3-10 non-linear immobilized pH gradient (IPG) strips overnight. The IPG strips were electrophoresed in the first dimension using a gradient program increasing to 3500V, for a total of 19.5 h using the Multiphor II Isoelectric Focusing System (Amersham, Uppsala, Sweden).

Following first dimension electrophoresis, the IPG strips were equilibrated for 10 min in

SDS PAGE equilibration buffer (50 mM tris-HCL, 6 M urea, 30% glycerol, 2% SDS, 1%

DTT, and a trace of bromophenol blue). The equilibrated IPG strips were electrophoresed

42 in the 2nd dimension on a 12% SDS PAGE gel for 14 h at 10 mA per gel. Proteins were

visualized by either silver-stain or Colloidal Coomassie blue stain (Invitrogen).

Protein identification by mass spectrometry.

From the 2D gels, protein spots that exhibited ligand-induced change in expression from

at least three separate experiments were excised using a clean surgical steel blade. The

gel piece was diced into 1 mm cubes and rehydrated in 0.1 M ammonium bicarbonate

buffer containing 0.4 µg sequencing grade-modified trypsin at 37°C for 14 h. The tryptic peptides were extracted from the gel slices using 60% acetonitrile, 0.1% triflouroacetic acid for 30 minutes at 30°C. The peptides were pooled and concentrated in a vacufuge to about 20 µl volume. Two µls of the digest was separated on a reverse phase column

(Aquasil C18, 15 µm tip x 75 µm id x 5 cm Picofrit column, New Objectives, Woburn,

MA) using acetonitrile/1% acetic acid gradient system (5-75% acetonitrile over 35 min followed by 95% acetonitrile wash for 5 min) at a flow rate of 250nl/min). The eluent

(peptides) was directly introduced into an ion-trap mass spectrometer (LCQ-Deca XP

Plus, ThermoFinnigan) equipped with a nano-spray source. The mass spectrometer was set for analyzing the positive ions and operated on double play mode in which the instrument was set to acquire a full MS scan and a collision induced dissociation (CID) spectrum on the most abundant ion from the full MS scan (relative collision energy

~30%). Dynamic exclusion was set to collect two CID spectra on the most abundant ion and then exclude it for 2 min. An initial database search of CID spectra was carried out against an indexed human database using TurboSEQUEST (BioworksBrowser v 3.0,

43 ThermoFinnigan). Peptide CIDs which showed Xcorr and ∆Cn (delta Cn) of >2 and >0.2

respectively were considered positive and manually verified. Any un-interpreted CID

spectra were searched using the MS-Tag provision of Protein Prospector

(http://prospector.ucsf.edu), with default search settings, against human/mouse proteins in

the non-redundant and/or SwissProt databases.

Western Blot Analysis.

Ishikawa cells were incubated with agents and protein extract was prepared as

described above. 50 µg of each protein extract was separated by electrophoresis on an

SDS-PAGE gel. The gel was transferred to nitrocellulose membrane, and blocked in 5%

nonfat milk in tris-buffered saline/Tween 20 (TBST) (10 mM tris, pH 8, 150 mM NaCl,

0.1% Tween-20) for 1h at room temperature, followed by washes with 1x TBST. The

membranes were incubated with primary antibodies in 5% dried milk/TBST at 4º C for

16 hours. Primary antibodies used were cofilin non-muscle isoform, cytokeratin 8/18,

hnRNP F, UBCh7, NDPK B (Santa Cruz Biotechnology INC, Santa Cruz, CA) and

HSP90 (Upstate Charlottesville, VA). All antibodies were diluted 1:1000 in 5% dried milk/TBST except cofilin and UBCh7, which were diluted 1:150 and 1:500, respectively.

Following primary antibody incubation, the membranes were washed with TBST and incubated for 1 hour at room temperature with secondary biotinylated anti-rabbit, goat, or mouse at 1:2000 depending on the primary antibody used. Following TBST washes, the membranes were incubated with horseradish peroxidase streptavidin (1 µg/ml) for 1 hour at room temperature and washed with TBST. The signal was developed with addition of

44 enhanced chemiluminescence (ECL) solution (1:1 mixture of solution A+B (A: 9.9 ml of

0.1 M Tris pH 8.5 + 100 µl luminol + 44 µl P-coumaric, B: 10 ml of 0.1 M tris pH 8.5 +

6 µl hydrogen peroxide). The membranes were exposed to Kodak XOMAT film, and the signal was quantitated using a Kodak Digital Science 1D image analysis software station

440 system.

Data Analysis

All data are expressed as ± S.D. P values were calculated using one-way anova

Dunnett’s T Test. P<.05 was considered significant.

45

Results

Estrogen receptor-regulated gene expression and cell growth in Ishikawa cells.

The Ishikawa cell line is a well-characterized, endometrial adenocarcinoma cell

line in which tamoxifen exhibits similar agonist properties as estrogen. To validate earlier

published observations on tamoxifen and estrogen effects in Ishikawa cells and to

investigate the role of the SERM EM-652, Ishikawa cells were incubated with estradiol,

4-hydroxytamoxifen, EM-652 and ER-target gene expression and cell proliferation was

assessed. Estradiol and 4-hydroxytamoxifen, activated the ERE2e1b-lucferase reporter but EM-652 antagonized the reporter in transfected cells (Fig.1 panel A). Similar results were observed using real-time RT PCR to measure endogenous ER-dependent gene expression, estradiol and 4-hydroxytamoxifen, but not EM-652, induced the lactoferrin and progesterone receptor genes in non-transfected cells (Fig. 1 panel B). When cell proliferation was assessed, estradiol and 4-hydroxytamoxifen, but not EM-652, induced

Ishikawa cell proliferation (Fig. 1, panel C). These results confirm the relative agonist and antagonist actions of estradiol, 4-hydroxytamoxifen and EM-652 in the Ishikawa cell line providing an adequate model to correlate the relative agonist activity of these

SERMs with the profile of proteins that are regulated following treatment with these agents.

Identification of proteins regulated by estrogen and SERMs in Ishikawa cells.

46 A two-dimensional electrophoresis/mass spectrometry proteomic approach was

used to identify changes in protein expression following incubation with estradiol and

SERMs in Ishikawa cells. All drug treatments were performed in duplicates and

experiments were repeated at least three times. Only those protein spots that exhibited consistent change in expression over all experiments were excised and sequence identified by mass spectrometry. Inconsistently regulated protein spots were excluded from further analysis. Several proteins in the whole cell extract were down regulated following incubation of cells with estradiol and SERMs. However, there were inconsistencies in the magnitude of reduced expression over several independent experiments and these proteins were not pursued for further analysis. For this reason, only proteins that were induced by estradiol and SERMs were sequence identified since these proteins exhibited the greatest change in expression.

500 µg of whole cell lysate or 100 µg of proteins secreted into serum-free medium

(Figs. 2 and 4, respectively) were separated by two-dimensional gel electrophoresis followed by visualization with colloidal Coomassie or silver staining. Visual analysis of the gels identified fourteen proteins that were differentially regulated by estradiol and

SERMs in whole cell lysate and the secreted fraction. LC-Tandem-MS was used to

sequence identify eight regulated proteins from whole cell lysate and one protein from

the secreted fraction (data summarized in Table 1). In the whole cell lysate, three proteins

were induced by both estradiol and 4-hydroxytamoxifen (Keratin type I cytoskeletal 18

(ck18), Heterogeneous nuclear ribonucleoprotein F (hnRNP F), and Keratin type II cytoskeletal 8 (ck 8)) (Fig. 3 panel B and C). Three proteins were induced by EM-652

47 alone: ubiquitin-conjugating enzyme E2-18kDa (UbcH7), RNA polymerase II subunit 5-

mediating protein (RMP) and cofilin, non-muscle isoform (Fig. 3 panel D). Two proteins

were induced by estrogen and EM-652: heat shock protein 90-α (HSP90- α) and heat

shock protein 90-β (HSP90- β) (Fig. 3 panel A). Based on molecular weight and isoelectric point (pI) only the N-terminal region of RMP was identified possibly because of degradation. The c-terminal region of RMP was not detected possibly because of an acidic pI that was outside the pH range of the isoelectric focussing step.

In the secreted fraction, a total of six proteins were observed to be differentially regulated by estradiol and SERMs. Five proteins were induced by estradiol and 4- hydroxytamoxifen and one protein was downregulated by EM-652 alone. Only one protein could be identified because of the low protein present in the secreted fraction

(required silver staining to visualize) and poor recovery of tryptic peptides due to silver stain. Several attempts were made at mass spectrometric identification, but only one of the protein spots was identified as nucleoside diphosphate kinase B (NDKB). NDKB was induced by estradiol and 4-hydroxytamoxifen (Fig. 4 panel E).

Confirmation of estrogen and SERM regulated proteins by Western blot analysis.

Western blot analysis and enhanced chemiluminescence quantitation was used to confirm the proteins identified by mass spectrometry sequencing. Ishikawa cells were incubated with estradiol and SERMs for 24 h. The cell extract and secreted proteins were prepared as described above. All drug treatments were performed in duplicates and experiments were repeated at least three times. The Western blot results were consistent

48 with the two-dimensional electrophoresis/mass spectrometry proteomic approach. In the whole cell lysate Ck8, Ck18, and hnRNP F were induced by estradiol and 4- hydroxytaomxifen (Fig 5 panel A and B). HSP90 was induced by estradiol and EM652 treatment (Fig 5 panel A) and UBCh7 and cofilin were induced by EM652 alone (Fig 5 panel A and B). In the secreted fraction NDPK B was induced by estradiol and 4- hydroxytamoxifen (Fig 5 panel C). NDPK B was also induced in the whole cell lysate by estradiol and 4-hydroxytamoxifen (Fig 5 panel A and B.). RMP expression could not be confirmed by Western blot analysis because antibody to this protein is not currently available. Because of the increased sensitivity of Western blot analysis compared to

Coomassie stained gels, the expression of Ck8, Ck18, HSP90 and cofilin was observed in all treatment conditions. (Fig 5 panel A). Regardless, the relative induction of these proteins by estradiol and SERMs as measured by Western blot analysis was identical to that observed with Coomassie stained gels confirming the regulation of these proteins.

49 Discussion

Tamoxifen-induced growth of the endometrium is a major clinical problem for women undergoing tamoxifen therapy for breast cancer. We sought to identify proteins that were regulated by estrogen, tamoxifen (partial agonist), and EM-652 (antagonist) in the Ishikawa endometrial adenocarcinoma cell line. Using two-dimensional proteomic technology, nine estradiol- and SERM- regulated proteins were identified from whole cell lysate and the secreted fraction of Ishikawa cells. Regulation of eight of these proteins were confirmed by Western blot analysis (antibody to RMP was not available for

Western blot analysis). Among the identified proteins were chaperones proteins, RNA and RNA polymerase binding proteins, cytoskeletal proteins, a ubiquitin ligase and a multi-functional kinase. With the exception of HSP90, Ck 8, and Ck 18, all of the proteins are novel estradiol and/or SERM regulated proteins. HSP90 has been shown to be induced by estrogen in the endometrium and in several uterine-derived cell lines

(Ramachandran et al., 1988; Shyamala et al., 1989; Tang et al., 1995; Wu et al., 1996).

Although Ck 8 and Ck 18 were shown to be regulated by estrogen and tamoxifen in a breast cancer cell line (Coutts et al., 1996), this is the first study to show estrogen and tamoxifen regulation of Ck 8 and Ck 18 in an endometrial-derived cell line.

HSP 90 α and β are chaperone proteins important in the proper folding of numerous proteins and important in nuclear receptor signaling (for review see ref. (Pratt and Toft, 1997; Walter and Buchner, 2002)). The present finding of estradiol-dependent induction of HSP 90 α and β in Ishikawa cells is consistent with the findings of several other reports providing an internal control for estrogenic response (Ramachandran et al.,

50 1988; Shyamala et al., 1989; Tang et al., 1995; Wu et al., 1996). Remarkably, we also found induction of HSP-90 α and β with EM-652, an ER antagonist in Ishikawa cells.

This is the first indication that ER ligands that exhibit opposite agonist and antagonist

properties in the same cell line can induce expression of the same chaperone protein. The

function of the estrogenic regulation on HSP90 is still unknown but it may serve as a

negative feedback to down regulate estrogen signaling in the endometrium. In addition,

induction of HSP90 by EM-652 could attenuate estrogen signaling in the endometrium.

Further studies will explore the function for HSP90 induction by these two ligands.

Estradiol and 4-hydroxytamoxifen, unlike EM-652, exhibit agonist properties in

Ishikawa cells and three proteins (Ck 8, Ck 18 and hnRNP F) were induced with these

agonist ER ligands. Cytokeratins are structural proteins involved in cellular organization

(for review see ref. (Kirfel et al., 2003)). There is also evidence that cytokeratins are

important in modulating external stimuli and signal cascades (for review see ref.

(Paramio and Jorcano, 2002)). The related protein, cytokeratin 19 (Ck 19), is regulated by estrogen in breast cancer cell lines (Choi et al., 2000). Ck 8 and Ck 18 were shown to be regulated by estrogen in T47D cells, a breast cancer cell line in which tamoxifen is an ER antagonist unlike its action in Ishikawa cells. When T47D cells were grown in estrogen- depleted medium, expression of Ck 8 and Ck 18 was lost but expression was restored when exogenous estrogen was added to the medium. Interestingly, incubation of T47D cells with tamoxifen caused a reduction of Ck 8 and Ck 18 protein expression (Coutts et al., 1996). Taken together with the results of the present study in Ishikawa cells, Ck 8 and

51 Ck 18 could serve as prospective biomarkers for the mixed agonist/antagonist action of tamoxifen.

hnRNP F was also induced by both estradiol and 4-hydroxytamoxifen in Ishikawa cells. Over twenty members of the hnRNP family have been identified. These proteins are important in gene expression, pre-mRNA splicing, silencing, packaging and transport

(Carson et al., 1998; Grabowski, 1998; Mayeda and Krainer, 1992; Nakielny and

Dreyfuss, 1997; Ostareck et al., 1997). hnRNP proteins contain RNA binding motifs with different substrate binding specificities (Matunis et al., 1993). hnRNP F binds with high affinity to polyG sequences (Matunis et al., 1994). At this time, a role for hnRNP F in ER signaling has not been identified, although other hnRNP family members are regulated by estrogen and may bind to other nuclear receptors (Arao et al., 2002; Powers et al., 1998).

Recently, Auboeuf et al. found that steroid receptors mediate RNA processing from steroid response elements (Auboeuf et al., 2002), suggesting that nuclear receptors may recruit hnRNP-containing protein complexes involved in both transcription and RNA processing.

Three proteins (UbcH7, RMP, and Cofilin, non-muscle isoform) were induced only with the antagonist EM-652. Our finding of induction of UbcH7 is the first report of a protein involved in the ubiquitin pathway that is specifically regulated by a SERM.

UbcH7 is an E2-type ubiquitin carrier protein involved in the ubiquitin-mediated proteolytic pathway (for review see ref. (Weissman, 2001)). Several proteins involved in the ubiquitin-mediated proteolytic pathway have also been shown to be important in estrogen signaling (Lonard et al., 2000; Nawaz et al., 1999a). A functional disruption of

52 the ubiquitin ligase E6-associated protein (E6-AP) in mice reduced estrogen mediated growth of the uterus (Smith et al., 2002). UbcH7 is a functional binding partner of E6-AP

(Nuber et al., 1996) and is also important in the degradation of E6-AP and transcriptional intermediary factor-2 (TIF-2), a nuclear receptor coactivator (Yan et al., 2003). These findings taken together with results from the present study suggest that UbcH7 may be an important mediator of estrogen and SERM signaling in endometrial cells.

RMP was induced only with EM-652 although the result could not be confirmed by Western blot analysis. Interestingly, RMP binds to subunit 5 of RNA polymerase and inhibits RNA polymerase II function (Dorjsuren et al., 1998). It is possible that induction of RMP by EM-652 could participate in the antagonism of ER dependent gene expression by EM-652. Cofilin was also selectively induced by EM-652. Cofilin is a multifunctional protein important in actin depolymerization and in cell locomotion (Chen et al., 2001;

Maciver and Weeds, 1994; Nagaoka et al., 1995). The increase of cofilin expression may be followed by changes in actin organization required for EM652-mediated repression of cell growth.

In the secreted fraction of Ishikawa cells, NDPK B was induced by estradiol and

4-hydroxytamoxifen. Previous studies have identified NDPK B as a secreted protein

(Chopra et al., 2003; Donaldson et al., 2002; Willems et al., 2002) although it is possible that induction of the cytoplasmic levels (Fig 5 panel C.) led to increased extracellular shedding. NDPK B is encoded by the NM23-h2 gene. Currently, eight separate genes have been cloned which belong to the NM23 family. NDPK is involved in the transfer of phosphates from NTPs to NDPs (Walinder, 1968). Several studies have confirmed the

53 metastatic-suppressing property of NDPK A and NDPK B (Baba et al., 1995; Leone et al., 1991; Leone et al., 1993; Nakamori et al., 1993; Steeg et al., 1988). In addition,

NDPK B has also been shown to increase cell proliferation (Caligo et al., 1995; Caligo et al., 1996). The NDPK A gene is directly regulated by estrogen (Lin et al., 2002) but the present study is the first report to find the NDPK B protein induced by both estrogen and tamoxifen. Since estrogen and tamoxifen increase cell proliferation in Ishikawa cells, it will be interesting to assess whether NDPK B participates in estrogen- and tamoxifen- dependent proliferation in Ishikawa and other endometrium-derived cell lines. Future studies may determine whether NDPK B could serve as a biomarker for the tamoxifen resistant phenotype. Since NDPK B is a secreted protein it could easily be assayed by non-invasive procedures.

In summary, using two-dimensional proteomic technology we have identified nine estradiol and SERM regulated proteins from the whole cell lysate and secreted fraction in the Ishikawa cell line. It is likely that other proteins are regulated by estrogen and SERMs but are not detected by the proteomic approach. A disadvantage of this approach is visualization and identification of low abundance proteins. However, a proteomic-based approach allows direct analysis of gene expression at the protein level.

By correlating the estradiol and SERM-induced proteins to effects of these ligands on growth stimulation and gene expression in Ishikawa cells, we may identify proteins involved in novel mechanisms of SERM action. These proteins may further be useful as biomarkers for the development of SERM resistance. Further studies will be performed to

54 elucidate the roles of these proteins in estrogen and/or SERM-regulated gene expression and cellular growth.

Acknowledgements: We are grateful to Dr. Fernand Labrie for the generous gift of EM-

652. This work was supported by a Predoctoral Dissertation Award from the Susan G.

Komen Breast Cancer Foundation (Y.K.S.) and a grant from the Cancer Research

Foundation of America (B.G.R.).

55 References

Arao, Y., Kikuchi, A., Ikeda, K., Nomoto, S., Horiguchi, H., and Kayama, F., 2002.

A+U-rich-element RNA-binding factor 1/heterogeneous nuclear

ribonucleoprotein D gene expression is regulated by oestrogen in the rat uterus.

Biochem.J. 361, 125 132

Auboeuf, D., Honig, A., Berget, S. M., and O'Malley, B. W., 2002. Coordinate regulation

of transcription and splicing by steroid receptor coregulators. Science 298, 416

419

Baba, H., Urano, T., Okada, K., Furukawa, K., Nakayama, E., Tanaka, H., Iwasaki, K.,

and Shiku, H., 1995. Two isotypes of murine nm23/nucleoside diphosphate

kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a

murine melanoma line. Cancer Res. 55, 1977 1981

Berry, M., Metzger, D., and Chambon, P., 1990. Role of the two activating domains of

the oestrogen receptor in the cell-type and promoter-context dependent agonistic

activity of the anti-oestrogen 4-hydroxytamoxifen. The EMBO Journal 9, 2811

2818

Caligo, M. A., Cipollini, G., Fiore, L., Calvo, S., Basolo, F., Collecchi, P., Ciardiello, F.,

Pepe, S., Petrini, M., and Bevilacqua, G., 1995. NM23 gene expression correlates

with cell growth rate and S-phase. Int.J.Cancer 60, 837 842

56 Caligo, M. A., Cipollini, G., Petrini, M., Valentini, P., and Bevilacqua, G., 1996. Down

regulation of NM23.H1, NM23.H2 and c-myc genes during differentiation

induced by 1,25 dihydroxyvitamin D3. Leuk.Res. 20, 161 167

Carson, J. H., Kwon, S., and Barbarese, E., 1998. RNA trafficking in myelinating cells.

Curr.Opin.Neurobiol. 8, 607 612

Chen, J., Godt, D., Gunsalus, K., Kiss, I., Goldberg, M., and Laski, F. A., 2001.

Cofilin/ADF is required for cell motility during Drosophila ovary development

and oogenesis. Nat.Cell Biol. 3, 204 209

Choi, I., Gudas, L. J., and Katzenellenbogen, B. S., 2000. Regulation of keratin 19 gene

expression by estrogen in human breast cancer cells and identification of the

estrogen responsive gene region. Mol.Cell Endocrinol. 164, 225 237

Chopra, P., Singh, A., Koul, A., Ramachandran, S., Drlica, K., Tyagi, A. K., and Singh,

Y., 2003. Cytotoxic activity of nucleoside diphosphate kinase secreted from

Mycobacterium tuberculosis. Eur.J.Biochem. 270, 625 634

Couillard, S., Gutman, M., Labrie, C., Belanger, A., Candas, B., and Labrie, F., 1998.

Comparison of the effects of the antiestrogens EM-800 and tamoxifen on the

growth of human breast ZR-75-1 cancer xenografts in nude mice. Cancer Res. 58,

60 64

57 Coutts, A. S., Davie, J. R., Dotzlaw, H., and Murphy, L. C., 1996. Estrogen regulation of

nuclear matrix-intermediate filament proteins in human breast cancer cells. J.Cell

Biochem. 63, 174 184

Cowley, S. M., Hoare, S., Mosselman, S., and Parker, M. G., 1997. Estrogen receptors

alpha and beta form heterodimers on DNA. J.Biol.Chem. 272, 19858 19862

Donaldson, S. H., Picher, M., and Boucher, R. C., 2002. Secreted and cell-associated

adenylate kinase and nucleoside diphosphokinase contribute to extracellular

nucleotide metabolism on human airway surfaces. Am.J.Respir.Cell Mol.Biol. 26,

209 215

Dorjsuren, D., Lin, Y., Wei, W., Yamashita, T., Nomura, T., Hayashi, N., and Murakami,

S., 1998. RMP, a novel RNA polymerase II subunit 5-interacting protein,

counteracts transactivation by hepatitis B virus X protein. Mol.Cell Biol. 18, 7546

7555

Dutertre, M. and Smith, C. L., 2000. Molecular mechanisms of selective estrogen

receptor modulator (SERM) action. J.Pharmacol.Exp.Ther. 295, 431 437

Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa,

J., Metzger, D., Hashimoto, S., and Kato, S., 1999. Purification and identification

of p68 RNA helicase acting as a transcriptional coactivator specific for the

activation function 1 of human . Mol.Cell Biol. 19, 5363

5372

58 Evans, R. M., 1988. The steroid and thyroid hormone receptor superfamily. Science 240,

889 895

Feng, W., Webb, P., Nguyen, P., Liu, X., Li, J., Karin, M., and Kushner, P. J., 2001.

Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through

a serine 118-independent pathway. Mol.Endocrinol. 15, 32 45

Fisher, B., Costantino, J. P., Redmond, C. K., Fisher, E. R., Wickerham, D. L., and

Cronin, W. M., 1994. Endometrial cancer in tamoxifen-treated breast cancer

patients: findings from the National Surgical Adjuvant Breast and Bowel Project

(NSABP) B-14. J Natl.Cancer Inst. 86, 527 537

Fornander, T., Rutqvist, L. E., Cedermark, B., Glas, U., Mattsson, A., Silfversward, C.,

Skoog, L., Somell, A., Theve, T., Wilking, N., and ., 1989. Adjuvant tamoxifen in

early breast cancer: occurrence of new primary cancers. Lancet 1, 117 120

Grabowski, P. J., 1998. Splicing regulation in neurons: tinkering with cell-specific

control. Cell 20;92, 709 712

Harper, M. J. and Walpole, A. L., 1967. A new derivative of : effect on

implantation and mode of action in rats. J.Reprod.Fertil. 13, 101 119

Jordan, V. C., 2000. Tamoxifen: a personal retrospective. Lancet Oncol. 1, 43 49

Jordan, V. C. and Koerner, S., 1975. Tamoxifen (ICI 46,474) and the human carcinoma

8S oestrogen receptor. Eur.J.Cancer 11, 205 206

59 Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige,

S., Gotoh, Y., Nishida, E., Kawashima, H., and ., 1995. Activation of the estrogen

receptor through phosphorylation by mitogen-activated protein kinase. Science

270, 1491 1494

Kirfel, J., Magin, T. M., and Reichelt, J., 2003. Keratins: a structural scaffold with

emerging functions. Cell Mol.Life Sci. 60, 56 71

Klinge, C. M., 2000. Estrogen receptor interaction with co-activators and co-repressors.

Steroids 65, 227 251

Klinge, C. M., 2001. Estrogen receptor interaction with estrogen response elements.

Nucleic Acids Res. 29, 2905 2919

Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A., 1996.

Cloning of a novel receptor expressed in rat prostate and ovary.

Proc.Natl.Acad.Sci.U.S.A 93, 5925 5930

Kumar, V., Green, S., Stack, G., Berry, M., Jin, J. R., and Chambon, P., 1987. Functional

domains of the human estrogen receptor. Cell 51, 941 951

Labrie, F., Labrie, C., Belanger, A., Simard, J., Gauthier, S., Luu-The, V., Merand, Y.,

Giguere, V., Candas, B., Luo, S., Martel, C., Singh, S. M., Fournier, M., Coquet,

A., Richard, V., Charbonneau, R., Charpenet, G., Tremblay, A., Tremblay, G.,

Cusan, L., and Veilleux, R., 1999. EM-652 (SCH 57068), a third generation

60 SERM acting as pure antiestrogen in the mammary gland and endometrium. J

Steroid Biochem.Mol.Biol. 69, 51 84

Labrie, F., Labrie, C., Belanger, A., Simard, J., Giguere, V., Tremblay, A., and Tremblay,

G., 2001. EM-652 (SCH57068), a pure SERM having complete antiestrogenic

activity in the mammary gland and endometrium. J Steroid Biochem.Mol.Biol.

79, 213 225

Lanz, R. B., McKenna, N. J., Onate, S. A., Albrecht, U., Wong, J., Tsai, S. Y., Tsai, M.

J., and O'Malley, B. W., 1999. A steroid receptor coactivator, SRA, functions as

an RNA and is present in an SRC-1 complex. Cell 97, 17 27

Lee, H., Jiang, F., Wang, Q., Nicosia, S. V., Yang, J., Su, B., and Bai, W., 2000. MEKK1

activation of human estrogen receptor alpha and stimulation of the agonistic

activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells.

Mol.Endocrinol. 14, 1882 1896

Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M., Liotta, L. A., and

Steeg, P. S., 1991. Reduced tumor incidence, metastatic potential, and cytokine

responsiveness of nm23-transfected melanoma cells. Cell 65, 25 35

Leone, A., Flatow, U., VanHoutte, K., and Steeg, P. S., 1993. Transfection of human

nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on

tumor metastatic potential, colonization and enzymatic activity. Oncogene 8, 2325

2333

61 Lin, K. H., Wang, W. J., Wu, Y. H., and Cheng, S. Y., 2002. Activation of antimetastatic

Nm23-H1 gene expression by estrogen and its alpha-receptor. Endocrinology 143,

467 475

Lonard, D. M., Nawaz, Z., Smith, C. L., and O'Malley, B. W., 2000. The 26S proteasome

is required for estrogen receptor-alpha and coactivator turnover and for efficient

estrogen receptor-alpha transactivation. Mol.Cell 5, 939 948

Luo, S., Sourla, A., Labrie, C., Gauthier, S., Merand, Y., Belanger, A., and Labrie, F.,

1998. Effect of twenty-four-week treatment with the antiestrogen EM-800 on

estrogen-sensitive parameters in intact and ovariectomized mice. Endocrinology

139, 2645 2656

Maciver, S. K. and Weeds, A. G., 1994. Actophorin preferentially binds monomeric

ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett.

347, 251 256

Mandlekar, S. and Kong, A. N., 2001. Mechanisms of tamoxifen-induced apoptosis.

Apoptosis. 6, 469 477

Martel, C., Labrie, C., Belanger, A., Gauthier, S., Merand, Y., Li, X., Provencher, L.,

Candas, B., and Labrie, F., 1998. Comparison of the effects of the new orally

active antiestrogen EM-800 with ICI 182 780 and on estrogen-

sensitive parameters in the ovariectomized mouse. Endocrinology 139, 2486 2492

62 Martel, C., Picard, S., Richard, V., Belanger, A., Labrie, C., and Labrie, F., 2000.

Prevention of bone loss by EM-800 and raloxifene in the ovariectomized rat. J

Steroid Biochem.Mol.Biol. 74, 45 56

Matunis, E. L., Matunis, M. J., and Dreyfuss, G., 1993. Association of individual hnRNP

proteins and snRNPs with nascent transcripts. J.Cell Biol. 121, 219 228

Matunis, M. J., Xing, J., and Dreyfuss, G., 1994. The hnRNP F protein: unique primary

structure, nucleic acid-binding properties, and subcellular localization. Nucleic

Acids Res. 22, 1059 1067

Mayeda, A. and Krainer, A. R., 1992. Regulation of alternative pre-mRNA splicing by

hnRNP A1 and splicing factor SF2. Cell 68, 365 375

McKenna, N. J., Lanz, R. B., and O'Malley, B. W., 1999. Nuclear receptor coregulators:

cellular and molecular biology. Endocr.Rev. 20, 321 344

McKenna, N. J. and O'Malley, B. W., 2000. From ligand to response: generating

diversity in nuclear receptor coregulator function. J Steroid Biochem.Mol.Biol.

74, 351 356

Mosselman, S., Polman, J., and Dijkema, R., 1996. ER beta: identification and

characterization of a novel human estrogen receptor. FEBS Lett. 19;392, 49 53

Mueller, S. O. and Korach, K. S., 2001. Estrogen receptors and endocrine diseases:

lessons from estrogen receptor knockout mice. Curr.Opin.Pharmacol. 1, 613 619

63 Nagaoka, R., Abe, H., Kusano, K., and Obinata, T., 1995. Concentration of cofilin, a

small actin-binding protein, at the cleavage furrow during cytokinesis. Cell

Motil.Cytoskeleton 30, 1 7

Nakamori, S., Ishikawa, O., Ohigashi, H., Imaoka, S., Sasaki, Y., Kameyama, M.,

Kabuto, T., Furukawa, H., Iwanakga, T., and Kimura, N., 1993.

Clinicopathological features and prognostic significance of nucleoside

diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms.

Int.J.Pancreatol. 14, 125 133

Nakielny, S. and Dreyfuss, G., 1997. Nuclear export of proteins and RNAs.

Curr.Opin.Cell Biol. 9, 420 429

Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L., and O'Malley, B. W., 1999.

Proteasome-dependent degradation of the human estrogen receptor.

Proc.Natl.Acad.Sci.U.S.A 96, 1858 1862

Nuber, U., Schwarz, S., Kaiser, P., Schneider, R., and Scheffner, M., 1996. Cloning of

human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and

characterization of their interaction with E6-AP and RSP5. J.Biol.Chem. 271,

2795 2800

Ogawa, S., Inoue, S., Watanabe, T., Hiroi, H., Orimo, A., Hosoi, T., Ouchi, Y., and

Muramatsu, M., 1998. The complete primary structure of human estrogen

64 receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in

vitro. Biochem.Biophys.Res.Commun. 243, 122 126

Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze,

M. W., 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP

E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89, 597 606

Paramio, J. M. and Jorcano, J. L., 2002. Beyond structure: do intermediate filaments

modulate cell signalling. Bioessays 24, 836 844

Pettersson, K., Grandien, K., Kuiper, G. G., and Gustafsson, J. A., 1997. Mouse estrogen

receptor beta forms estrogen response element-binding heterodimers with

estrogen receptor alpha. Mol.Endocrinol. 11, 1486 1496

Powers, C. A., Mathur, M., Raaka, B. M., Ron, D., and Samuels, H. H., 1998. TLS

(translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid

hormone, and retinoid receptors. Mol.Endocrinol. 12, 4 18

Pratt, W. B. and Toft, D. O., 1997. Steroid receptor interactions with heat shock protein

and immunophilin chaperones. Endocr.Rev. 18, 306 360

Ramachandran, C., Catelli, M. G., Schneider, W., and Shyamala, G., 1988. Estrogenic

regulation of uterine 90-kilodalton heat shock protein. Endocrinology 123, 956

961

65 Shyamala, G., Gauthier, Y., Moore, S. K., Catelli, M. G., and Ullrich, S. J., 1989.

Estrogenic regulation of murine uterine 90-kilodalton heat shock protein gene

expression. Mol.Cell Biol. 9, 3567 3570

Simard, J., Labrie, C., Belanger, A., Gauthier, S., Singh, S. M., Merand, Y., and Labrie,

F., 1997. Characterization of the effects of the novel non-steroidal antiestrogen

EM-800 on basal and estrogen-induced proliferation of T-47D, ZR-75-1 and

MCF-7 human breast cancer cells in vitro. Int.J Cancer 73, 104 112

Smith, C. L., DeVera, D. G., Lamb, D. J., Nawaz, Z., Jiang, Y. H., Beaudet, A. L., and

O'Malley, B. W., 2002. Genetic ablation of the steroid receptor coactivator-

ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and

defects in reproduction. Mol.Cell Biol. 22, 525 535

Smith, C. L., Nawaz, Z., and O'Malley, B. W., 1997. Coactivator and corepressor

regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-

hydroxytamoxifen. Mol.Endocrinol. 11, 657 666

Sourla, A., Luo, S., Labrie, C., Belanger, A., and Labrie, F., 1997. Morphological

changes induced by 6-month treatment of intact and ovariectomized mice with

tamoxifen and the pure antiestrogen EM-800. Endocrinology 138, 5605 5617

Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L.

A., and Sobel, M. E., 1988. Evidence for a novel gene associated with low tumor

metastatic potential. J.Natl.Cancer Inst. 80, 200 204

66 Tang, P. Z., Gannon, M. J., Andrew, A., and Miller, D., 1995. Evidence for oestrogenic

regulation of heat shock protein expression in human endometrium and steroid-

responsive cell lines. Eur.J.Endocrinol. 133, 598 605

Terenius, L., 1971. Structure-activity relationships of anti-oestrogens with regard to

interaction with 17-beta-oestradiol in the mouse uterus and vagina. Acta

Endocrinol.(Copenh) 66, 431 447

Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., and Chambon, P., 1989.

The human estrogen receptor has two independent nonacidic transcriptional

activation functions. Cell 59, 477 487

Tremblay, G. B., Tremblay, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Labrie, F.,

and Giguere, V., 1997. Cloning, chromosomal localization, and functional

analysis of the murine . Mol.Endocrinol. 11, 353 365

Tsai, M. J. and O'Malley, B. W., 1994. Molecular mechanisms of action of

steroid/thyroid receptor superfamily members. Annu.Rev.Biochem. 63:451-86.,

451 486

Walinder, O., 1968. Identification of a phosphate-incorporating protein from bovine liver

as nucleoside diphosphate kinase and isolation of 1-32P-phosphohistidine, 3-32P-

phosphohistidine, and N-epsilon-32P-phospholysine from erythrocytic nucleoside

diphosphate kinase, incubated with adenosine triphosphate-32P. J.Biol.Chem.

243, 3947 3952

67 Walter, S. and Buchner, J., 2002. Molecular chaperones--cellular machines for protein

folding. Angew.Chem.Int.Ed Engl. 41, 1098 1113

Webb, P., Nguyen, P., Shinsako, J., Anderson, C., Feng, W., Nguyen, M. P., Chen, D.,

Huang, S. M., Subramanian, S., McKinerney, E., Katzenellenbogen, B. S.,

Stallcup, M. R., and Kushner, P. J., 1998. Estrogen receptor activation function 1

works by binding p160 coactivator proteins. Mol.Endocrinol. 12, 1605 1618

Weissman, A. M., 2001. Themes and variations on ubiquitylation. Nat.Rev.Mol.Cell

Biol. 2, 169 178

Willems, R., Slegers, H., Rodrigus, I., Moulijn, A. C., Lenjou, M., Nijs, G., Berneman, Z.

N., and Van Bockstaele, D. R., 2002. Extracellular nucleoside diphosphate kinase

NM23/NDPK modulates normal hematopoietic differentiation. Exp.Hematol. 30,

640 648

Wu, W. X., Derks, J. B., Zhang, Q., and Nathanielsz, P. W., 1996. Changes in heat shock

protein-90 and -70 messenger ribonucleic acid in uterine tissues of the ewe in

relation to parturition and regulation by estradiol and progesterone.

Endocrinology 137, 5685 5693

Yan, F., Gao, X., Lonard, D. M., and Nawaz, Z., 2003. Specific ubiquitin-conjugating

enzymes promote degradation of specific nuclear receptor coactivators.

Mol.Endocrinol. 17, 1315 1331

68 Figure legends

Figure 1. The effect of estradiol and SERMs on gene expression and proliferation in

Ishikawa cells. (A) Ishikawa cells (2 x 105 cells/well) were transfected with 500 ng of

ERE2e1b-luciferase reporter and 50 ng of expression vector for hERα. 24 hours after

-8 transfection, cells were incubated with vehicle (lane 1, Veh) 10 M estradiol (lane 2, E2),

10-7 M 4-hydroxytamoxifen (lane 3, 4-OHT) or 10-7 M EM652 (lane 4) for 24 hours.

Standard luciferase assays were performed on cell extracts as described in the Materials and Methods and the mean value of triplicate samples ± S.D. are plotted. (*) = P<.05. (B)

The effect of estradiol and SERMs on endogenous ER-dependent genes. Ishikawa cells (2 x 106 cells/plate) were incubated with vehicle (lane 1) 10-8 M estradiol (lane 2), 10-7 M 4- hydroxytamoxifen (lane 3) or 10-7 M EM-652 (lane 4) for 4 hours. Expression of the

lactoferrin and progesterone receptor genes was measured by real time RT-PCR as described under Materials and Methods. Expression was normalized to GAPDH, and values were plotted relative to vehicle treated samples (set to 1). Each bar represents the mean value ± S.D. (*): P<.05. (C) Growth response of Ishikawa cells following

incubation with estradiol and SERMs. Ishikawa cells incubated with vehicle (lane 1), 10-8

M estradiol (lane 2), 10-7 M 4-hydroxytamoxifen (lane 3), 10-10 M 4-hydroxytamoxifen

(lane 4), 10-7 M EM-652 (lane 5), and 10-10 M EM-652 (lane 6) for 9 days as described in

the Materials and Methods. Cell growth was assessed by the MTT assay. Each bar

represents the mean value ± S.D. (*) = P<.05.

Figure 2. Two-dimensional gel images of total cellular proteins from Ishikawa cells

incubated with estradiol and SERMs. Ishikawa cells (5 x 106 cell/plate) were incubated

69 -8 -7 for 24 hours with (A) vehicle, (B) 10 M estradiol, (C) 10 M 4-hydroxytamoxifen or

-7 (D) 10 M EM-652. 500 µg of total cellular protein was separated in the first dimension

by isoelectric focussing using IPG pH 3-10 NL 2D PAGE (12.5% T), and the 2nd dimension by 12% SDS-PAGE. The proteins were visualized by colloidal Coomassie blue stain. The regions enlarged in Fig. 3 are boxed and numbered 1-4.

Figure 3. Enlarged regions of the two-dimensional gel images of total cellular lysate from

Figure 2. The dotted boxes indicate no change in protein expression relative to vehicle; solid boxes indicate a change in protein expression relative to vehicle (A) Enlarged gel image corresponding to region 1 in Figure 2. Induction of HSP 90 α & β following 24

-8 -7 hour incubation with 10 M estradiol and 10 M EM-652. (B) Enlarged gel image

corresponding to region 2 in Figure 2. Induction of CK18 and hnRNP F after 24 hour

-8 -7 incubation with 10 M estradiol and 10 M 4-hydroxytamoxifen. (C) Enlarged gel image

- corresponding to region 3 in Figure 2. Induction of CK8 after 24 hour incubation with 10

8 -7 M estradiol and 10 M 4-hydroxytamoxifen. (D) Enlarged gel image corresponding to

region 1 in Figure 2. Induction of cofilin, UBCh7, and RBP5-mediating protein after 24

-7 incubation with 10 M EM-652.

Figure 4. Two-dimensional gel images of secreted proteins from Ishikawa cells.

Ishikawa cells (5 x 106 cell/plate) were cultured in serum-free DMEM and incubated for

-8 -7 24 hours with (A) vehicle, (B) 10 M estradiol, (C) 10 M 4-hydroxytamoxifen, or (D)

-7 10 M EM-652. The secreted proteins were isolated as described under Materials and

Methods. 100 µg of protein was separated in the first dimension by isoelectric focussing

using IPG pH 3-10 NL 2D PAGE (12.5% T) and in the 2nd dimension by 12% SDS-

70 PAGE. Proteins were visualized by silver stain. The region enlarged in panel E is boxed

and numbered 1. (E) Enlarged gel image corresponding to region 1 in Figure 2 Panel A,

-8 -7 B C, D. Induction of NDPK B after 24 hour incubation with 10 M estradiol and 10 M

4-hydroxytamoxifen..

Figure 5. Western blot analysis of estradiol and SERM regulated proteins. (A) Following

-8 -7 -7 a 24 incubation with vehicle, 10 M estradiol, 10 M 4-hydroxytamoxifen or 10 M EM-

652, total cellular protein extract was prepared from Ishikawa cells for Western blotting analysis membrane as described in the Material and Methods. The membranes were probed with antibodies against hnRNP F, NDPK B, Ck8/18, cofilin, HSP90 and UBCh7.

Representative Western blots from one of three separate experiments. (B).Quantitation of the Western blot signal normalized to β-actin. The graphs indicate the fold difference of each protein expression versus vehicle (set at a value of 1) following measurement of

Western blot signal intensity by Kodak Image Station 440CF and 1D Image Analysis software. In each independent experiment, duplicate samples for each treatment condition were normalized to the β-actin levels. The experiment was performed three times and the mean values from these experiments ± S.D. is reported in the graphs. Asterisk indicates statistically significant difference from vehicle treatment analyzed by one-way ANOVA

Dunnett’s T Test. (*p<0.05).

71

Table 1. Identification of proteins regulated by estradiol and SERMs in whole cell lysate

Proteins MW pI Con Est Tam EM652 #Peptides Accession # (kDa) Sequenced

Keratin type I 47.9 5.34 ⎯ ⎯ 4 P05783 cytoskeletal 18 (ck18) ↑ ↑ Heterogeneous nuclear ribonucleoprotein F 45.6 5.38 ⎯ ⎯ 4 P52597 (hnRNP F) ↑ ↑ Keratin type ii cytoskeletal 8 (ck 8) 53.5 5.52 ⎯ ↑ ↑ ⎯ 5 P057897 Ubiquitin-conjugating enzyme E2-18kDa 17.8 8.7 ⎯ ⎯ ⎯ 3 P51966 (UbcH7) ↑ RNA polymerase II subunit 5-mediating 57.6 4.96 ⎯ ⎯ ⎯ 2 O94763 protein ↑ Cofilin, non-muscle isoform 18.5 8.22 ⎯ ⎯ ⎯ ↑ 4 P23528

Hsp 90-α 84.5 4.9 ⎯ ↑ ⎯ ↑ 2 P07900

Hsp 90-β 83.1 4.9 ⎯ ↑ ⎯ ↑ 3 P08238

Identification of proteins regulated by estradiol and SERMs in the secreted fraction

Nucleoside Diphosphate 17.3 8.52 2 P22392 Kinase B ⎯ ↑ ↑ ⎯ Est = estradiol Tam = 4-hydroxytamoxifen Accession# according to SwissProt database ↑ = Increase in expression relative to control – = No change relative to control

72 A C 3.5 0.35

3.0 * 0.30

2.5 0.25 n *

io * t

c 2.0 * 0.20

u .

d D n 1.5 . 0.15

I O d l 1.0 0.10 Fo * 0.5 0.05

0.0 0.00

Veh E2 4-OHT EM652 Veh E2 4-OHT EM652

1

1 1 1

0

0 0 0

-

- - -

7

7 1 1

M

M 0 0

M M

Progesterone B Lactoferrin Receptor 12 8

n 10 n

o *

o

i

i * 6

t

t

c

c

u 8

u

d

d

n

n

I

I

6 4

d *

d

l

l

o * o

F

4 F

2

2

0 0 Veh E2 4-OHT EM652 Veh E2 4-OHT EM652

Fig. 1

73 A. Vehicle B. Estradiol 31pH 0

1 1

GE

A 3 P 3 - 2 2

S

D

S 4 4

1 1

3 2 3 2

4 4

C. Tamoxifen D. EM-652

Fig. 2

74 A. Veh E2 4-OHT EM652

B. CK 18 HSP 90 α & β hnRNPF

C. CK 8

D.

Cofilin

UbcH7 RBP5 mediating Protein

Fig. 3

75 A. Vehicle B. Estradiol 31pH 0

E

G

A

P

-

S

D 1 1

S

1 1

C. Tamoxifen D. EM652

E. Veh E2 4-OHT EM652 NDPK B

Fig. 4

76 Veh E 4-OHT EM652 A. 2

hnRNP F

NDPKB

CK 8/18

Cofilin

HSP90

UBCh7

ß-Actin

B. hnRNP F NDPK B Ck8/18 n n n ti 12 * i 3.0 ** c ti 8 * 10 * c 2.5 act -

ß-a 8 2.0 ß-a 6

/ ß / F/

6 * 8 1.5

B 4 4 K 8/1 1.0 2 RNP 2 K 0.5 n C

4

V

E E 4 E

V E h

4 V E E NDP

-

-

2

2 M e M -

e

O

O M 2

e

O

h

h

h

H

6 H 6

H

6

5

5 T 5

T

T

2

2 2

HSP90 UBCh7 Cofilin 4

n 10 3.0 n i

* n i ** ti 8 2.5

act 3 * ac - act

6 - 2.0 2 ß- ß / 0/ ß

7/ 1.5 9 4 n

P 1 1.0 ili Ch S 2 f o

H 0.5 UB

4

V E E C

4

V E E

- 2 M

e

-

O

4 V E

2 E M

e

O

h

-

h

H

M 6 2

e

O

H 6

h 5

T 5

H

6 2

T

2 5

T 2

Fig. 5

77 Veh E2 4-OHT EM652 C. NDPKB (secreted)

6 NDPK B 5 No# l l 4 * * Ce

/ 3 B 2 K

P 1 D 4-O

V E E N

2 M

e

h

H

6 5

T 2

Fig. 5

78 Title: The Src Kinase Pathway Promotes Tamoxifen Agonist Action in Ishikawa

Endometrial Cells through Phosphorylation-Dependent Stabilization of Estrogen

Receptor α Promoter Interaction and Elevated SRC-1 Activity.

Abbreviated Title: Src Kinase Potentiation of Tamoxifen Agonist Action

Yatrik M. Shah and Brian G. Rowan∗

Department of Biochemistry & Molecular Biology

Medical College of Ohio, Toledo, OH

∗Corresponding author:

Brian G. Rowan, Ph.D.

Department of Biochemistry & Molecular Biology

Medical College of Ohio

3035 Arlington Ave.

Toledo, OH 43614-5804

Tel#: 419-383-4134

Fax#: 419-383-6228

Email: [email protected]

Keywords: Estrogen Receptor, Endometrium, Tamoxifen, Src Kinase

79

Abstract

Tamoxifen is the most widely used selective estrogen receptor modulator (SERM) for breast cancer in clinical use today. However, tamoxifen agonist action in endometrium remains a major hurdle for tamoxifen therapy. Activation of the non-receptor tyrosine kinase src promotes tamoxifen agonist action, although the mechanisms remain unclear.

To examine these mechanisms, the effect of src kinase on estrogen and tamoxifen signaling in tamoxifen-resistant Ishikawa endometrial adenocarcinoma cells was assessed. A novel connection was identified between src kinase and serine 167 phosphorylation in estrogen receptor-α (ER) via activation of AKT kinase. Serine 167 phosphorylation stabilized ER interaction with endogenous ER-dependent promoters.

Src kinase exhibited the additional function of potentiating the transcriptional activity of

Gal-SRC-1 and Gal-CREB binding protein (CBP) in endometrial cancer cells while having no effect on Gal-PCAF and Gal fusions of the other p160 coactivators GRIP1

(TIF-2/NcoA-2/SRC-2) and AIB-1 (RAC-3/ACTR/SRC-3). Src effects on ER phosphorylation and SRC-1 activity both contributed to tamoxifen agonist action on ER- dependent gene expression in Ishikawa cells. Taken together, these data demonstrate that src kinase potentiates tamoxifen agonist action through serine 167-dependent stabilization of ER promoter interaction and through elevation of SRC-1 and CBP coactivation of ER.

80 Introduction

Estrogen Receptor-α (referred to as ER) is a member of the nuclear receptor

superfamily of transcription factors that is activated by ligand binding of estrogenic and

other ligands. ER is also activated by ligand-independent mechanisms that involve

crosstalk from peptide and growth factor signal transduction pathways. In the ligand-

dependent pathway, estrogen crosses the cell membrane and binds to the ligand-binding

domain (LBD) of the ER. Upon ligand binding, receptor interaction with heat shock

protein-90 (HSP-90) and other chaperone proteins is lost and the ER dimerizes and binds

to estrogen responsive elements (ERE) in the promoters of ER-dependent genes (1;2). ER activation results in recruitment of coactivators of the p160 family (SRC-1 (NcoA-1)

(3;4), GRIP1 (TIF-2/NcoA-2/SRC-2) (5;6), AIB-1 (RAC-3/ACTR/SRC-3) (7-11)) and

CREB binding protein (CBP) (12) that modify chromatin structure and facilitate mRNA transcription (13).

Both ligand-dependent and ligand-independent activation of ER is modulated by receptor phosphorylation. ER is a phosphoprotein and upon ligand binding receptor phosphorylation is enhanced (14-16). The major phosphorylation sites of ER reside in the

N-terminal domain (NTD) at serines 104, 106, 118, and 167. Mutation of serines 104,

106, and 118 to alanine results in a general decrease in ER transcriptional activity (14).

Phosphorylation at serine 167 was shown to be important in DNA binding by the receptor

(17-19). Numerous signaling pathways regulate ER phosphorylation. Serines

104/106/118 are targets of the mitogen activated protein kinases (MAPK) family (20-22), and serine 167 has been shown to be phosphorylated by AKT (22-25).

81 In addition to ER, cellular signaling pathways phosphorylate coregulator proteins.

SRC-1 is phosphorylated on seven sites in vivo all of which contain a consensus sequence for proline-directed protein kinases (26). In addition, protein kinase A (PKA) enhanced ligand-independent activation of PR through phosphorylation of SRC-1 (27). GRIP-1 and AIB-1 are phosphorylated in vitro by MAP kinases (28;29). In breast cancer cells the transcriptional activity of AIB-1 is increased by MAPK phosphorylation which stimulates the recruitment of histone acetyltransferases (28). In addition to coactivators, cellular signaling cascades also phosphorylate corepressors. Interaction of N-CoR and SMRT with PR decreased after incubation with 8-bromo cAMP (30). In vitro phosphorylation by MEKK decreased the interaction of SMRT with thyroid receptor (31). Interaction of the corepressor N-CoR with the ER is decreased by treatment with forskolin and epidermal growth factor (32).

Coregulator interactions with ER are important mechanisms mediating selective estrogen receptor modulator (SERM) action. Tamoxifen inhibits coactivator recruitment and promotes corepressor association with ER to inhibit estrogen-dependent gene transcription in tamoxifen-sensitive breast cancer cells (33). With regard to this mechanism, elevation of coactivator proteins and reduction in corepressor proteins may be associated with the progression of breast cancer to a more malignant and tamoxifen- resistant phenotype. In a mouse model for human breast cancer, decreased levels of N-

CoR correlated with the onset of resistance to tamoxifen therapy (32). Jepsen et. al. (34) showed that the absence of N-CoR in mouse embryo fibroblasts isolated from the N-CoR null mouse allowed 4-hydroxytamoxifen to act as a full agonist for ER-dependent

82 transcription. 4-hydroxytamoxifen did not activate ER-dependent transcription in wild- type mouse embryo fibroblasts containing normal N-CoR levels. The hypothesis that elevated coactivator levels promote tamoxifen action may be relevant in the uterus since tamoxifen is an agonist in normal uterus (35;36) and endometrial-derived cell lines (37-

39). However in contrast to normal versus malignant breast, we did not detect any distinct differences between coactivator and corepressor expression patterns in endometrium with both coactivator and corepressor levels increased during the progression from normal to malignant endometrium (40).

Several reports suggest activated cellular signaling pathways in the uterus may promote the tissue specific agonist effects of tamoxifen. Phosphorylation at serine 118 in

ER increased transcriptional activation in response to estrogen and tamoxifen (21).

MEKK1 increased the agonistic activity of tamoxifen implicating downstream MAPKs in regulating tamoxifen agonist/antagonist action (41). Src kinase can enhance the transcriptional activity of the tamoxifen-ER complex through the MAPK pathway (42).

Finally, although elevated Src kinase activity is detected in late stage steroid resistant breast cancer (43) we recently found that src kinase activity is higher in normal compared to malignant endometrium (44). This may indicate a role for activated Src kinase in promoting tamoxifen agonist action in normal endometrium

Src kinase is a non-receptor tyrosine kinase and a proto-oncogene that is deregulated in several different cancers (45). Src kinase activates several signaling cascades including the MAPK and AKT pathways (46-48) both of which impact on ER- dependent signaling. Feng et al. (42) reported two independent pathways for src kinase

83 potentiation of estrogen and tamoxifen signaling in HeLa cells: 1) an ER-dependent pathway that is partially dependent on phosphorylation of serine 118 and; 2) an ER- independent pathway implicating src kinase effects on coregulators. However, the precise mechanisms and specific phosphorylation sites through which src kinase modulates ER signaling are incompletely defined, most likely because multiple proteins important for ER signaling are targeted by src. For a more thorough, mechanistic understanding of the role of src kinase in tamoxifen agonist action in the endometrium, the effect of src on both ER and coactivator activity and phosphorylation was investigated. This report describes src kinase induced phosphorylation of ER serine 167 via AKT kinase as a major mechanism for src potentiation of ER signaling through stabilization of ER promoter interaction. Src kinase also specifically elevated SRC-1 activity through multiple phosphorylation sites. Finally, cell-type specific targeting of

CBP by src kinase was demonstrated.

84 Results

Src kinase modulates estradiol and 4-hydroxytamoxifen action on ERE2e1b- luciferase reporter in an endometrial-derived cell line. Interest in src kinase potentiation of tamoxifen agonist activity in endometrium stemmed from our observation that tamoxifen-resistant endometrial cancer cell lines (Ishikawa and HEC1A) exhibited elevated active src compared to tamoxifen-sensitive breast cancer cell lines (MCF-7 and

T47D) (Fig. 1A). To further confirm the role of endometrial src kinase in tamoxifen agonism, Ishikawa cells were transfected with an ERE2e1b-luciferase reporter and either incubated with SU6656, a specific src kinase inhibitor (Fig. 1B) or cotransfected with a dominant active mutant of src kinase (Fig. 1C) followed by measurement of luciferase expression. Incubation of Ishikawa cells with 4-hydroxytamoxifen resulted in similar activation of the reporter (1.5 –2 fold relative to vehicle) as occurred following incubation of cells with estradiol (3-4 fold relative to vehicle) (Fig. 1B). Both 4- hydroxytamoxifen and estradiol activation of the reporter was significantly reduced in cells incubated with SU6656 (Fig. 1B, lanes 4 and 6) These data coincided with reduced src kinase activation in cells incubated with SU6656 as measured by Western blot analysis using a phospho-specific src kinase antibody (data not shown). Transfection with dominant active src kinase increased basal luciferase expression almost two fold indicating ligand-independent activation of ER (Fig.1C, lane 2). Dominant active src also potentiated estradiol and 4-hydroxytamoxifen stimulated luciferase expression 4-5 fold and 3 fold relative to vehicle, respectively (Fig 1C, lanes 4 and 6)). To confirm that the inhibition of src kinase downregulates estradiol and 4-hydroxytamoxifen activation of the

85 ERE2e1b-luciferase reporter, siRNA was used to reduce src protein levels. Western blot

analysis confirmed that src protein levels were reduced more than 65% in Ishikawa cells

transfected with siRNA for src kinase (siRNA-src) (Fig. 1D). When siRNA-src was

cotransfected with ERE2e1b-luciferase reporter, the basal activity was reduced by more than 50% (Fig. 1E, lane 2) and both the estradiol and 4-hydroxytamoxifen induction of

the reporter was decreased to levels equivalent to vehicle alone (Fig. 1E, lanes 4 and 6 vs.

lane 1). To rule out nonspecific effects of SU6656, siRNA-src and dominant active c-src

on general transcription, these agents were incubated with or cotransfected into cells with

a constitutively active RSV-luciferase reporter (Fig. 1F). These agents had no significant

effect on the RSV-luciferase reporter suggesting that src kinase specifically modulates

estradiol and 4-hydroxytamoxifen signaling. The requirement of ER for the src kinase

effects on estradiol and 4-hydroxytamoxifen signaling was demonstrated by incubation of

Ishikawa cells with the pure antiestrogen ICI 182,780. ICI 182,780 blocked dominant

active src potentiation of estradiol and 4-hydroxytamoxifen activation of the reporter

(data not shown). Furthermore as previously reported (42), dominant active src

potentiated estradiol and 4-hydroxytamoxifen activation of ERE2e1b-luciferase only in

cells cotransfected with ER (data not shown).

Src kinase modulates estradiol and 4-hydroxytamoxifen action on endogenous ER-

regulated genes. Real time RT-PCR was used to measure expression of two well-

characterized ER-regulated genes, c-myc and pS2. The c-myc gene is regulated by ER

through both a consensus ERE as well as a nonconsensus sequence hypothesized to be an

86 AP1 site. ER indirectly associates with the AP-1 site through direct binding with AP1

proteins (33;49). The pS2 gene contains consensus EREs in the 5’ flanking region of the gene (50). C-myc and pS2 gene expression were measured following incubation with estradiol and 4-hydroxytamoxifen alone or in combination with the src kinase inhibitor

SU6656. Both estradiol and 4-hydroxytamoxifen induced c-myc gene expression 2-3 fold and 4-5 fold relative to vehicle, respectively (Fig. 2A, lanes 3 and 5). The pS2 gene was regulated by ligands in a similar manner (Fig. 2B). Ligand dependent induction of c- myc and pS2 was reduced more than 50% by coincubation of cells with SU6656 (Fig.

2A, B lanes 4 and 6).

Cells that exhibit high transfection efficiency were needed to measure the role of dominant active src on endogenous ER-regulated genes. Although the Ishikawa cells were not appropriate for these experiments due to low transfection efficiency, the well- characterized ER-negative HeLa cells exhibited more than 90% transfection efficiency

(data not shown) and were therefore useful to measure effects of both dominant active src

and various ERα mutants. It should be noted that unlike Ishikawa cells, HeLa cells

transfected with ER expression plasmid do not exhibit tamoxifen agonist activity. High

efficiency transfection of HeLa cells with ER was sufficient to initiate estradiol, but not

4-hydroxytamoxifen, induction of endogenous c-myc and pS2 gene expression 6-7 fold

and 4-5 fold relative to vehicle, respectively (supplemental data Fig. S-1A, S-1B). Similar

to results in Ishikawa cells, cotransfection of HeLa cells with dominant active src

potentiated basal, and estradiol-regulated c-myc and pS2 expression. Remarkably,

although 4-hydroxytamoxifen alone had no effect on gene expression and dominant

87 active src alone resulted in only 1.5 fold induction over vector transfected cells, the

combination of tamoxifen and dominant active src induced c-myc and pS2 gene

expression to a level comparable to estradiol alone (supplemental data Fig. S-1). These

data demonstrate that src kinase promotes tamoxifen agonist action on endogenous genes

in a cellular context in which tamoxifen is an antagonist. Although, HeLa and Ishikawa

cells differ with respect to tamoxifen agonism/antagonism, ERα negative Ishikawa

variants transfected with ER do not exhibit tamoxifen agonist activity and in this regard

are similar to HeLa cells (51). Although tamoxifen agonism/antagonism cannot be

directly compared in HeLa and Ishikawa cells, it is clear that for each line activation of

the src pathway potentiates tamoxifen agonist activity above control.

Src kinase partially mediates its effect on ER-dependent transcription through phosphorylation at both serine 118 and serine 167. As previously reported (42), src kinase-mediated effects on ER-regulated gene expression was localized to the NTD of

ER (data not shown). Consequently, phosphorylation within this domain was measured using phospho-specific antibodies for serine 104/106, 118, and 167. In ER-transfected

HeLa cells, estradiol increased phosphorylation at serines 118 and 167, an effect that was inhibited by co-incubation with SU6656 (Fig. 3A). A band was not detected when

Western blots were probed with the antibody specific for phospho-104/106 on ER (data not shown). Similar results were found in Ishikawa cells in which both estradiol and 4- hydroxytamoxifen consistently increased serine 118 and serine 167 phosphorylation, an effect that was blocked by co-incubation with SU6656 (data not shown). To further

88 confirm these results, point mutations of each phosphorylation site were prepared and

cotransfected with ERE2e1b-luciferase into ER-negative HeLa cells to assess whether dominant active src could potentiate estradiol-mediated induction of the reporter. As previously described (14), mutation of the ER NTD phosphorylation sites decreased basal and estradiol-stimulated reporter activation (Fig. 3B) although the mutations did not affect ER protein levels (Fig. 3C). Dominant active src potentiated estradiol-stimulated luciferase expression by wild type ER, ER/S104A, and ER/S106A mutants, but not the

ER/S118A and ER/S167A mutants (Fig. 3B). S118A and ER/S167A also blocked the ability of dominant active src to induce tamoxifen activation of ERE2e1b-luciferase in

HeLa cells (data not shown). Taken together, these data demonstrate that src kinase can mediate effects on ER-dependent gene transcription through phosphorylation of serine

118 as previously described (42) and also through phosphorylation at serine 167.

Inhibition of src kinase disrupts interaction of ER with endogenous promoters.

Previous work has established that src kinase increases serine 118 phosphorylation through activation of the ERK1/2 pathway in HeLa cells (42). However, there are no reports of src kinase modulating phosphorylation of ER serine 167 and no studies have examined regulation of ER signaling in endometrial-derived, tamoxifen resistant cells.

Because serine 167 is reported to regulate in vitro DNA binding by ER (17-19), the role of src kinase in ER interaction with endogenous promoters was assessed by ChIP assays.

To assess several paradigms of ER-dependent gene expression, three promoter elements were examined: 5’ consensus ERE on the pS2 promoter, the consensus ERE on the c-myc

89 promoter (52), and the nonconsensus ERE on the c-myc promoter (33). In Ishikawa cells, estradiol and 4-hydroxytamoxifen increased ER recruitment to the ERE sequence in the pS2 promoter and this ligand-dependent recruitment was blocked by co-incubation with src kinase inhibitor SU6656 (Fig. 4, left panel). Conversely, SU6656 did not affect the well-characterized interaction of SP1 with the hTERT promoter (53) demonstrating that the effect of SU6656 on ER was not a result of general inhibition of transcription factor binding to DNA (data not shown). Quantitative ChIP assays verified the increased promoter recruitment of ER by estradiol and 4-hydroxyamoxifen and the inhibition of this recruitment by SU6656 (Fig. 4, right panel). Identical results to those described in

Figure 4 were found for the consensus ERE and the nonconsensus ERE on the c-myc promoter (Supplemental data, Fig. S-2). These data indicate that src kinase modulates ligand-dependent ER promoter recruitment. Interestingly, estradiol resulted in quantitatively greater promoter recruitment of ER than 4-hydroxytamoxifen, an observation that has not previously been reported.

Src kinase partially mediates its effect on ER-dependent transcription through

PI3K/AKT kinase. Inhibition of AKT disrupts ER promoter interaction. Since src mediates its effects on ER through serine 167 phosphorylation, it was important to identify the downstream effectors of src that lead to altered serine 167 phosphorylation.

Although src has been shown to activate AKT pathways (48) and in vitro phosphorylation of serine 167 by AKT has been reported (23-25), the connection between src kinase and serine 167 phosphorylation has not been demonstrated.

90 Consequently it was important to assess whether AKT could mediate src effects on ER-

dependent gene transcription in Ishikawa cells. Western blot analysis revealed an increase in phospho-AKT when cells were incubated with estradiol and 4- hydroxytamoxifen (Fig. 5A left and right panel, lanes 3 and 5) and this induction was blocked by co-incubation with SU6656 (Fig. 5A, left and right panel, lanes 4 and 6). To determine whether AKT inhibition would block the dominant active src potentiation of estradiol- and 4-hydroxytamoxifen-mediated gene transcription, Ishikawa cells were incubated with either a specific AKT inhibitor or an inhibitor of phosphoinositide 3-OH kinase (PI3K), a kinase upstream of AKT. Ishikawa cells were cotransfected with

ERE2e1b-luciferase and dominant active src and incubated with wortmannin (PI3K inhibitor) or an AKT inhibitor alone or in combination with estradiol or 4- hydroxytamoxifen. Incubation with wortmannin or the AKT inhibitor completely blocked dominant active src potentiation of the estradiol and 4-hydroxytamoxifen stimulated ERE2e1b-luciferase (Fig. 5B and C, lanes 8 and 12) suggesting that src kinase

signals to ER through AKT. Control Western blots indicated that AKT activity was

inhibited following incubation with PI3K inhibitor or the AKT inhibitor and neither agent

affected the constitutively active RSV-luciferase reporter in transfected Ishikawa cells

(data not shown). To determine if inhibition of AKT alters ER interaction with

endogenous promoters, ChIP assays were performed in Ishikawa cells on the three

promoter elements described in Figure 4. The estradiol- and 4-hydroxytamoxifen-induced

recruitment of ER to the ERE sequence in the pS2 was blocked by co-incubation with

wortmannin (Fig. 5D). Conversely, wortmannin did not affect SP1 interaction with the

91 hTERT promoter (data not shown). Identical results to those described in Figure 5 were

found for the consensus ERE and the nonconsensus ERE on the c-myc promoter

(Supplemental data, Fig. S-3). Taken together, these data demonstrate that src kinase

potentiates estradiol and 4-hydroxytamoxifen action by modulating ER promoter

interaction via the PI3K/AKT pathway.

Serine 167 of the ER regulates promoter interaction by the receptor. To directly investigate the role of ER phosphorylation in promoter interaction, quantitative ChIP assays were performed in ER-negative HeLa cells transfected with ER phosphorylation site mutants. HeLa cells were cotransfected with dominant active src and either wild type

ER, ER/S118A or ER/S167A and promoter interaction was measured as described above.

There was a decrease in basal and estradiol-stimulated recruitment of ER/S167A to the

pS2 promoter compared to wild type ER and ER/S118A (Fig. 6). A previous report

described a similar result for ER/S167A using in vitro interaction with a synthetic ERE

sequence (19). Dominant active src increased basal level and estradiol-stimulated

recruitment of wild type ER (Fig. 6 lanes 2, 4) and ER/S118A (Fig. 6 lanes 6, 8) to the

pS2 promoter but had no effect on ER/S167A recruitment (Fig. 6 lanes 10, 12). Similar

results were found with the c-myc promoter (Supplemental data Fig. S-4). These results

demonstrate that src kinase modulates ER promoter interaction through phosphorylation

of serine 167. Interestingly, mutation of serine 118 to alanine had no effect on ER

promoter interaction suggesting that mechanisms other than DNA binding are responsible

for regulation of ER signaling by serine 118 phosphorylation.

92

Src kinase potentiates SRC-1 and CBP transactivation in endometrial-derived cell lines. To measure the effects of src kinase on coactivator activity, SRC-1, SRC-2 (TIF-

2/GRIP-1), SRC-3 (AIB-1/RAC-3/ACTR), PCAF, and CBP were fused to the GAL4-

DBD expression plasmid and cotransfected with a Gal response element reporter (GalRE- luciferase) into Ishikawa and HEC-1A cells. All GAL constructs except GAL-PCAF activated GalRE-luciferase above activity of the GAL-DBD alone. When dominant active src or siRNA-src was cotransfected with the GAL-coactivator constructs, only

GAL-SRC-1 and GAL-CBP transactivation function was both potentiated by dominant active src and inhibited by siRNA-src in Ishikawa cells (Fig. 7A). The effect of the src kinase inhibitor SU6656 on the GAL-coactivator activities was also assessed. The src inhibitor reduced GAL-SRC-1 and GAL-CBP activity while having no effect on GAL-

SRC-2, GAL-SRC-3, and GAL-PCAF activity (Fig. 7B). These assays were performed in an additional endometrial-derived cell line, HEC1A. When the GAL-coactivator constructs were cotransfected with either the dominant active src or siRNA-src, only

SRC-1 activity was potentiated with the dominant active src and repressed with the siRNA-src (Fig 7C). Src kinase inhibitor SU6656 inhibited the activities of all the GAL- coactivator constructs, possibly through nonspecific effects since the GAL-DBD alone was also inhibited (Fig. 7C). Because src kinase selectively activated the p160 family coactivator SRC-1, it was of interest to determine whether specific SRC-1 phosphorylation sites were mediating the increased SRC-1 activity. Seven SRC-1 phosphorylation sites (26) were mutated to alanine (S372A, S395A, S517A, S569A,

93 S1033A and T1179A/S1185A) and each single phosphorylation site mutant was fused to

the GAL4-DBD. Dominant active src kinase potentiated activity of each single site SRC-

1 phosphorylation mutant in both Ishikawa and HEC1A cells (data not shown). These

findings argue against the notion that a single SRC-1 phosphorylation site mediates src

kinase potentiation of SRC-1 activity although the possibility of different combinations of sites was not examined. The preceding data confirm that src kinase specifically modulates the activity of SRC-1 and CBP in Ishikawa cells. Interestingly, CBP activity

was not altered by src kinase in HEC1A cells suggesting cell specific targeting by src

kinase (Fig. 7C).

Dominant active src kinase potentiates the coactivation function of SRC-1 on ER-

dependent gene transcription. The experiments measuring the effect of src kinase on

GAL-SRC-1 activity were performed in the absence of ER (as shown in Fig. 7). It was of

interest to determine whether the src potentiation of SRC-1 activity contributed to the

overall potentiation of ER-dependent transcription by src. To assess the SRC-1

contribution, SRC-1, ER, and ERE2e1b-luciferase were cotransfected in HeLa cells and luciferase activity was measured. To specifically assess the contribution of SRC-1, the

ER/S167A mutant, and not wt ER, was used since dominant active src does not potentiate the activity of this mutant in HeLa cells (see Fig. 3B). Therefore, any potentiation by dominant active src would be the result of SRC-1 coactivation and could not be attributed to ER. Although estradiol induced ER/S167A-dependent luciferase expression 2-3 fold relative to vehicle (Fig. 8A, lane 2), dominant active src kinase failed to potentiate the

94 estradiol-stimulated luciferase expression (Fig 8A, lane 4). HeLa cells express low levels of endogenous SRC-1 when compared to Ishikawa cells (data not shown). It was therefore likely that restoring SRC-1 levels in HeLa cells comparable to levels detected in

Ishikawa cells might uncover a src kinase contribution to ER/S167A activity that occurred specifically through SRC-1. High efficiency transfection in HeLa cells resulted in SRC-1 levels comparable to levels detected in Ishikawa cells (data not shown). Basal level luciferase activity was increased two fold over vector-transfected cells and SRC-1 coactivated estradiol-dependent reporter activation 5-6 fold over control (Fig. 8A lanes 5-

6). Only under conditions where SRC-1 was expressed did dominant active src potentiate reporter activation under both basal conditions (10-12 fold over control) and estradiol treatment (20 fold over control) (Fig. 8, lanes 7 and 8). These data confirm that src kinase elevation of SRC-1 activity contributes to the overall potentiation of ER-dependent gene transcription by specifically enhancing SRC-1 coactivation of ER.

95 Discussion

A major concern with tamoxifen therapy for breast cancer is acquired resistance

as well as estrogen-like agonist action in the endometrium resulting in an increased risk

for development of endometrial cancer (35;36;54;55). Tamoxifen resistance and

tamoxifen agonist activity may result from the altered activity of cellular kinases that

change the phosphorylation status of ER and coregulators. This study describes a

mechanistic role of the non-receptor tyrosine kinase, src, in promoting the agonist action

of tamoxifen in the endometrium. In endometrial-derived Ishikawa cells, tamoxifen-

dependent activation of reporter gene (ERE2e1b-luciferase) and endogenous gene (pS2,

c-myc) transcription was inhibited or activated by using agents that reduce or elevate src

kinase activity, respectively. The data demonstrated that src kinase modulates ER-

dependent transcription by altering the phosphorylation of serines 118 and 167 of ER.

Phosphorylation at serine 167 occurred via src-induced activation of the PI3K/AKT pathway, that in turn regulated promoter interaction at both consensus and nonconsesus

EREs. Phosphorylation at serine 118 had no effect on ER promoter interaction. To our knowledge, this is the first report of the connection between activated src kinase and serine 167 phosphorylation of ER. This phosphorylation underlies a major mechanism for src kinase regulation of ER action by modulating ER interaction with endogenous promoters. Src kinase also elevated SRC-1 activity that was sufficient to enhance coactivation of the ER. Taken together, this report finds that src kinase potentiation of

96 tamoxifen agonist action results from multiple phosphorylation and activity changes in receptor and coactivators rather than a single phosphorylation event in one protein.

When serine 118 or serine 167 was mutated to alanine, the transcriptional activity of ER was severely abrogated and no src kinase-mediated potentiation of estradiol action was detected. However when these same ER mutants were assayed for promoter interaction by ChIP, only the serine 167 mutant exhibited a decrease in promoter interaction. These results indicate that although dephosphorylation at either site results in decreased ER-dependent transcription, the mechanisms through which each site regulates transcription are quite different. Previous reports and the present study have shown that phosphorylation of serine 167 promotes DNA binding (17-19), whereas serine 118 may have a role in coactivator binding. Dutertre et al. (56) have shown that interaction of ER with SRC-1 or CBP is decreased when serines 104/106/118 are mutated to alanine. In addition Endoh et al. (57) has shown that phosphorylation at serine 118 increases the interaction of ER with p68 RNA helicase providing direct evidence for serine 118 in coactivator binding. Thus, src kinase may affect two distinct modes of ER action; promoter recruitment and coactivator recruitment.

There is increasing evidence that bidirectional crosstalk between ER and cellular kinase pathways may lead to tamoxifen resistance (58;59). We found an increased expression of activated src in tamoxifen resistant endometrial cell lines when compared to tamoxifen sensitive breast cancer cell lines (Fig 1A). Furthermore, in HeLa cells in

97 which tamoxifen is an antagonist (60;61), increasing src activity promoted tamoxifen agonist action on gene transcription to a similar extent as estrogen treatment

(supplemental data Fig. S-2). Although c-myc and pS2 genes where not induced by tamoxifen, transfection with a dominant active src promoted tamoxifen agonist action above that of the dominant active src alone. By comparison, incubation with src kinase inhibitor SU6656 further potentiated the antiestrogen effect of tamoxifen by reducing basal gene transcription. These findings suggest that src kinase may play an important role in the development of tamoxifen resistance.

In addition to receptor phosphorylation, src kinase impacts coactivator activity and increases SRC-1 coactivation of ER-dependent gene transcription (Fig. 7 and 8). In

Ishikawa cells, src kinase specifically enhanced SRC-1 and CBP activity but not the activities of SRC-2 (TIF-2/GRIP-1), SRC-3 (AIB-1/RAC-3/ACTR), and PCAF (Fig. 7A and B). Src kinase selective modulation of SRC-1 activity is interesting in light of a recent report by Shang et al. (33) indicating that elevated SRC-1 in endometrial cancer cell lines was correlated with tamoxifen agonist activity when compared to breast cancer cell lines that express lower levels of SRC-1 and exhibit tamoxifen antagonist action.

The authors further demonstrated that SRC-1, but not SRC-2 or SRC-3, was important for the tamoxifen agonist activity in Ishikawa cells. This report by Shang et al (33) and the present study suggest that SRC-1 is a key protein involved in tamoxifen agonist action in endometrium not only through elevated expression levels, but also as a selective target of src kinase pathways. These results, taken together with our recent finding of

98 elevated src kinase activity in endometrium (44) suggest that SRC-1 may be a preferential substrate of src kinase in the endometrium possibly because of higher SRC-1 expression in this tissue.

CBP activity was also elevated by src kinase in a cell specific manner. In

Ishikawa cells, src kinase increased CBP activity (Fig 7A and B) whereas in HEC1A endometrial adenocarcinoma cells, CBP activity was not altered by src kinase (Fig 7C).

A number of proteins have been reported as substrates of src kinase (62;63). Substrate specificity by src could simply be related to the relative expression levels of these substrates in a given tissue/cell line. It is likely that src kinase targets a distinct repertoire of coregulators in different tissues and src effects on these coregulators could influence estrogen and tamoxifen signaling. This may also explain the differences between the present study examining coactivator activity in endometrial-derived cells and a previous report by Feng et al (42) in which it was reported that src kinase increased the activities of SRC-2 (TIF-2/GRIP-1) and CBP in ER-negative HeLa cells.

Although src kinase increased the activity of SRC-1 and enhanced its coactivation function for the ER, no single SRC-1 phosphorylation site was responsible for the src potentiation of SRC-1 activity. Several possibilities may explain these results. Since all seven SRC-1 phosphorylation sites contain consensus sequences for serine/threonine- proline directed kinases (26) it is possible that only one or few kinases contribute to steady state SRC-1 phosphorylation. In addition, six of seven SRC-1 sites can be

99 phosphorylated in-vitro by ERK-2 (26) a known downstream effector of src kinase (64).

In this regard, it is likely that src kinase increases phosphorylation at multiple SRC-1

sites and that no single phosphorylation event is sufficient to reproduce the src kinase

potentiation of ER-dependent gene transcription. Another possibility is that activation of src kinase mediates a dephosphorylation event on SRC-1 that is required for SRC-1 potentiation of tamoxifen agonist action. Finally, a different protein in the SRC-1 complex may be a direct or indirect substrate of src kinase. These possibilities are currently being assessed.

In summary, this report has demonstrated that multiple proteins and phosphorylation sites are substrates of src kinase during potentiation of tamoxifen agonist activity in endometrial-derived cells. The major mechanism by which src potentiates tamoxifen agonist action is likely through phosphorylation at serine 167 that stabilized interaction of ER with promoters of ER-dependent genes. Phosphorylation at ER serine

118 and phosphorylation of SRC-1 and possibly CBP also contribute to src potentiation of ER-dependent gene transcription (Fig. 9A). In the absence of src kinase activation, serine 167 phosphorylation is decreased resulting in reduced ER promoter interaction.

Dephosphorylation at serine 118 may lead to loss of other downstream transcriptional effects. Inhibition of src kinase also decreased the intrinsic activities of SRC-1 and CBP further contributing to the reduction in ER-dependent gene transcription (Fig. 9B).

Future work will focus on identifying the ER and coregulator phosphorylation fingerprints associated with tamoxifen agonist/antagonist effects on specific genes.

100 These studies may provide the mechanistic groundwork for rational design of preclinical therapeutic strategies designed to inhibit src kinase to circumvent tamoxifen resistant breast cancer and relieve the deleterious estrogen-like side effects of tamoxifen and other

SERMs in non-target tissues.

101

Materials and Methods

Cell lines: Ishikawa and HEC1A were grown at 37°C with 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) (Cellgro) supplemented with 5% fetal bovine serum

(FBS) (Gibco) and 1% penicillin-streptomycin (Gibco). MCF-7 were grown at 37°C with 5% CO2 in DMEM supplemented with 10% FBS, 4 mM of glutamine (Gibco), and

1% penicillin-streptomycin. HeLa cells were grown at 37°C with 5% CO2 in DMEM

supplemented with 10% FBS, 4 mM of glutamine and 1% penicillin-streptomycin. T47D

were grown at 37°C with 5% CO2 in RPMI 1640 (Gibco) supplemented with 10% FBS,

1% penicillin-streptomycin, and 5µg/mL of insulin (Sigma).

Plasmids: Mutagenesis of ER/S104A, ER/S106A, ER/S118A, and ER/S167A was performed using the Stratagene Quick Change Kit. ER sequence and mutations were confirmed by DNA sequencing. ER-ABCD and ER-CDEF domain mutants were constructed by PCR amplifying nucleotides, which correspond to amino acids 1-302 for

ABCD and 180-593 for CDEF. The resulting amplicons were subcloned into pCR3.1 vector. pBABE dominant active src (src Y527F) was a gift from Dr. Kavita Shah

(Genomics Institute of the Novartis Research Foundation). SRC-1 and Gal-SRC-1 were constructed as previously described (27). Gal-SRC-2 and Gal-SRC-3 were gifts from Dr.

Carolyn Smith (Baylor College of Medicine). Gal-SRC-1/S372A, Gal-SRC-1/S395A,

Gal-SRC-1/S517A, Gal-SRC-1/S569A, Gal-SRC-1/S1033A, and Gal-SRC-

102 1/T1179/S1185A were constructed by digesting pCR3.1-SRC-1/S372A, -SRC-1/S395A,

-SRC-1/S517A, -SRC-1/S569A, -SRC-1/S1033A, and -SRC-1/T1179/S1185A at Acc1

sites and subcloning into Gal-SRC-1 expression vector. siRNA for c-src was constructed

by annealing the sense oligo5’GCAGACATA

GAAGAGCCAATTCAAGAGATTGGCTC TTCTATGTCTGCTTTTTT 3’ to the

antisense oligo5’ AATTAAAAAAGCAGACATAGAAGAGCCAATCTCTTGAA

TTGGCTCTTCTATGTCTGCGGCC 3’ and ligating the annealed oligos into the pSilencer 1.0 U6 vector (Ambion).

Luciferase assay: Ishikawa, HEC1A or HeLa cells were plated in 6-well plates (2×105

cells/well) and cultured in phenol red free DMEM containing 2% FBS that was charcoal

stripped to remove endogenous steroids. The cells were transfected with expression

vector as indicated in the figure legends using Fugene transfection reagent (Roche). 24 h

posttransfection, the cells were incubated with vehicle, estradiol (10-8 M) (Sigma), or 4-

hydroxytamoxifen (10-7 M) (Sigma) for 24 h. In experiments in which 1µM wortmannin

(Upstate Biotechnology), 1µM SU6656 (Calbiochem) or 10µM AKT inhibitor III

(Calbiochem) was used, the cells were incubated for 2 h with the inhibitors followed by incubation with estradiol (10-8 M) and 4-hydroxytamoxifen (10-7 M) for 24 h. Luciferase

expression was measured and normalized as described previously (65).

Real-Time RT-PCR: Ishikawa and HeLa cells were plated in 100mm plates (2×106

cells/plates) in 2% stripped FBS in DMEM. Ishikawa cells were maintained in the

103 stripped media for 3 days until 90% confluency. For HeLa cells, 24h post-plating the

cells were transfected with expression vector for hER (500ng/plate), and dominant active src (3µg/plate) or empty vector (3µg/plate) and maintained in 2% stripped FBS in

DMEM for an additional 48h. The cells were incubated with vehicle, estradiol (10-8 M), or 4-hydroxytamoxifen (10-7 M) for 6h. In experiments in which 1µM SU6656 was used, the cells were incubated for 2 h with the inhibitor followed by incubation with estradiol

(10-8 M) and 4-hydroxytamoxifen (10-7 M) for 6 h. Total mRNA was extracted from the cell pellet, reverse transcribed and gene expression was measured by real-time RT-PCR as described previously (40). Briefly, total RNA was extracted using Trizol (Invitrogen) according to the manufacturer instructions. 200ng of mRNA was reverse transcribed using Taqman Kit reagents (Applied Biosystems). Primers and probes for GAPDH were designed and manufactured by Applied Biosystems and primers and probes for c-myc and pS2 were synthesized by Integrated DNA Technologies, Inc.

C-myc:

FWD-5’-CGTCTCCACACATCAGCACAA -3’

REV-5’-TGTTGGCAGCAGGATAGTCCTT -3’

Probe-5’-56FAM/ACGCAGCGCCTCCCTCCACTC/3BHQ-1/-3’

pS2:

FWD-5’-CGTGAAAGACAGAATTGTGGTTTT-3’

REV-5’- CGTCGAAACAGCAGCCCTTA-3’

104 Probe-5’-/56FAM/ TGTCACGCCCTCCCAGTGTGCA/3BHQ-1/-3’

Fwd primer, rev primer, and probe for c-myc, pS2, or GAPDH and Taqman Universal

Master Mix (Applied Biosystems) were added to 200ng of cDNA. Real-time RT-PCR

was performed using a GeneAmp 5700 Sequence Detection System (Perkin Elmer).

Chromatin Immunoprecipitation (ChIP) Assay: Ishikawa and HeLa cells were plated

in 100mm plates (2×106cells/plates) in 2% stripped FBS in DMEM. Ishikawa cells were maintained in the stripped media for 3 days until 90% confluent. Ishikawa cells were incubated with vehicle, estradiol (10-8 M), or 4-hydroxytamoxifen (10-7 M) for 2.5 h. In experiments in which 1µM wortmannin or 1µM SU6656 was used, the cells were incubated for 2 h with the inhibitor followed by incubation with estradiol (10-8 M) or 4-

hydroxytamoxifen (10-7 M) for 2.5 h. Ishikawa cells were washed twice with ice cold phosphate buffered saline (PBS) and fixed with formaldehyde (1% final concentration)

for 10 min at room temperature. The cells were washed twice with ice cold PBS and then

collected in 100mM Tris-HCl (pH 9.0) and 10mM dithiothreitol (DTT). Ishikawa cells

were incubated at 30°C for 15 min. Cells were rinsed twice with ice cold PBS, and a

nuclear extraction was performed by swelling the cells on ice in 20 volumes of nuclei

extraction buffer (5 mM piperazine-N, N’-bis 2-ethanesulfonic acid (pH 8.0) (PIPES), 85

mM KCl, 0.5% Nonidet P-40, and protease inhibitor cocktail (Sigma)) for 30 min. Nuclei

were collected by centrifugation at 250 × g for 10 min. The nuclear pellet was washed

once with nuclei extraction buffer and resuspended in 200 µl of ChIP lysis buffer (1%

105 SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1, and protease inhibitor cocktail). For

HeLa cells, 24h post-plating the cells were transfected with expression vector for either

ER or ER phosphorylation mutants (500ng/plate), and either dominant active src

(3µg/plate) or empty vector (3µg/plate) and maintained in 2% stripped FBS in DMEM

for an additional 48h. The cells were incubated with vehicle, estradiol (10-8 M), or 4- hydroxytamoxifen (10-7 M) for 2.5h. In experiments in which 1µM SU6656 was used, the cells were incubated for 2 h with the inhibitor followed by incubation with estradiol

(10-8 M) or 4-hydroxytamoxifen (10-7 M) for 2.5 h. HeLa cells were washed twice with ice cold PBS and fixed with formaldehyde (1% final concentration) for 10 min at room

temperature. The cells were washed twice with ice cold PBS. The cells were then

collected in 100mM Tris-HCl (pH 9.0) and 10mM DTT and incubated at 30°C for 15 min. Following the 15 min incubation, the cells were rinsed twice with ice cold PBS, and

lysed in ChIP lysis buffer. The soluble chromatin for Ishikawa and HeLa cells were

sonicated three times for 10 sec at setting 4 (Fisher Sonic Dismembrator, Model 550) and

centrifuged at 20,000 × g for 15 min to remove cellular debris. The supernatant was

diluted 10 fold in ChIP dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl,

20 mM Tris-HCl, pH 8.1 and protease cocktail inhibitor) followed by preclearing with

10µL of normal mouse IgG (Santa Cruz) and 60µL of a 50% gel slurry of protein A- sepharose beads (Amersham Biosciences). The beads were prepared by reswelling in

PBS and then blocking overnight in 0.1% bovine serum albumin (BSA) in PBS. To 1.5 mL of packed beads, 600µg of sonicated salmon sperm DNA and 1.5 mg of BSA was added to a final volume of 3mL in 10mM Tris-HCl (pH 8.0), 1mM EDTA, and .05%

106 sodium azide giving a final 50% gel slurry. After preclearing, the beads were microfuged

for 1 min at 4000 × g and 20µL of supernatant was set aside for input. 10uL of anti-ERα

D-12 antibody or SP1 antibody (Santa Cruz) was added to the supernatant and the

samples were immunoprecipitated overnight at 4°C. Precipitates were washed for 5 min each wash first in low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM

Tris-HCl, pH 8.1, 150 mM NaCl), then in high salt buffer (0.1% SDS, 1% Triton X-100,

2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl), and finally in LiCl buffer (0.25

M LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.1).

Precipitates were then washed 3 × 5 min with TE buffer (10mM Tris-HCl (pH 8.0), 1mM

EDTA). Precipitated chromatin complexes were removed from the beads and

formaldehyde cross-linking was reversed by incubation for 6h at 65°C in 100 µL of 1%

SDS, 0.1 M NaHCO3 with vortexing several times throughout the incubation period.

DNA was purified with a QIAquick Spin Kit (Qiagen) according to manufacturer’s

instructions. 10µL of extracted DNA was amplified using Accuprime taq polymerase

(Invitrogen), and visualized by ethidium bromide stained 1.5% agarose gels.

c-myc nonconsesus ERE region:

FWD-5’- AGGCGCGCGTAGTTAATTCAT-3’

REV-5’- CGCCCTCTGCTTTGGGA-3’

c-myc ERE region:

FWD-5’- GATCCTCTCTCGCTAATCTCC-3’

107 REV-5’- CGCTGAAATTACTACAGCGAG-3’

pS2 ERE region:

FWD-5’-GGCCATCTCTCACTATGAATCACTTCT -3’

REV-5’- GGCAGGCTCTGTTTGCTTAAAGAGCG-3’

HTERT SP1 region:

FWD-5'-TGCCCCTTCACCTTCCAG-3'

REV-5'-CAGCGCTGCCTGAAACTC-3

Quantitative ChIP Assays: Chromatin was prepared as described above. 10µL of extracted DNA was used in a real-time RT-PCR reaction for the detection of c-myc and pS2 promoters.

c-myc nonconsesus ERE region:

FWD-5’- GGTAGGCGCGCGTAGTTAAT -3’

REV-5’- GGGCAGCCGAGCACTCT -3’

Probe-5’-56FAM/ ATGCGGCTCTCTTACTCTGTTTACATCCTAGAGC /3BHQ-1/-3’

c-myc ERE region:

FWD-5’- GGCTTGGCGGGAAAAAGA -3’

REV-5’- GGGCAGCCGAGCACTCT -3’

108 Probe-5’-56FAM/ATGCGGCTCTCTTACTCTGTTTACATCCTAGAGC/3BHQ-1/-3’

pS2 ERE region:

FWD-5’-TCAGATCCCTCAGCCAAGATG -3’

REV-5’- TGGTCAAGCTACATGGAAGGATT-3’

Probe-5’-56FAM/CCTCACCACATGTCGTCTCTGTCT/3BHQ-1/-3’

Values were normalized to input samples.

Western Blot Analysis: Ishikawa and HeLa cells were plated and transfected as

described above. For the detection of phospho-ER and phospho-AKT, Ishikawa cells

were serum deprived for 24 hours. Following serum deprivation, the cells were

stimulated by incubation with vehicle, estradiol (10-8 M), or 4-hydroxytamoxifen (10-7 M)

for 30 min. In experiments in which 1µM SU6656 was used, the cells were incubated for

2 h with the inhibitor followed by incubation with estradiol (10-8 M) and 4- hydroxytamoxifen (10-7 M) for 30 min. In experiments in which kinase inhibitor efficacy

was assessed, Ishikawa cells were serum deprived for 24 hours. Following serum

deprivation, cells were incubated with either vehicle, 1µM SU6656, 1µM wortmannin, or

10µM AKT inhibitor, and then stimulated by incubation with FBS (20% final

concentration) for 30 min. The cells were lysed in high salt extraction buffer (10 mM

Tris-HCl pH 8, 0.4 M NaCl, 2 mM EDTA, 2 mM EGTA, 50 mM potassium phosphate,

50 mM sodium fluoride, 10 mM β-mercaptoethanol, 0.1% triton X-100, 0.2% protease

inhibitor cocktail, and 0.1% PMSF). For detection of phospho-AKT and SRC-1 in

109 Ishikawa cells, ER and SRC-1 in HeLa cells and active src in MCF-7, T47D, HEC1A,

and Ishikawa cells, whole cell lysate was used by lysing the cells in high salt extraction

buffer. 50 µg of whole cell or nuclear lysate was prepared for Western blotting as previously described (44). Briefly, proteins were separated by electrophoresis on a SDS-

PAGE gel. The gel was transferred to nitrocellulose membrane, and the membrane was blocked in 5% nonfat milk in tris-buffered saline/Tween 20 (TBST) (10 mM tris, pH 8,

150 mM NaCl, 0.1% Tween-20) for 1h at room temperature, followed by washes with 1x

TBST. The membranes were incubated with primary antibodies against ER

(Novacastra), phospho-ER 104/106, phospho-ER 118, phospho-ER 167, non-phospho-

527 src, phospho-AKT, AKT, (Cell Signaling Technology) src (Upstate Biotechnology), and SRC-1 and β-actin (Santa Cruz). Following the primary antibody incubation, horseradish peroxidase conjugated secondary antibody (Vector) was incubated for 1h at room temperature in 5% nonfat milk in TBST. The signal was developed by addition of enhanced chemiluminescence (ECL) solution. The membranes were exposed to Kodak

XOMAT film, and/or the signal from the membrane was quantitated using a Kodak

Digital Science 1D image analysis software station 440 system.

Validation of siRNA-src: Ishikawa cells were plated in 100mm plates

(2×106cells/plates) in 5% FBS in DMEM. Ishikawa cells were cultured until cells reached 90% confluency. Ishikawa were transfected with either siRNA-src or vector

(20µg/plate) using Lipofectamine 2000 (Invitrogen) according to manufacturer’s

110 instructions. 72 hours posttransfection the cells were harvested for Western Blot analysis

measuring src levels as described above.

Data Analysis: All data are expressed as ± S.D. P values were calculated using Anova

Dunnett’s T Test and Independent T Test. P<.05 was considered significant.

Acknowledgements: This work was supported in part by National Institutes of Health

Grant RO1 DK06832 (to B.G.R.) and by a Department of Defense Breast Cancer

Research Program Idea Award (DAMD17-02-1-0531) and Career Development Award

(DAMD17-02-1-0530) (to B.G.R). Y.K.S. was supported by a Predoctoral Dissertation

Award (DISS0100539) from the Susan G. Komen Breast Cancer Foundation.

111 Reference List

1. Klinge CM 2001 Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905-2919

2. Tsai MJ, O'Malley BW 1994 Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451-86.:451-486

3. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG 1996 A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403-414

4. Onate SA, Tsai SY, Tsai MJ, O'Malley BW 1995 Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354-1357

5. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR 1996 GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A 93:4948-4952

6. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H 1996 TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667-3675

7. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS 1997 AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965-968

8. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM 1997 Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569-580

9. Li H, Gomes PJ, Chen JD 1997 RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 94:8479- 8484

10. Takeshita A, Yen PM, Misiti S, Cardona GR, Liu Y, Chin WW 1996 Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology 137:3594-3597

11. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG 1997 The transcriptional co-activator p/CIP binds CBP and mediates nuclear- receptor function. Nature 387:677-684

112 12. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM 1996 Role of CBP/P300 in nuclear receptor signalling. Nature 383:99-103

13. Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O'Malley BW 1997 Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52:141-64; discussion 164-5.:141-164

14. Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS 1994 Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269:4458- 4466

15. Lahooti H, White R, Danielian PS, Parker MG 1994 Characterization of ligand- dependent phosphorylation of the estrogen receptor. Mol Endocrinol 8:182-188

16. Ali S, Metzger D, Bornert JM, Chambon P 1993 Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12:1153-1160

17. Tzeng DZ, Klinge CM 1996 Phosphorylation of purified estradiol-liganded estrogen receptor by casein kinase II increases estrogen response element binding but does not alter ligand stability. Biochem Biophys Res Commun 223:554-560

18. Castano E, Vorojeikina DP, Notides AC 1997 Phosphorylation of serine-167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. Biochem J 326:149-157

19. Arnold SF, Obourn JD, Jaffe H, Notides AC 1995 Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol 55:163-172

20. Bunone G, Briand PA, Miksicek RJ, Picard D 1996 Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174-2183

21. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, . 1995 Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491- 1494

22. Lannigan DA 2003 Estrogen receptor phosphorylation. Steroids 68:1-9

23. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ 2001 Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in

113 breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61:5985-5991

24. Martin MB, Franke TF, Stoica GE, Chambon P, Katzenellenbogen BS, Stoica BA, McLemore MS, Olivo SE, Stoica A 2000 A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 141:4503-4511

25. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H 2001 Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817-9824

26. Rowan BG, Weigel NL, O'Malley BW 2000 Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem 275:4475-4483

27. Rowan BG, Garrison N, Weigel NL, O'Malley BW 2000 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20:8720- 8730

28. Font dM, Brown M 2000 AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20:5041-5047

29. Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ 2001 Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem 276:22177-22182

30. Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP 1998 The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo- cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 18:1369-1378

31. Hong SH, Privalsky ML 2000 The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol 20:6612-6625

32. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW 1998 Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 95:2920- 2925

114 33. Shang Y, Brown M 2002 Molecular determinants for the tissue specificity of SERMs. Science 295:2465-2468

34. Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG 2000 Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753-763

35. Harper MJ, Walpole AL 1967 A new derivative of triphenylethylene: effect on implantation and mode of action in rats. J Reprod Fertil 13:101-119

36. Terenius L 1971 Structure-activity relationships of anti-oestrogens with regard to interaction with 17-beta-oestradiol in the mouse uterus and vagina. Acta Endocrinol (Copenh) 66:431-447

37. Sakamoto T, Eguchi H, Omoto Y, Ayabe T, Mori H, Hayashi S 2002 Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol Cell Endocrinol 192:93-104

38. Kleinman D, Karas M, Danilenko M, Arbell A, Roberts CT, LeRoith D, Levy J, Sharoni Y 1996 Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology 137:1089- 1095

39. Anzai Y, Holinka CF, Kuramoto H, Gurpide E 1989 Stimulatory effects of 4- hydroxytamoxifen on proliferation of human endometrial adenocarcinoma cells (Ishikawa line). Cancer Res 49:2362-2365

40. Kershah SM, Desouki MM, Koterba KL, Rowan BG 2004 Expression of estrogen receptor coregulators in normal and malignant human endometrium. Gynecol Oncol 92:304-313

41. Lee H, Jiang F, Wang Q, Nicosia SV, Yang J, Su B, Bai W 2000 MEKK1 activation of human estrogen receptor alpha and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells. Mol Endocrinol 14:1882-1896

42. Feng W, Webb P, Nguyen P, Liu X, Li J, Karin M, Kushner PJ 2001 Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118- independent pathway. Mol Endocrinol 15:32-45

43. Reissig D, Clement J, Sanger J, Berndt A, Kosmehl H, Bohmer FD 2001 Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue. J Cancer Res Clin Oncol 127:226-230

115 44. Desouki MM, Rowan BG 2004 SRC kinase and mitogen-activated protein kinases in the progression from normal to malignant endometrium. Clin Cancer Res 10:546- 555

45. Irby RB, Yeatman TJ 2000 Role of Src expression and activation in human cancer. Oncogene 20;19:5636-5642

46. Thomas SM, Brugge JS 1997 Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513-609.:513-609

47. Abram CL, Courtneidge SA 2000 Src family tyrosine kinases and growth factor signaling. Exp Cell Res 254:1-13

48. Krasilnikov MA 2000 Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc ) 65:59-67

49. Dubik D, Shiu RP 1992 Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7:1587-1594

50. Stack G, Kumar V, Green S, Ponglikitmongkol M, Berry M, Rio MC, Nunez AM, Roberts M, Koehl C, Bellocq P, . 1988 Structure and function of the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat Res 40:185-206.:185- 206

51. Lee H, Jiang F, Wang Q, Nicosia SV, Yang J, Su B, Bai W 2000 MEKK1 activation of human estrogen receptor alpha and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells. Mol Endocrinol 14:1882-1896

52. Liu XF, Bagchi MK 2004 Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene Promoters in Vivo. J Biol Chem 279:15050-15058

53. Won J, Yim J, Kim TK 2002 Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 277:38230-38238

54. Fornander T, Rutqvist LE, Cedermark B, Glas U, Mattsson A, Silfversward C, Skoog L, Somell A, Theve T, Wilking N, . 1989 Adjuvant tamoxifen in early breast cancer: occurrence of new primary cancers. Lancet 1:117-120

55. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM 1994 Endometrial cancer in tamoxifen-treated breast cancer patients: findings from

116 the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86:527-537

56. Dutertre M, Smith CL 2003 Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor- alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17:1296-1314

57. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S 1999 Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363-5372

58. Nicholson RI, McClelland RA, Robertson JF, Gee JM 1999 Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer 6:373-387

59. Schiff R, Massarweh S, Shou J, Osborne CK 2003 Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9:447S-454S

60. Smith CL, Conneely OM, O'Malley BW 1993 Modulation of the ligand- independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci U S A 90:6120-6124

61. Smith CL, Nawaz Z, O'Malley BW 1997 Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11:657-666

62. Courtneidge SA 2003 Isolation of novel Src substrates. Biochem Soc Trans 31:25- 28

63. Brown MT, Cooper JA 1996 Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121-149

64. Schlaepfer DD, Jones KC, Hunter T 1998 Multiple Grb2-mediated integrin- stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18:2571-2585

65. Coleman KM, Dutertre M, El Gharbawy A, Rowan BG, Weigel NL, Smith CL 2003 Mechanistic differences in the activation of estrogen receptor-alpha (ER alpha)- and ER beta-dependent gene expression by cAMP signaling pathway(s). J Biol Chem 278:12834-12845

117

Figure Legends

Fig. 1. Src kinase regulates ER-dependent transcription of ERE2e1b-luciferase in

Ishikawa cells. (A) Increased expression of activated src kinase in endometrial- versus

breast-derived cell lines. MCF-7, T47D, HEC1A and Ishikawa cells (2 x 106 cells/plate)

were plated in 2% charcoal stripped serum for 3 days. Protein extract was prepared from

the cells and used for Western blot analysis to measure levels of activated src kinase as

described in the Material and Methods. Quantitation of the Western blot signal was

normalized to the Western blot signal for total src and β-actin levels (right panel). Each

bar represents the mean value ± S.D. (*) = P<.05 compared to MCF-7 and T47D cells. (B

5 and C) Ishikawa cells (2 x 10 cells/well) were transfected with ERE2e1b-luciferase

reporter (0.5µg/well). 24 hours posttransfection cells were incubated with (A) 1µM

SU6656, a specific src kinase inhibitor, for 2 h or (B) cells were cotransfected with dominant active src kinase (Dom) (0.5µg/well) or empty vector pBABE (0.5µg/well).

Following incubation with inhibitor or 24 hours posttransfection, cells were incubated

-8 -7 with 10 M estradiol (E2) or 10 M 4-hydroxytamoxifen (Tam) for 24 hours. Standard

luciferase assays were performed on cell extracts in triplicate as described in the

Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared

to estradiol or tamoxifen incubated samples alone. (†) = P<.05 compared to untreated

(Con). (D) Western blot analysis of src kinase levels following transfection of a siRNA

specific for src kinase (siRNA-src). The siRNA-src was constructed as described in the

Material and Methods. Ishikawa cells (2 x 106 cells/plate) were transfected with siRNA-

118 src (20µg/Plate). 72 h posttransfection, protein extract was prepared from Ishikawa cells and used for Western blot analysis to measure expression levels of src kinase as described in the Material and Methods. Quantitation of the Western blot signal was normalized to

β-actin (right panel). Each bar represents the mean value ± S.D. (*) = P<. 05. (E)

siRNA-src decreases estradiol and 4-hydroxytamoxifen activation of ERE2e1b-luciferase reporter. Ishikawa cells were plated as described above and cotransfected with ERE2e1b-

luciferase reporter (0.5µg/well) and siRNA-src (0.5µg/well) or empty vector

-8 (0.5µg/well). 72 hours posttransfection, cells were incubated with 10 M estradiol (E2) or 10-7 M 4-hydroxytamoxifen (Tam) for 24 hours. Standard luciferase assays were

performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to estradiol or tamoxifen incubated samples alone. (†) = P<.05 compared to untreated (Con) samples. (F)

SU6656, dominant active src, or siRNA-src had no effect on a constitutively active RSV-

luciferase reporter. Ishikawa cells were plated as described above and transfected with a

RSV-luciferase reporter (0.5µg/well) and incubated with 1µM SU6656 or cotransfected with either siRNA-src (0.5µg/well) or dominant active src (Dom). 24 hours posttransfection or treatment, standard luciferase assays were performed on cell extracts in triplicate as described in the Materials and Methods.

Fig. 2. Activation or inhibition of src kinase regulates estradiol- and 4- hydroxytamoxifen-dependent c-myc and pS2 gene expression. Ishikawa cells (2 x 106 cells/plate) were incubated with 1µM SU6656 for 2 h. Following incubation with the

119 -8 -7 inhibitor, cells were incubated with 10 M estradiol (E2) or 10 M 4-hydroxytamoxifen

(Tam) for 6 h. Expression of (A) c-myc and, (B) pS2 genes was measured by real time

RT-PCR as described in the Materials and Methods. Expression was normalized to

GAPDH and each bar represents the mean value ± S.D. (*) = P<.05 compared to

estradiol and 4-hydroxytamoxifen incubated samples alone. (†) = P<.05 compared to

untreated (Con) samples.

Fig. 3. Src kinase induces phosphorylation of serines 118 and 167 of ER. (A) HeLa cells

(2 x 106 cells/plate) were transfected with ER (0.5µg/plate). 24 h posttransfection the

HeLa were incubated with 1µM SU6656 for 2 h. Following incubation with the inhibitor

-8 the cells were incubated with 10 M estradiol (E2) for 30 min. Protein extract was

prepared from HeLa cells and used for Western blot analysis to measure levels of

phosphorylated serines 104/106, 118 and 167 on ER as described in the Material and

Methods. Protein levels of total ER and β-actin were used as loading controls. (B)

Mutation of serine 118 and serine 167 to alanine on ER inhibits dominant active src

5 potentiation. HeLa cells (2 x 10 cells/well) were cotransfected with ERE2e1b-luciferase

reporter (0.5µg/well), either dominant active src (0.5µg/well) (Dom) or empty vector

pBABE (0.5µg/well), and either wild type ER or phosphorylation mutants ER/S104A,

ER/S106A, ER/S118A, or ER/S167A (0.05µg/well). 24 hours posttransfection cells were

-8 incubated with 10 M estradiol (E2) for 24 hours. Standard luciferase assays were performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to estradiol incubated

120 samples alone. (C) The decrease in transcriptional activity of ER phosphorylation mutants was not due to ER expression levels. A portion of the extract used in part B above was prepared for Western blot analysis for the detection of ER as described in the

Material and Methods.

Fig. 4. The src kinase inhibitor SU6656 disrupts ER promoter interaction measured by

ChIP. Ishikawa cells (2 x 106 cells/plate) were incubated with 1µM SU6656 for 2 h.

Following incubation with the inhibitor the cells were incubated with 10-8 M estradiol

-7 (E2) or 10 M 4-hydroxytamoxifen (Tam) for 2.5 h. Chromatin was prepared and

immunoprecipitated with antibody against ER. The purified DNA was amplified by PCR

and visualized by ethidium bromide staining (left panel). Relative levels of promoter

interaction were measured by real time RT-PCR (right panel) using primers that span the

ERE region of the pS2 gene as described in Material and Methods. For quantitative ChIP

assays, relative levels of promoter interaction were normalized to input and each bar

represents the mean value ± S.D. (*) = P<.05 compared to estradiol and 4-

hydroxytamoxifen incubated samples alone. (†) = P<.05 compared to untreated (Con)

samples.

Fig. 5. Src kinase potentiation of ER-dependent transcription and promoter interaction is partially mediated via the PI3K/AKT pathway. (A) Ishikawa cells (2 x 106 cells/plate)

were incubated with 1µM SU6656 for 2 h. Following incubation with the inhibitor the

-8 -7 cells were incubated with 10 M estradiol (E2) or 10 M 4-hydroxytamoxifen (Tam) for

121 30 min. Protein extract was prepared from Ishikawa cells and used for Western blot

analysis to measure levels of activated AKT as described in the Material and Methods.

Quantitation of the Western blot signal was normalized to the Western blot signal for

total AKT and β-actin levels (right panel). Each bar represents the mean value ± S.D. (*)

= P<.05 compared to estradiol and 4-hydroxytamoxifen incubated samples alone. (†) =

P<.05 compared to untreated (Con) samples. (B) PI3K or (C) AKT inhibition blocks the

dominant active src potentiation of estradiol- and 4-hydroxytamoxifen-mediated gene

5 transcription. Ishikawa cells (2 x 10 cells/well) were cotransfected with ERE2e1b-

luciferase reporter (0.5µg/well) and either dominant active src (0.5µg/well) (Dom) or

empty vector pBABE (0.5µg/well). 24 hours posttransfection the cells were incubated

-8 -7 with 10 M estradiol (E2) or 10 M 4-hydroxytamoxifen (Tam). For the samples in

which 1µM wortmannin (WORT) or 10µM AKT inhibitor (AKT INH) was used, the

cells were incubated for 2 h with the inhibitor followed by incubation with 10-8 M

-7 estradiol (E2) or 10 M 4-hydroxytamoxifen (Tam). Standard luciferase assays were

performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to estradiol and 4-

hydroxytamoxifen incubated samples alone. (†) = P<.05 compared to estradiol and 4-

hydroxytamoxifen in combination with dominant active src. (D) Wortmannin disrupts

ER promoter interaction. Ishikawa cells (2 x 106 cells/plate) were incubated with 1µM

wortmannin (WORT) for 2 h. Following incubation with the inhibitor the cells were

-8 -7 incubated with 10 M estradiol (E2) or 10 M 4-hydroxytamoxifen (Tam) for 2.5 h.

Chromatin was prepared and immunoprecipitated with antibody against ER. The purified

122 DNA was amplified by PCR and visualized by ethidium bromide staining (left panel) or

relative levels of promoter interaction were measured by real time RT-PCR (right panel)

using primers that span the ERE region of the pS2 gene, (as described in the Material and

Methods. For quantitative ChIP assays, relative levels of promoter interaction were normalized to input and each bar represents the mean value ± S.D. (*) = P<.05 compared

to estradiol and 4-hydroxytamoxifen incubated samples alone. (†) = P<.05 compared to

untreated (Con) samples.

Fig. 6. Src kinase modulates promoter interaction through serine 167 phosphorylation of

ER. HeLa cells (2 x 106 cells/plates) were cotransfected with either dominant active src

(0.5µg/well) (Dom) or empty vector pBABE (3µg/well) and either wild type ER or

phosphorylation mutants ER/S118A or ER/S167A (0.5µg/well). 24 hours

-8 posttransfection the cells were incubated with 10 M estradiol (E2) for 2.5 h. Chromatin

was prepared and immunoprecipitated with antibody against ER. The purified DNA was

amplified by real time RT-PCR using primers that span the ERE region of the pS2 gene,

as described in the Material and Methods. Relative levels of promoter interaction were

normalized to input and each bar represents the mean value ± S.D. (*) = P<.05 compared

to estradiol incubated samples alone. (†) = P<.05 compared to untreated (Con) samples.

Fig. 7. Src kinase increases the activity of SRC-1 and CBP. (A and B) Ishikawa cells (2

x 105 cells/well) were cotransfected with GalRE-luciferase (0.5µg/well), dominant active

src (Dom) (0.5µg/well), or siRNA-src (0.5µg/well) and Gal-SRC-1, Gal-SRC-2, Gal-

123 SRC-3, Gal-PCAF, Gal-CBP, or GAL-DBD (0.5µg/well). 48 hours posttransfection

standard luciferase assays were performed on cell extracts in triplicate as described in the

Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to GAL-DBD. (B) The samples receiving src kinase inhibitor 1µM SU6656

(INH) were transfected with GalRE-luciferase and Gal-SRC-1, Gal-SRC-2, Gal-SRC-3,

Gal-PCAF, Gal-CBP, or GAL-DBD (0.5µg/well). 24 hours posttransfection the cells were incubated with 1µM SU6656 (INH) for 24 hours. Standard luciferase assays were

performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to the GAL-DBD. (C) Src

kinase increases SRC-1 activity in HEC1A cells. HEC1A cells (2 x 105 cells/well) were cotransfected with GalRE-luciferase (0.5µg/well), either dominant active src (Dom)

(0.5µg/well) or empty vector pBABE (0.5µg/well), either siRNA-src (0.5µg/well) or empty vector (0.5µg/well), and either Gal-SRC-1, Gal-SRC-2, Gal-SRC-3, Gal-PCAF,

Gal-CBP, or GAL-DBD (0.5µg/well). For samples receiving the inhibitor, 24 hours posttransfection the cells were incubated with 1µM SU6656 (INH) for 24 hours.

Standard luciferase assays were performed on cell extracts in triplicate as described in the

Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to the GAL-coactivator constructs alone.

Fig. 8. Src kinase increases SRC-1 coactivation on ER-dependent gene transcription.

HeLa cells (2 x 105 cells/well) were cotransfected with ER/S167A (0.05µg/well), either

124 dominant active src (Dom) (0.5µg/well) or empty vector pBABE (0.5µg/well), and either

SRC-1 (0.5µg/well) or empty vector pCR3.1 (0.5µg/well). 24 hours posttransfection,

-8 cells were incubated with 10 M estradiol (E2) for 24 h. Standard luciferase assays were performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) = P<.05 compared to cells transfected with

ER/S167A, dominant active src and SRC-1. (†) = P<.05 compared to cells transfected with ER/S167A and SRC-1.

Fig. 9. Model of src kinase potentiation of estradiol- and 4-hydroxytamoxifen-dependent gene transcription. (A) Activation of src kinase increases ERK1/2 and AKT activity that results in phosphorylation of ER on serines 118 and 167, respectively. Src kinase activation also increases the activity of coactivators SRC-1 and CBP through unknown pathways. (B) In the absence of src kinase activation, serine 118 and 167 phosphorylation is decreased resulting in reduced promoter interaction and transcriptional activity for ER. Inhibition of src kinase also decreases SRC-1 and CBP activity that is important for coactivation of estrogen- and tamoxifen-dependent gene transcription.

125 6 A a ∗ n A w i -7 1 a t F C ik c 5 ∗

7D -a C E sh

4 β M T H I / c 4

Active src sr l

ta 3 to /

Total src c 2 sr ve β-actin ti 1 Ac 0 A a -7 1 w F a 47D C k C T E i H h M Is † B 2000000

1500000 ∗ †

U 1000000 RL ∗

500000

0 n 2 6 6 o H 5 m 5 N E 6 a 6 C I 6 6 u T S U + S 2 + E m a C T 2500000 ∗

2000000 ∗

1500000 † U † RL † 1000000

500000

0

n m 2 m m m o o E o a o C D D D + T + 2 m E a Fig 1 T

126 0.25 siRNA D Vector -Src 0.2

0.15 Src 0.1 ∗

β-actin 0.05

0 c n r o s C - A N iR s E 5000000

4000000 †

3000000 † U RL 2000000 ∗ ∗

1000000 †

0 c 2 c c n r r m r o s E s a s C - - - A A T A N N N iR iR iR s s s + + 2 m 35000000 E a F T 30000000

25000000

20000000

15000000

10000000

5000000

0 c n 6 r m o125 s 34o C 6 - 6 A D U N S Fig 1 iR s

127 A 6 C-MYC †

5

ce 4 en

r † e f

f 3 i D d l 2 o ∗ F

1 ∗

0 n 6 2 6 o 5 56 m 5 6 E a 6 C 6 66 T 6 u u u S S S 2+ + E m a T

pS2 B 10 †

8 nce e

r 6 e f f i †

D 4 d l ∗

Fo 2 ∗

0 6 6 n H 2 5 m 5 o E 6 N 6 a 6 C I 6 T U u S S + + 2 m E a T

Fig 2

128 6 5 6 6 U S n + A o 2 2 C E E

P-ER118

P-ER167

ER

β-actin B

5000000 ∗ 4000000

3000000 U ∗ RL 2000000 ∗

1000000

0 n m 2 m n m 2 n m 2 m n m 2 m n m 2 m o o E o o o E m o o E o o o E o o o E o C C o C C C D D D D D D D D + + +D + +D 2 2 2 2 2 E E E E E C ER wt ER S104A ER S106A ER S118A ER S167A

A A A A 4 6 8 7 t 0 0 1 6 s 1 1 1 1 o W S S S S P ER

Fig 3

129 A

6

5

N

6

6 †

5

D 16

6

6

B

c

6

U

i

A 14

6

S

°

U

5

m

+ 1

S

6

o

ce 12

+

6

n

n T n

m

m

t

e

o

o

a

S s a

U en 10 r

S T C

C E E T G e

f ∗ pS2 f 8 i

D 6

ld † o 4

F ∗ Input 2 0 n 6 2 6 5 5 m 6 o E 6 a 5 C 6 6 6 6 T 6 U U S S + SU 2 + E m a T

Fig 4

130 6

5

A 6 56 0.00012

6 † 66 U † S 0.0001

+ 656 in t 6

m m t+SU t n c s a a 0.00008 ∗ E

SU T T co Es -A

P-AKT /b ∗ T 0.00006 K A / AKT T 0.00004 K A

p 0.00002 ß-actin

0 n 6 2 6 o 5 E 5 m 56 6 6 a 6 C 6 6 T 6 U U U S S S + + 2 m B 45000000 E a † T 40000000

35000000 30000000 † 25000000 U

RL 20000000

15000000 10000000 ∗ ∗ 5000000

0 n 2 T m m T m m T m m o R o o E o m a o C R o R o O D D O D D T D D + + + O + + W T W 2 T + E T W m R 2 R + a R O E m T O O a W W T W 70000000 + I C 2 + E m † a 60000000 T

50000000

40000000 U

RL 30000000 † 20000000 ∗ 10000000 ∗

Fig 6 0 n 2 H m H m m o o m E o a H om m C N o N om o I D I D T N D D D I + D T + T + + + 2 T m K H K E H K a H A A N N IN I A T I + + 2 T T E T m K K a K A A T A + + 2 m E a Fig 5 T

131 D

16 † 14

A

T

N

T

e 12

D

R

B

OR

c nc

i

O A 10 e

W

°

T r

m

1

+

W e

R o f

+ f

n T n n 8

m

m i

t

O

o o

S a

s a

C E T C Ge W E T pS2 6 d D ∗ † Fol 4 2 ∗ Input 0

n T 2 T m T o E a C R R R O O T O W W W + + 2 m E a T

Fig 5

132 7 pS2 6 ∗ ∗

e 5 nc e

r 4 ††† ffe i 3 D d

l † o

F 2 † 1

0 n m 2 m n m 2 m n m 2 m o E o o o E o o o E o C Do D C D D C D D + + + 2 2 2 E E E ER wt ER S118A ER S167A

Fig 6

133 A 45000000 40000000 ∗ 35000000 30000000 ∗ 25000000 U

RL 20000000

15000000 ∗ 10000000

5000000 ∗ 0 Gal-DBD + + + ------Gal-SRC-1 - - - + + + ------Gal-SRC-2 ------+ + + ------Gal-SRC-3 ------+ + + ------Gal-PCAF ------+ + + - - - Gal-CBP ------+ + + siRNA-Src - + - - + - - + - - + - - + - - + - Dom - - + - - + - - + - - + - - + - - +

30000000 B 25000000

20000000 ∗

U 15000000 RL

10000000

5000000 ∗

0 al 6 -1 -2 -3 F P A B 56 G C 656 C 656 C 656 656 6 665 6 R 6 6 C 6 C 6 SR U S U SR U P U SU S SU + +S +S + + +S al -1 -2 -3 F P G A B C C C C Fig 7 R R R C S S S P

134 C 30000000 ∗ 25000000

20000000

U 15000000 RL ∗ 10000000

5000000 ∗ ∗ ∗ ∗ 0 Gal-DBD + + + + ------Gal-SRC-1 - - - - + + + + ------Gal-SRC-2 ------+ + + + ------Gal-SRC-3 ------+ + + + ------Gal-PCAF ------+ + + + - - - - Gal-CBP ------+ + + + SU6656 - + - - - + - - - + - - - + - - - + - - - + - - siRNA-Src - - + - - - + - - - + - - - + - - - + - - - + - Dom - - - + - - - + - - - + - - - + - - - + - - - +

Fig 7

135 1200000 ∗

1000000

800000

U 600000 † RL

400000

200000

0 ER S167A + + + + + + + + E2 - + - + - + - + Dom - - + + - - + +

SRC-1 - - - - + + + +

Fig 8

136 A c-src

PI3K ? ERK1/2

AKT

P P

8 8

1 1

1 1 S CBP P P S P SRC-1 P P P S167 PP ER ERPP S167

c-src B × × × PI3K ERK1/2

AKT

P P CBP P SRC-1 ER ER P P

Fig 9

137 25 A C-MYC ∗

20 e c

n 15 e r f f i

D † 10 ld

o ∗ F 5 † † ∗ ∗ 0 6 n m 2 5 m m 6 m o 56 o E 6 o a 5 o C 6 6 T 6 6 D u D 6 D u S + u + S + 2 S m 2 E + a E m T a T

20 B pS2 15 e ∗ c n e r

ffe 10 i

D †

ld ∗ o

F 5 †† ∗ 0 ∗ 2 6 m n E 6 m o 56 m om a 5 o o 655 T 6 C 66 D D 6 D u U + u + S S S E2 m 2+ + a m T E a Fig S-1 T

138 3.5 †

A 3

6

5

N

A 6 † e

6

5

D

c 2.5

6

6

B

c

6

U

i en

A

6

S U ° 2 ∗

m

5 er

+

1 f S ∗

o

6 f i

+

6

n T n C-myc

n

m m t 1.5

e

o

o

S a a

s D U Nonconsesus d

C E T T G

S E C l 1 ERE o F 0.5

0 n 2 6 Input o 6 m 6 5 E 5 a 5 C 6 6 T 6 6 6 6 U U U S S S + + 2 m E a T

6 †

A B 6 5

5

N

6

6

5

D ce

6

6

B

c 4

6

U i † en

A

6

S U ° ∗

m

5 er

+

1

S f

o

6 f 3 i

+

6

n T n

n

m m t C-myc e

o

o

S a a

s

D ∗

U d

C E T T G S E C 2 consesus l o

ERE F 1

0 n 2 m o 6 E 6 a 6 Input C 5 5 6 6 T 65 6 6 6 U U S S U + S 2 + E m a Fig S-2 T

139 A 3.5 †

A

T

N

T

R

D 3

R

B O †

c

i

A e

W T ° 2.5 c

m

+ 1

WO

R

o n ∗

+

C-myc e

n T n n

m m

t r

o o

s

S a a 2

Nonconsesus e

WO E

C E T T C Ge ff ERE i 1.5 ∗ d D 1 Fol Input 0.5

0 n T 2 T m T o E a C R R R O O T O W W W + + 2 m E a T

6 B † 5

A

T e

N

T

R

D 4 nc

R

B

O e

c r

i

A e

W

T

°

f †

m

f 3

+

1

WO i

R

o

+ C-myc

n T n n

m

m

t ∗

o o

s a

S a

consesus ld D 2

WO E T

C E T C Ge

o ∗

ERE F 1

Input 0 n T 2 T m T o E a C R R R O O T O W W W + 2+ m E a T

Fig S-3

140 C-myc non- A 12 ∗ Consesus ERE 10 ∗

e 8 nc e r e f

f 6 i D d † † 4 Fol † † † 2

0 2 m 2 m m 2 m n m m on o E o on o E o o o E o C D D C D D C D D + + + 2 2 2 E E E

ER wt ER S118A ER S167A

B C-myc consensus 18 ∗ 16 ERE 14 e

c 12 n ∗ e r

e 10 ff i 8 d D 6 † † †

Fol † 4 † 2 0 2 2 2 m m m m m m on o E o on o E o on o E o C D D C D D C D D + + + 2 2 2 E E E Fig S-4 ER wt ER S118A ER S167A

141

Title: Attenuation of Estrogen Receptor α (ERα) Signaling by Selenium in Breast Cancer

Cells via Downregulation of ERα Gene Expression.

Yatrik M. Shah1, Aparna Kaul1, Yan Dong2, Clement Ip2, and Brian G. Rowan1*.

1Department of Biochemistry & Cancer Biology Medical College of Ohio, Toledo, OH.

2Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, New

York

Running Title: Selenium Inhibits ER-α Signaling in MCF-7 Cells.

Keywords: Breast cancer, Estrogen Receptor, Selenium, MCF-7

∗Corresponding author: Brian G. Rowan, Department of Biochemistry & Cancer

Biology, Medical College of Ohio, 3035 Arlington Ave, Toledo, OH 43614-5804; Tel:

419-383-4134; Fax: 419-383-6228; Email: [email protected]

142

Abstract

Numerous studies have shown that selenium provides beneficial effects as a cancer chemoprevention agent. Although long-term intervention trials failed to confirm selenium protection against breast cancer in humans because of insufficient cases, the evidence of effective selenium chemoprevention in animal mammary tumor models or human breast cancer cells is substantial and convincing. The present study demonstrates that the selenium compound methylseleninic acid (MSA) inhibits estrogen receptor α

(ERα) signaling in ER-positive MCF-7 breast cancer cells as evidenced by decreased estradiol-dependent cell growth and gene expression. MSA diminishes estradiol induction of endogenous ER-regulated pS2 and c-myc genes as well as the expression of an ER-regulated reporter gene. A major mode of MSA action on ER signaling is through a downregulation of ERα gene expression that precedes a decrease in ERα protein level.

This study provides a mechanism driven rationale for using selenium as a chemopreventive agent for women at high risk for developing breast cancer or as a therapeutic strategy for ER-positive breast cancer.

143

Introduction

Breast cancer is the most common female neoplasia in the western world with one in eight women developing breast cancer in the United States [1]. Estrogens promote the growth of breast cancer and a strong correlation exists between prolonged estrogen exposure and breast cancer risk [2]. The major mechanism of estrogen action in breast tissues is through binding to a specific nuclear estrogen receptor (ER) [3,4]. Two isoforms of ER have been identified. The role of the major isoform, ERα, in breast cancer has been clearly defined although the role of the recently discovered ERβ remains unclear [5-7]. ER is a ligand-activated transcription factor that upon estrogen stimulation binds to promoter regions of ER-regulated genes to modulate the expression of genes important for estrogen-regulated cell proliferation [4].

The micronutrient selenium has beneficial effects in inhibiting cancer growth. In a clinical trial Clark et al. demonstrated the protective effects of selenium against prostate, lung and colon cancer [8,9]. In addition, selenium inhibits mammary tumorigenesis [10] and breast-derived cell growth [11]. A recent study demonstrated that selenium interferes with androgen receptor (AR) signaling to decrease prostate cancer cell growth [12]. Since the ER belongs to the same superfamily of ligand-activated nuclear receptors as does the AR, it was of interest to determine whether selenium compounds could impact ER signaling in breast cancer cells.

144 The present study used methylseleninic acid (MSA), developed specifically for testing selenium effects in in-vitro cell line experiments [13]. MSA is a monomethylated selenium compound that bypasses the need for metabolic enzymes required to convert other selenium species to the active metabolite, methylselenol. This allows MSA, as opposed to other selenium species to act rapidly in cell lines. Selenomethionine, currently used in the SELECT clinical trail of prostate cancer, cannot be used in cell culture studies because most epithelial cell lines lack enzymes needed for metabolism to the active methylselenol [14]. Our results in the estrogen-dependent MCF-7 breast cancer cell line demonstrate that MSA inhibits ERα-dependent gene transcription by decreasing ERα mRNA levels and resulting protein levels. Attenuation of ER signaling in breast cancer cells is likely a major mechanism contributing to the growth inhibitory effect of MSA.

145

Material and Methods

MTT Assay

MCF-7 cells were plated in 24 well plates (20,000 cells/well) and cultured in phenol red-free DMEM (Gibco, Grand Island, NY) containing 10% fetal bovine serum

(FBS). Cells were incubated with 1, 5, or 10 µM of MSA at 24 h after plating. An aliquot of 125 µL of MTT reagent (5 mg/ml of 2,5-diphenyl tetrazolium bromide in PBS) was pipetted into each well after 24, 48, or 72 h of exposure to MSA. The media with the

MTT reagent was removed after 15-30 min and 300 µL of DMSO (Fisher Biotech,

Fairlawn, NJ) was added to each well. The plates were read at a wavelength of 570 nm.

BrdU Labeling Assay.

Cells were seeded in T75 culture flasks at a density designed to reach 70-80% confluency at the time of assay. At 48 hr after seeding, cells were exposed to 10 µM

MSA for 16 or 24 hr. During the last 30 min of MSA treatment, cells were labeled with

10 µM of bromodeoxyuridine (10 µl of 1 mM BrdU was added to each ml of culture media). BrdU-labeled cells were trypsinized, fixed, treated with DNase I, and stained with fluorescein isothiocyanate (FITC)-conjugated anti-BrdU antibody using the BrdU

Flow Kit from BD Pharmigen (San Diego, CA). Stained cells were then quantified by flow cytometry, and the data were analyzed with the WinList software (Variety Software

House, Topsham, ME).

146

Detection of Apoptosis.

Cells were seeded in triplicate in a 96-well microtiter plate at a density designed

to reach ~104 cells per well at the time of assay. At 48 hr after seeding, cells were exposed to either 5 or 10 µM MSA for 24 hr. Detached cells were pulled with attached cells by centrifugation. Cytoplasmic histone-associated DNA fragments were quantified using the Cell Death Detection ELISAPLUS Kit (Roche Applied Science, Indianapolis, IN)

as per manufacturer’s protocol. The absorbance measured at 405 nm (with reference

wavelength 492 nm) was normalized by the protein concentration of the samples.

Quantitation of Propidium-Iodide-Stained Cells by Flow Cytometry.

MCF-7 cells were seeded in T75 culture flasks at a density designed to reach 70-

80% confluency at the time of assay. At 48 hr after seeding, cells were exposed to either

5 or 10 µM MSA for 6, 16 or 24 hr. Adherent cells harvested by mild trypsinization were

pooled together with detached cells (if any). Cells were incubated with 1 µg/ml of

propidium iodide (PI) for 5 min on ice. PI-stained cells were subsequently quantified by

flow cytometry, and the data were analyzed with the WinList software (Variety Software

House, Topsham, ME).

Luciferase Assay

MCF-7 and HeLa cells were plated in 6-well plates (2 ×105 cell/well) and cultured

in phenol red-free DMEM containing 2% FBS that had been charcoal stripped to remove

147 endogenous steroids. At 24 h after plating, the MCF-7 cells were transfected with 500 ng

of EREe1b-luciferase reporter, and the HeLa cells were cotransfected with 50 ng of ERα and 500 ng EREe1b-luciferase reporter using Fugene transfection reagent (Roche,

Madison, WI). At 24 h post transfection, the cells were incubated with either vehicle, estradiol (10-8 M) (Sigma, St. Louis, MO), MSA (1, 5 or 10 µM), or a combination of estradiol and MSA for 24 h. Luciferase expression was measured and normalized as previously described [15].

Western blot analysis

MCF-7 and HeLa cells were plated in 100 mm dishes (3 ×106 cell/plate), and cultured in 2% charcoal-stripped FBS in DMEM. MCF-7 cells were maintained in the stripped media for 3 days until 90% confluency. HeLa cells were transfected at 24h post- plating with the expression vector for hERα (0.5 µg /plate) or the empty vector (0.5

µg/plate) and maintained in 2% stripped FBS in DMEM for an additional 48 h. Both

MCF-7 and HeLa cells were incubated with either vehicle, estradiol, MSA or a

combination of estradiol and MSA at varying concentrations and times as indicated in the

figure legends. The cells were lysed and prepared for Western blotting as previously

described [15]. The membranes were incubated with an antibody against ERα

(Novacastra, Newcastle on Tyne, UK), and normalized to β-actin (Santa Cruz

Biotechnology INC, Santa Cruz, CA).

Real-Time RT-PCR

148 The culture and/or transfection conditions for MCF-7 and HeLa cells were identical to that described above for Western blot analysis. Total mRNA was extracted from the cell pellet, reverse transcribed and gene expression was measured by real-time

RT-PCR as described previously [15].

C-myc:

FWD-5’-CGTCTCCACACATCAGCACAA -3’

REV-5’-TGTTGGCAGCAGGATAGTCCTT -3’

Probe-5’-56FAM/ACGCAGCGCCTCCCTCCACTC/3BHQ-1/-3’

pS2:

FWD-5’-CGTGAAAGACAGAATTGTGGTTTT-3’

REV-5’- CGTCGAAACAGCAGCCCTTA-3’

Probe-5’-/56FAM/ TGTCACGCCCTCCCAGTGTGCA/3BHQ-1/-3’

ERα

FWD-5’- AGACGGACCAAAGCCACTTG -3’

REV-5’- CCCCGTGATGTAATACTTTTGCA -3’

Probe-5’-/56FAM/ TGCGGGCTCTACTTCATCGCATTCC /3BHQ-1/-3’

ERβ

FWD-5’- CCCAGTGCGCCCTTCAC-3’

149 REV-5’- CAACTCCTTGTCGGCCAACT -3’

Probe-5’-/56FAM/ AGGCCTCCATGATGTCCCTGA /3BHQ-1/-3’

Cofilin

FWD-5’- TGTGCCGGCTGGTTCCT-3’

REV-5’- CTTACTGGTCCTGCTTCCATGAG -3’

Probe-5’-/56FAM/ CTTTTCCCCTGGTCACGGCT /3BHQ-1/-3’

CRABPII

FWD-5’- TTCTCTGGCAACTGGAAAATCA -3’

REV-5’- CATTCACCCCCAGCACTTTG -3’

Probe-5’-/56FAM/ CCGATCGGAAAACTTCGAGGAATTGC /3BHQ-1/-3’

Smooth Muscle Actin

FWD-5’- TCCTCCCTTGAGAAGAGTTACGA -3’

REV-5’- GGCAGCGGAAACGTTCATT -3’

Probe-5’-/56FAM/ TGCCTGATGGGCAAGTGATCA /3BHQ-1/-3’

Data Analysis

Results are expressed as mean ± S.D. P values were calculated using Anova

Dunnett’s T Test and Independent T Test. P<.05 was considered significant.

150 Results

MSA inhibits MCF-7 cell growth via inhibition of proliferation and induction of

apopotosis.

MCF-7 is an ER positive breast cancer cell line that is sensitive to estradiol-induced cell

growth and ER-regulated gene expression. MCF-7 cells were incubated with MSA and

cell growth was measured by the MTT assay. MSA at 5 or 10 µM inhibited cell growth

by approximately 50% at 24, 48, and 72 h (Fig. 1A). To assess the contribution of

apoptosis and anti-proliferation to MSA growth inhibition in MCF-7 cells, BrdU incorporation and DNA fragmentation were assessed.10µM MSA decreased BrdU incorporation by 50% and 70% at 16h and 24h, respectively (Fig 1B). In the same time course, MSA increased apoptosis at 24 h by 8 and 15 fold at 5µM and 10uM MSA, respectively (Fig. 1C). MSA had no effect on cell toxicity up to 24h as assessed by trypan blue staining and only very modest effects at 24h as assessed by propidium iodine (PI)

staining (Fig. 1D, top and bottom panel)

MSA inhibits estradiol-dependent induction of estrogen response element (ERE)-

luciferase reporter gene (ERE2e1b-luciferase) and endogenous ERα-regulated

genes.

To assess whether MSA could alter ER signaling, MCF-7 cells were transfected with the

ERE2e1b-luciferase reporter gene and incubated with estradiol or MSA alone, or co- incubated with estradiol and MSA. MSA alone decreased basal luciferase expression and inhibited estradiol-dependent stimulation of the ERE2e1b-luciferase reporter presence of

151 1, 5, or 10 µM MSA (Fig. 2A). Since MSA inhibited estradiol-dependent induction of

the ERE2e1b-luciferase reporter, it was of interest to determine whether MSA could inhibit two well-characterized estrogen-regulated genes, c-myc, and pS2. Real-time RT

PCR was used to measure c-myc and pS2 expression after incubation with estradiol alone or in combination with MSA for 6 h. As expected, estradiol induced pS2 and c-myc expression and this induction was inhibited in the presence of 1, 2.5, 5, or 10 µM MSA in

a dose-dependent manner (Fig. 2B and C). Additional time course experiments revealed

that estradiol induction of pS2 and c-myc occurred at 2 h and 1 h, respectively (Fig. 2D,

2E). A period of 4 h co-incubation with MSA was required to block the response to

estradiol induction (Fig. 2D and E).

MSA specifically inhibits estradiol-dependent signaling.

In order to rule out the nonspecific effects of MSA on general transcription, MCF-7 cells

were transfected with constitutively active RSV-luciferase reporter and incubated with 1,

5, or 10 µM MSA. No effect on the RSV-luciferase reporter was observed at any MSA

concentration (Fig. 3A). In addition to assess the specificity of MSA towards ER signaling, MSA effects on several genes that are expressed in MCF-7 cells but unrelated to estrogen signaling were examined. Cellular retinoic acid binding protein II (CRABPII) is expressed in MCF-7 cells but is not modulated by estradiol [16]. Cofilin [17] and smooth muscle actin [18] are expressed in breast cancer cell lines but not regulated by

estradiol (data not shown). MSA had no effect on CRABPII, cofilin, or smooth muscle

152 actin mRNA expression (Fig. 3B). These data demonstrate a specificity of MSA towards

estradiol-dependent signaling.

MSA reduces ERα protein expression in MCF-7 cells.

Since MSA inhibited ER signaling, we proceeded to determine if MSA altered ERα protein levels. MCF-7 cells were incubated with estradiol, MSA, or estradiol + MSA for

6 h, and ERα levels were assessed by Western blot analysis. MSA alone at 5 or 10 µM

reduced ERα level significantly compared to vehicle-incubated samples. Estradiol

treatment alone reduced ERα protein level (Fig 4A, lane 6), most likely due to ubiquitin-

mediated downregulation as reported previously (15). MSA at 5 or 10 µM further

reduced ERα levels when co-incubated with estradiol (Fig 4A, lanes 9 and 10). To

measure time-dependent decreases of ER by MSA, MCF-7 cells were incubated with 10

µM of MSA for 2, 4, 6, or 12 h. A significant reduction in ERα protein level was

detected after 4 h of incubation with MSA (Fig. 4B); this time frame coincided with the

time it took MSA to inhibit estradiol-dependent induction of pS2 and C-myc (Fig 2D and

E). The effect of MSA on ERβ protein level was also assessed. However, Western

blotting of ERβ in MCF-7 cells generated very weak signals, so the result was

inconclusive (data not shown). To determine whether ERα protein downregulation was a

major mechanism by which MSA inhibits ER signaling, we constitutively expressed ERα

protein in the well-characterized, ER-negative HeLa cell line by transfection with a

153 constitutively expressed ERα expression plasmid. HeLa cells are cervical carcinoma

cells in which reexpression of ERα results in robust estradiol-dependent reporter

activation. Incubation of transfected cells with 10 µM MSA did not affect ERα protein

level (Fig. 4C inset). Under these conditions in which ERα protein levels remained

constant, MSA did not inhibit estradiol induction of the ERE2e1b-luciferase reporter (Fig

3C), nor endogenous pS2 (Fig 4D) or c-myc (Fig. 4E). These results suggest that a major mechanism contributing to MSA inhibition of estrogen signaling is through reduction in

ERα protein. One caveat to this finding is that HeLa is a cervical carcinoma and not a breast cancer cell line. Although similar experiments were attempted in two ER-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468) transfected with ERα, results were inconclusive since neither cell line displayed estradiol activation of cotransfected

ERE2e1b-luciferase (data not shown).

MSA reduces ERα mRNA.

To determine whether the effect of MSA on ERα was at the transcriptional level, ERα mRNA in MCF-7 cells was measured by real time RT-PCR following incubation of cells with estradiol, MSA, or estradiol + MSA. MSA at 5 or 10 µM inhibited ERα gene expression (Fig. 5A) but had no effect on ERβ gene expression (Fig. 5B). Time course studies revealed that ERα mRNA was inhibited by 10 µM MSA within 2 h (Fig. 5C),

thereby preceding the decrease in protein level that was not detected until after 4 h, (see

154 Fig. 5B), suggesting that the mechanism by which MSA reduces ERα protein level is through decreased ERα mRNA transcription.

155

Discussion

ER is a major therapeutic target for hormone-dependent, ER-positive breast

cancers. Antiestrogen therapies designed to compete with estrogen for binding to ER

have proven effective in reducing estrogen-dependent tumor growth. In addition to

targeting ER function, strategies designed to lower ER protein level are also useful in the

management of hormone-dependent, ER-positive tumors. The present study is the first to

describe the disruption of ER signaling in breast cancer cells by a selenium compound.

We found that MSA blocked estradiol-dependent activation of a reporter gene (ERE2e1b- luciferase) as well as the transcription of endogenous ER-regulated genes. A major underlying mechanism by which MSA interferes with ER signaling was through a decrease in ERα gene transcription and the subsequent reduction of ERα protein.

Several mechanisms may contribute to the growth inhibitory effects of MSA including antioxidant properties and alteration of redox reactions that may subsequently induce apoptosis [14,19]. Several independent studies have demonstrated MSA-induced growth inhibition in in-vitro cell lines via induction of apoptosis. In hyperplastic mammary epithelium cells TM12 and TM2H [13] and in premalignant human breast cells

MCF10AT1 and MCF10AT3B [20], MSA inhibited cell proliferation and induced apoptosis. MSA also demonstrated similar effects in human lung cancer cell lines [21] and human prostate carcinoma cell lines [22,23]. Moreover, MSA effects on cell growth were not mediated by selenium related toxicity [13] as is detected with inorganic

156 selenium compounds such as sodium selenite and sodium selenide [24]. In addition,

based on our characterization of MSA action in MCF-7 cells, the growth inhibitory

effects of MSA occur through both apoptosis and antiproliferation mechanisms (Fig. 1B

and C). Comprehensive analysis of these mechanisms in a variety or hormone-dependent

and hormone-independent breast cancer cell lines is currently being assessed. What is

demonstrated here for the first time in estrogen-dependent breast cancer cells is a novel

component of the overall antiproliferative effect of MSA; the inhibition of ER signaling.

Estrogens are important mitogenic signals for the growth of breast cancers, and have been

shown to induce G1/S transition in breast cancer cells [25] by control of several key cell- cycle regulators ( for ref see [26] ). In addition to inducing cellular proliferation, estrogens increase cell survival by upregulating the antiapoptotic factor bcl-2 [27] and downregulating several proapoptotic factors [28]. The overall growth inhibitory effects of MSA in estrogen dependent breast cancer cells are likely attributed to MSA disruption of ER signaling and non-ER antiproliferative and apoptotic effects of MSA in hormone dependent breast cancer. Indeed, MSA also inhibited growth of an ERα-negative breast

cancer cell line (MDA-MB-231, data not shown). Future work is being performed to

assess the relative contribution of loss of ER-signaling to the overall growth inhibitory

effect of MSA in ERα positive breast cancer cells.

Low concentrations of MSA (1 or 2.5 µM) had no significant effect on ERα

protein levels although both concentrations were capable of inhibiting estradiol-

dependent reporter gene activation (Fig. 2A) and endogenous pS2 and c-myc genes (Fig.

157 2B and C). This apparent discrepancy may be attributed to MSA effects on other proteins important for ERα action. Dong et al. [20] demonstrated that MSA regulates expression of several proteins shown to be key mediators of ER signaling. For example, MSA decreased expression of cyclin D1, a known coregulator for ER action [29]. In addition,

MSA decreased the expression of AKT2, a kinase known to phosphorylate ERα resulting in increased transcriptional activity [30] and stabilization of ERα binding to the pS2 and c-myc promoters (Shah and Rowan, Molecular Endocrinology, in press).

Although both ERα (present study) and AR [12] gene expression and protein levels were reduced by MSA, ERβ mRNA expression was unaltered. The lack of unanimity suggests a specificity of MSA for some, but not all, nuclear receptors. Future studies will examine the promoter regions of ERα and AR genes to assess whether homologous transcription factor binding sites are present, and to delineate the promoter regions required for MSA downregulation of ERα and AR transcription.

Although our study demonstrates a strong MSA inhibition of estrogen signaling and cell growth in MCF-7 breast cancer cells in vitro, selenium compounds appear to have negligible effects on proliferation of normal rodent mammary gland [31-33]. This discrepancy may be due to differences in ERα expression in the normal versus malignant mammary gland. A very small percentage of epithelial cells in the normal, adult mammary gland are proliferating and these proliferating cells express very little or no

ERα. In contrast, proliferating, epithelial breast cancer cells are ERα positive [34] and

158 these cells are strong candidates for growth inhibition by antiestrogens [35-37]. If

disruption of ER signaling is one of the major mechanisms for selenium-mediated growth

inhibition, then the normal mammary epithelium may only be modestly affected due to

absence of ERα in the proliferating epithelial cells. These possibilities remain under

intense investigation by our laboratories.

Lastly, the present study presents the possibility that selenium compounds may

not only be useful as a chemopreventative, but may also be efficacious as a therapy for

existing tumors. Several studies have shown growth inhibition of established tumors by

selenium compounds in in-vivo models [33,38-41]. However these studies used inorganic

selenium compounds that are genotoxic and no longer used for selenium

chemoprevention and/or chemotherapy studies. In addition, Yan et al. demonstrated that

supplementation with dietary selenium and magnesium had no effect on HTB123 human

mammary cancer cells inoculated in athymic nude mice [42]. To our knowledge no study

has examined the effects of MSA on established tumors in an in-vivo model. However,

Cao et al. have shown a synergistic interaction of organic selenium compounds with the

anticancer drug irinotecan [43]. Mice bearing squamous cell carcinoma of the head/neck

and colon carcinoma xenografts were given selenium in form of 5-methylselenocysteine

and seleno-L-methionine orally seven days prior to intravenous injection of irinotecan.

Combination treatment of irinotecan + selenium decreased the toxicity of the chemotherapeutic agent and increased the cure rate of the tumor bearing mice inoculated with cancer cells sensitive and resistant to irinotecan [43]. Although it is unknown

159 whether selenium monotherapy would be efficacious against MCF-7 xenografts, these tumors are tamoxifen sensitive [44] suggesting the possibility of combination therapy of tamoxifen with selenium compounds to improve efficacy.

Tamoxifen is currently the major antiestrogen used for breast cancer therapy, even though tamoxifen resistance and tamoxifen uterotropic effects represent significant drawbacks of this modality. ER signaling remains functional in the majority of breast cancers that exhibit tamoxifen resistance [45]. This suggests that any strategy designed to disrupt ER signaling or remove ERα protein in tamoxifen-resistant cells may provide some measure of efficacy. For example the antiestrogen fulvestrant results in ERα protein degradation and apoptotic cell death. Fulvestrant is recommended for postmenopausal women who exhibit breast cancer progression following tamoxifen therapy (for a review see ref.[46]). We are currently assessing whether MSA may be useful in a similar manner as Fulvestrant since MSA potentiates the growth inhibitory effects of tamoxifen in tamoxifen sensitive breast cancer cells and resensitize tamoxifen resistant breast cancer and endometrial cancer cells in vitro (submitted for publication).

An important goal in the endocrine management of hormone dependent breast cancer is to increase the proportion of cells undergoing apoptotic cell death relative to cell cycle arrest. Increasing the proportion of cells undergoing apoptosis would prevent cells from reentering the cell cycle once tamoxifen resistant mechanisms are acquired resulting in disease recurrence. MSA induces significant apoptosis in MCF-

7 cells. Preclinical therapeutic regimens combining tamoxifen with selenium are being

160 explored for efficacy in preventing or delaying tamoxifen resistance and/or reversing

tamoxifen resistance.

Acknowledgements Grant Support: This work was supported in part by National Institutes of Health Grant

RO1 DK06832 (to B.G.R.) and Grant R01 CA91990 (to C.I). Y.K.S. was supported by a

Predoctoral Dissertation Award (DISS0100539) from the Susan G. Komen Breast Cancer

Foundation.

161

Reference List

1. Kelsey, J. L. and Berkowitz, G. S.: Breast cancer epidemiology. Cancer Res. 48:5615-5623, 1988

2. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl.Cancer Inst. 94:606-616, 2002

3. Evans, R. M.: The steroid and thyroid hormone receptor superfamily. Science 240:889-895, 1988

4. Tsai, M. J. and O'Malley, B. W.: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu.Rev.Biochem. 63:451-86.:451-486, 1994

5. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A.: Cloning of a novel receptor expressed in rat prostate and ovary. Proc.Natl.Acad.Sci.U.S.A 93:5925-5930, 1996

6. Mosselman, S., Polman, J., and Dijkema, R.: ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 19;392:49-53, 1996

7. Tremblay, G. B., Tremblay, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Labrie, F., and Giguere, V.: Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol.Endocrinol. 11:353-365, 1997

8. Duffield-Lillico, A. J., Reid, M. E., Turnbull, B. W., Combs, G. F., Jr., Slate, E. H., Fischbach, L. A., Marshall, J. R., and Clark, L. C.: Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol.Biomarkers Prev. 11:630-639, 2002

9. Clark, L. C., Combs, G. F., Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., Krongrad, A., Lesher, J. L., Jr., Park, H. K., Sanders, B. B., Jr., Smith, C. L., and Taylor, J. R.: Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957-1963, 1996

10. el Bayoumy, K., Chae, Y. H., Upadhyaya, P., and Ip, C.: Chemoprevention of mammary cancer by diallyl selenide, a novel organoselenium compound. Anticancer Res. 16:2911-2915, 1996

162 11. Redman, C., Scott, J. A., Baines, A. T., Basye, J. L., Clark, L. C., Calley, C., Roe, D., Payne, C. M., and Nelson, M. A.: Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett. 125:103-110, 1998

12. Dong, Y., Lee, S. O., Zhang, H., Marshall, J., Gao, A. C., and Ip, C.: Prostate specific antigen expression is down-regulated by selenium through disruption of androgen receptor signaling. Cancer Res. 64:19-22, 2004

13. Ip, C., Thompson, H. J., Zhu, Z., and Ganther, H. E.: In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res. 60:2882-2886, 2000

14. Ip, C., Dong, Y., and Ganther, H. E.: New concepts in selenium chemoprevention. Cancer Metastasis Rev. 21:281-289, 2002

15. Shah, Y. M., Basrur, V., and Rowan, B. G.: Selective estrogen receptor modulator regulated proteins in endometrial cancer cells. Mol.Cell Endocrinol. 219:127-139, 2004

16. Delva, L., Bastie, J. N., Rochette-Egly, C., Kraiba, R., Balitrand, N., Despouy, G., Chambon, P., and Chomienne, C.: Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol.Cell Biol. 19:7158-7167, 1999

17. Bakin, A. V., Safina, A., Rinehart, C., Daroqui, C., Darbary, H., and Helfman, D. M.: A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol.Biol.Cell 15:4682-4694, 2004

18. Twal, W. O., Czirok, A., Hegedus, B., Knaak, C., Chintalapudi, M. R., Okagawa, H., Sugi, Y., and Argraves, W. S.: Fibulin-1 suppression of fibronectin-regulated cell adhesion and motility. J Cell Sci. 114:4587-4598, 2001

19. Patrick, L.: Selenium biochemistry and cancer: a review of the literature. Altern.Med.Rev. 9:239-258, 2004

20. Dong, Y., Ganther, H. E., Stewart, C., and Ip, C.: Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Res. 62:708-714, 2002

21. Swede, H., Dong, Y., Reid, M., Marshall, J., and Ip, C.: Cell cycle arrest biomarkers in human lung cancer cells after treatment with selenium in culture. Cancer Epidemiol.Biomarkers Prev. 12:1248-1252, 2003

163 22. Dong, Y., Zhang, H., Hawthorn, L., Ganther, H. E., and Ip, C.: Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63:52-59, 2003

23. Jiang, C., Wang, Z., Ganther, H., and Lu, J.: Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells. Cancer Res. 61:3062-3070, 2001

24. Lu, J., Jiang, C., Kaeck, M., Ganther, H., Vadhanavikit, S., Ip, C., and Thompson, H.: Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem.Pharmacol. 50:213-219, 1995

25. Leung, B. S. and Potter, A. H.: Mode of estrogen action on cell proliferative kinetics in CAMA-1 cells. I. Effect of serum and estrogen. Cancer Invest 5:187- 194, 1987

26. Foster, J. S., Henley, D. C., Ahamed, S., and Wimalasena, J.: Estrogens and cell- cycle regulation in breast cancer. Trends Endocrinol.Metab 12:320-327, 2001

27. Perillo, B., Sasso, A., Abbondanza, C., and Palumbo, G.: 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol.Cell Biol. 20:2890-2901, 2000

28. Frasor, J., Danes, J. M., Komm, B., Chang, K. C., Lyttle, C. R., and Katzenellenbogen, B. S.: Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562-4574, 2003

29. Neuman, E., Ladha, M. H., Lin, N., Upton, T. M., Miller, S. J., DiRenzo, J., Pestell, R. G., Hinds, P. W., Dowdy, S. F., Brown, M., and Ewen, M. E.: Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol.Cell Biol. 17:5338-5347, 1997

30. Sun, M., Paciga, J. E., Feldman, R. I., Yuan, Z., Coppola, D., Lu, Y. Y., Shelley, S. A., Nicosia, S. V., and Cheng, J. Q.: Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res. 61:5985-5991, 2001

31. Ip, C., Thompson, H. J., and Ganther, H. E.: Selenium modulation of cell proliferation and cell cycle biomarkers in normal and premalignant cells of the rat mammary gland. Cancer Epidemiol.Biomarkers Prev. 9:49-54, 2000

164 32. Fico, M. E., Poirier, K. A., Watrach, A. M., Watrach, M. A., and Milner, J. A.: Differential effects of selenium on normal and neoplastic canine mammary cells. Cancer Res. 46:3384-3388, 1986

33. Watrach, A. M., Milner, J. A., Watrach, M. A., and Poirier, K. A.: Inhibition of human breast cancer cells by selenium. Cancer Lett. 25:41-47, 1984

34. Clarke, R. B., Howell, A., Potten, C. S., and Anderson, E.: Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 57:4987-4991, 1997

35. Clarke, R. B., Laidlaw, I. J., Jones, L. J., Howell, A., and Anderson, E.: Effect of tamoxifen on Ki67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. Br.J Cancer 67:606-611, 1993

36. Jordan, V. C. and Koerner, S.: Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. Eur.J.Cancer 11:205-206, 1975

37. Johnston, S. R., MacLennan, K. A., Sacks, N. P., Salter, J., Smith, I. E., and Dowsett, M.: Modulation of Bcl-2 and Ki-67 expression in oestrogen receptor- positive human breast cancer by tamoxifen. Eur.J Cancer 30A:1663-1669, 1994

38. Watrach, A. M., Milner, J. A., and Watrach, M. A.: Effect of selenium on growth rate of canine mammary carcinoma cells in athymic nude mice. Cancer Lett. 15:137-143, 1982

39. Poirier, K. A. and Milner, J. A.: Factors influencing the antitumorigenic properties of selenium in mice. J Nutr. 113:2147-2154, 1983

40. Greeder, G. A. and Milner, J. A.: Factors influencing the inhibitory effect of selenium on mice inoculated with Ehrlich ascites tumor cells. Science 209:825-827, 1980

41. Medina, D. and Oborn, C. J.: Differential effects of selenium on the growth of mouse mammary cells in vitro. Cancer Lett. 13:333-344, 1981

42. Yan, L., Boylan, L. M., and Spallholz, J. E.: Effect of dietary selenium and magnesium on human mammary tumor growth in athymic nude mice. Nutr.Cancer 16:239-248, 1991

43. Cao, S., Durrani, F. A., and Rustum, Y. M.: Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin.Cancer Res. 10:2561-2569, 2004

165 44. Gottardis, M. M., Robinson, S. P., Satyaswaroop, P. G., and Jordan, V. C.: Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res. 48:812-815, 1988

45. Johnston, S. R., Saccani-Jotti, G., Smith, I. E., Salter, J., Newby, J., Coppen, M., Ebbs, S. R., and Dowsett, M.: Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 55:3331-3338, 1995

46. McKeage, K., Curran, M. P., and Plosker, G. L.: Fulvestrant: a review of its use in hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Drugs 64:633-648, 2004

166 Figure Legends

Fig. 1. MSA inhibits MCF-7 cell growth through altering proliferation and apoptosis.

(A) Cell growth analysis by MTT assay of MCF-7 cells incubated with vehicle (Veh) or

1, 5, and 10 µM of MSA for 24, 48, and 72 h. Each bar represents the mean value ± S.D.

Vehicle treated samples were set at 100%. (*) = P<.05 compared to vehicle. (B) MCF-7 cell proliferation was measured by BrdU incorporation. MCF-7 cells were incubated with

10µM MSA for 16h and 24 h. BrdU incorporation was measured as described in Material and Methods, each bar represents the mean value ± S.D. (*) = P<.05 compared to vehicle

(Veh) incubated samples. (C) MCF-7 cells were incubated with 5µM and 10µM MSA for

24h. Following incubation with MSA DNA fragmentation was assessed as described in

Material and Methods, each bar represents the mean value ± S.D. (*) = P<.05 compared

to vehicle (Veh) incubated samples. (D) MCF-7 cells were incubated with 5µM and

10µM MSA for 6, 16, and 24h. Cell toxicity was measured by PI staining (top panel) and by trypan blue staining (bottom panel) as described in Material and Methods, each bar represents the mean value ± S.D. (*) = P<.05 compared to vehicle (Veh) incubated

samples.

Fig. 2. MSA inhibits estradiol-dependent activation of an EREe1b-luciferase reporter,

pS2, and c-myc gene expression. (A) MCF-7 cells were transfected with ERE2e1b-

luciferase reporter (0.5 µg/well). 24 hours posttransfection cells were incubated with vehicle (Veh), 10-8 M estradiol (E2) or MSA alone or co-incubated with 10-8 M estradiol and MSA. Standard luciferase assays were performed on cell extracts in triplicate as

167 described in the Materials and Methods. Each bar represents the mean value ± S.D. (*) =

P<.05 compared to estradiol incubated samples alone. Dose response of MSA on (B) pS2 or (C) c-myc gene expression. MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol (E2) or MSA alone or co-incubated with 10-8 M estradiol and MSA for 6 h. Time titration of MSA on (D) pS2 or (E) c-myc gene expression.

MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol

(E2) or 10 µM MSA alone or co-incubated with 10-8 M estradiol (E2) and 10µM MSA.

Expression of (B and D) pS2 and, (C and E) c-myc genes was measured by real time RT-

PCR as described in the Materials and Methods. Expression was normalized to GAPDH

and each bar represents the mean value ± S.D. (*)= P<.05 compared to vehicle incubated

samples (‡) = P<.05 compared to estradiol (E2) incubated samples.

Fig. 3. MSA specifically inhibits estradiol-dependent signaling. (A) MCF-7 cells were

transfected with RSV-luciferase reporter (0.5 µg/well). 24 hours posttransfection cells

were incubated with vehicle 1, 5, or 10µM MSA. Standard luciferase assays were

performed on cell extracts in triplicate as described in the Materials and Methods. Each

bar represents the mean value ± S.D. (*) = P<.05 compared to estradiol incubated samples

alone. (B) MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh) or 10 µM

MSA for 2 h. Smooth muscle actin, cofilin and CRABPII genes were measured by real

time RT-PCR as described in the Materials and Methods. Expression was normalized to

GAPDH and each bar represents the mean value ± S.D. (*)= P<.05 compared to vehicle

incubated samples.

168 Fig. 4. MSA inhibits ERα protein expression, which is required for its effect on ER-

dependent gene expression. (A) Dose response of MSA on ERα protein expression.

MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol

(E2) or MSA alone or co-incubated with 10-8 M estradiol and MSA for 6 h and Western blot analysis was performed. (B) Time titration of MSA on ERα protein expression.

MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh) or 10 µM MSA and

Western blot analysis was performed. Quantitation of the Western blot signal for ERα was normalized to the Western blot signal for β-actin levels (Fig 3A and B, bottom panels), and each bar represents the mean value ± S.D. (*)= P<.05 compared to vehicle

incubated samples (‡) = P<.05 compared to estradiol (E2) incubated samples. (C) HeLa

cell were transfected with 500 ng of constitutively expressed ER and incubated with

vehicle or 10 µM MSA for 6 h and Western blot analysis was performed for ERα (Inset)

or transfected with 50 ng of constitutively expressed ERα and 500 ng ERE2e1b-luciferase

reporter and incubated with (Veh), 10-8 M estradiol (E2) or 10µM MSA alone or co-

incubated with 10-8 M estradiol (E2) and 10µM MSA. Standard luciferase assays were performed on cell extracts in triplicate as described in the Materials and Methods. (*)=

P<.05 compared to vehicle incubated samples (‡) = P<.05 compared to estradiol (E2) incubated samples. (D and E) HeLa cells were transfected with 500 ng of constitutively expressed ERα and incubated with (Veh), 10-8 M estradiol (E2) or 10 µM MSA alone or

co-incubated with 10-8 M estradiol (E2) and 10µM MSA for 6 h. Expression of (D) pS2

and, (E) c-myc genes was measured by real time RT-PCR as described in the Materials

169 and Methods. Expression was normalized to GAPDH and each bar represents the mean

value ± S.D. (*)= P<.05 compared to vehicle incubated samples (‡) = P<.05 compared to

estradiol (E2) incubated samples.

Fig. 5. MSA inhibits ERα gene expression. Dose response of MSA on (A) ERα or (B)

ERβ gene expression. MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle

(Veh), 10-8 M estradiol (E2) or MSA alone or co-incubated with 10-8 M estradiol and

MSA for 6 h. (C) Time titration of MSA on ERα gene expression. MCF-7 cells (2 x 106 cells/plate) were incubated with vehicle (Veh) or 10 µM MSA. ERα and ERβ genes

were measured by real time RT-PCR as described in the Materials and Methods.

Expression was normalized to GAPDH and each bar represents the mean value ± S.D.

(*)= P<.05 compared to vehicle incubated samples.

170 A Veh 120 MSA 1µM s t

i 100 MSA 5µM Un

h 80 t MSA 10µM ow r 60 * * * G

e * v 40 * * ti a l

Re 20 0 h h h 24 48 72

B 100 lls

e 80 e C iv

it 60 os P -

U 40 D * R

% B 20 *

0 A h A e S S Vcontrol 16M hr-MSA 24 hrM-MSA - - h h 6 4 1 2

18 * C 16 14

l 12 ro t

n 10 o 8 * % C 6 4 2 0 h A ceontrol 5 mM MSA 10 mM MSA V MSA MS M M Fig 1 5 µ 10 µ

171 D 100 s

l 80 ve cel

i 60 t i s o p

- 40 I

P * f

o 20 * %

0 A A A Veh SA S Veh SA S Veh SA S M M M M M M M M M M M M µ µ µ µ µ µ 5 10 5 10 5 10 6 hr 16 hr 24 hr s l

l 100 e c

d

e 80 n ai t s

60 e u l b

- 40 an

yp 20 r t f

o 0 % A A A A A A Veh S Veh S Veh S MS MS MS M M M M M M M M M µ µ µ µ µ µ 5 10 5 10 5 10 6 hr 16 hr 24 hr

Fig 1

172 A 90000000 80000000 70000000 60000000 * RLU 50000000 * 40000000 * 30000000 20000000 10000000 0 h 2 e M M M E M M M µ µ µ µ µ µ V n 1 5 0 1 5 0 M M 1 M E2 M M 1M Co Au Au u Au Au u S S5 A0 S S A0 1 S1 1 5 S M M M MA 1 SA SA MA SA+ +S MA M M M2 M2 S+ MS + E +E M2 2 +E E E2 2 B 4.5 pS2 E *

e 4 c

n 3.5 re 3 2.5 Diffe ‡‡‡

ld 2 o ‡ F 1.5 1 0.5 0 h 2 e M M M M E M M M M µ µ µ µ µ µ µ µ V 1 5 5 0 1 5 5 0 . 1 . 1 A 2 A A 2 A S S A S S A A S A S M S M M S M M M + M + M 2 + 2 + E 2 E 2 E E

12 C-myc C * 10 * 8

ce ‡ *

en 6 ‡ er f f 4 ‡ * Di d l 2 ‡ o F 0 h 2 e M M M M E M M M M µ Mµ µ µ M µ M µ M µ Mµ V 1 5 5 0 1 5 5 0 . 1 . 1 A 2 A A 2 A S S A S S A A S A S M S M M S M M M + M + M 2 + 2 + Fig 2 E 2 E 2 E E

173 D 3 pS2 * 2.5 e c

n *

e * r 2 * ‡

ffe *

i *

D 1.5 ‡ ‡ d

Fol 1

0.5

0 h 2 A A h 2 A A h 2 A A h 2 A A h 2 A A e E h e E h e E e E h e E h h hS 1 S h h hS 2 S h h Sh 4hS h h hS 6 S h h hS 2 S V 1h V V V V 1 n1 2 l1M l M n2 22 l2M l M n4 24 l4M l M n6 26 l6M l M 12 12 12M M + + + + + 2 2 2 2 2 E E E E E 1h 2h 4h 6h 12h

4.5 E C-myc * 4 3.5 e c

n 3 e * r 2.5 * ‡ ffe i * D 2 * ** * d 1.5 ‡ ‡ Fol 1 0.5 0 2 2 2 2 2 h A h A h A A h A A h A A h A A e h E hS 1 S e h E hS 2h S e h E hS 4h S e h E hS 6h S h e h E hS 2h S 1hV 1 1 2hV 2 2 4hV 4 4 6h V 6 6 2 V 2 2 M M M M M M M M M M + + + + + 2 2 E2 E E2 E E2 1h 2h 4h 6h 12h

Fig 2

174 A 50000000

40000000

U 30000000 RL 20000000

10000000

0 h e M M M Con µ1uM 5µuM 10µuM V 1 5 0 1 A A S S A S M M M

Veh

MSA B 1.6

1.4 1.2 e c

n 1 e r e f

f 0.8 i

d D 0.6

Fol 0.4 0.2

0 Con MSA Con MSA Con MSA I in I h t lin t c f P o o B A o C A m le R c S s C u M

Fig 3

175 M M u M u .5 u M M 1 u M 2 5 0 A M u M u 1 u .5 u 0 A A A S S S l 1 2 5 1 e S A A A A M M M h S S S S + + + + e 2 2 os V M M M M E E2 E2 E2 E P ER

ß-actin

1.4

1.2

n

i

t

c 1.0

a **

-

β

/ 0.8 *

α **

-

R 0.6

E ‡ 0.4 ‡ * 0.2 *

0.0 h e M M M M E2 M M M M V u u u u u u u 5 0 5u 0 1 . 5 1 . 5 1 2 1 A A A 2 A l A e S A S S A S S S S M M M S M + M M + M + + E2 E2 E2 E2

B h h e h h h 2 V 2 4 6 1

ERα

β-actin

1.4

1.2

n

i 1

t

c

a * - 0.8

β

/

α 0.6 * - * R 0.4

E

0.2

0 Fig 4 h h h h h e 2 4 6 2 V 1

176 n A o S C M

C ERα

2500000 ‡ β-actin * 2000000

1500000 U RL 1000000

500000

0 h 2 A A 2 e12E S345S n67 V o E M M C + 2 E +ERα -ERα

D 5 pS2 ‡ 4.5 4 ce

en 3.5 * er

f 3 f i 2.5 D d

l 2 o

F 1.5 1 0.5 0 h A 2 A Ce on SSel EE2 E2S+Sel V M M + 2 E E 3 C-myc ‡ 2.5 * e

c 2 n e r 1.5 ffe i

D 1 d l o

F 0.5

0 h A 2 A Ceon SSel E2 E2+S Sel V M M + 2 Fig 4 E

177 A 1.2 ERα 1

ce 0.8 en er f

f * i 0.6 D

d l o 0.4 F * * 0.2 *

0 h 2 M M M M M M M e E M u u u u u u u u V 0 5 1 .5 5 1 . 5 0 2 1 2 1 A A A A l S A S A S A S e S S S S M M M M + M M + M + 2 2 + 2 E E 2 E E

B 1.8 ERβ 1.6 1.4 1.2 ce 1 en er f

f 0.8 i

D 0.6 d l

o 0.4 F 0.2 0 h 2 M M e M M E M M M M u u u u u u u V 1u 0 .5 5 1 .5 5 0 1 1 A 2 A A 2 A l S A S A S A S e S S S S M M M M + M M + M + 2 2 + 2 E E 2 E E

Fig 5

178 C 1.4 ERα

1.2 ce 1 en r e

f 0.8 f i *

D 0.6 d l

o * * 0.4 F * 0.2

0 h A h A h A h A h A e S e S e S e S e S hV h hV h Vh h hV h Vh h M M M M M

h h h h h 2 4 6 2 1 1

Fig 5

179 Title: Selenium Disrupts Estrogen Receptor α Signaling and Restores Tamoxifen Sensitivity in Tamoxifen Resistant Breast and Endometrial Cancer Cells.

Yatrik M. Shah1, Yan Dong2, Clement Ip2, and Brian G. Rowan1,3.

1Department of Biochemistry & Cancer Biology Medical College of Ohio, Toledo, OH. 2Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, New York

Running Title: MSA Reverses Tamoxifen Resistance in ERα-positive Cells.

Keywords: Breast cancer, Endometrial cancer, Tamoxifen resistance, Estrogen Receptor, Selenium

Abbreviation list: Estrogen receptor; ER, Estrogen responsive elements; ERE, Selective estrogen receptor modulator; SERM, Methylselenocysteine; MSC, Seleno-L-methionine; Se-Met, Methylseleninic acid; MSA, Dulbecco’s modified Eagle’s medium; DMEM, Fetal bovine serum; FBS, Fetal calf serum; FCS, Amplified in breast cancer-1; AIB1, Steroid receptor coactivator-1; SRC-1, Transcriptional intermediary factor-2; TIF2, Nuclear corepressor; N-CoR.

Footnotes: Grant Support: This work was supported in part by National Institutes of Health Grant RO1 DK06832 (to B.G.R.) and Grant R01 CA91990 (to C.I). Y.K.S. was supported by a Predoctoral Dissertation Award (DISS0100539) from the Susan G. Komen Breast Cancer Foundation.

Acknowledgements: We are grateful to Dr. Robert Clarke for the generous gift of the MCF-7- LCC2 cell line.

3Corresponding author: Brian G. Rowan, Department of Biochemistry & Cancer Biology, Medical College of Ohio, 3035 Arlington Ave, Toledo, OH 43614-5804; Tel: 419-383-4134; Fax: 419-383-6228; Email: [email protected]

4 Attenuation of Estrogen Receptor α (ERα) Signaling by Selenium in Breast Cancer Cells via Downregulation of ERα Gene Expression. Yatrik M. Shah, Aparna Kaul, Yan Dong, Clement Ip, and Brian G. Rowan. Revised manuscript submitted to Breast Cancer Research and Treatment.

180 Abstract As a treatment for breast cancer, tamoxifen a selective estrogen receptor modulator

(SERM) is the most widely prescribed hormonal therapy for breast cancer. Despite the

benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients

develop resistance to therapy. In addition, tamoxifen displays estrogen-like effects in the

endometrium increasing the incidence of endometrial cancer. New therapeutic strategies

are needed to circumvent tamoxifen resistance in breast cancer as well as tamoxifen

toxicity in endometrium. Organic selenium compounds are highly effective

chemopreventative agents with well-documented benefits in reducing total cancer

incidence and mortality rates for a number of cancers. The present study demonstrates

that the organic selenium compound methylseleninic acid (MSA, 2.5 µM) can potentiate

growth inhibition of 4-hydroxytamoxifen (10-7 M) in tamoxifen sensitive MCF-7 and

T47D breast cancer cell lines. Remarkably, in tamoxifen resistant MCF-7-LCC2,

HEC1A, and Ishikawa cells, co-incubation of 4-hydroxytamoxifen with MSA resulted in a marked growth inhibition that was substantially greater than MSA alone. Growth inhibition by MSA and MSA + 4-hydroxytamoxifen in all cell lines was preceded by a specific decrease in ERα mRNA and protein without an effect on ERβ levels. Estradiol and 4-hydroxytamoxifen induction of endogenous ER-dependent gene expression (pS2, c-myc) as well as ER-dependent reporter gene expression (ERE2e1b-luciferase) was also attenuated by MSA in all cell lines prior to effect on growth inhibition. Taken together these data strongly suggest that specific decrease in ERα levels by MSA is required for

both MSA potentiation of the growth inhibitory affects of 4-hydroxytamoxifen and

resensitization of tamoxifen resistant cell lines.

181 Introduction

Estrogens are key hormones for the growth and maintenance of female mammary

gland and reproductive tract and critical for reproduction and fertility. Estrogen binds to

its cognate receptor, the estrogen receptor (ER) belonging to the nuclear receptor

superfamily of ligand dependent transcription factors (1,2). Two different forms of ER

have been characterized, ERα and ERβ, which share high sequence homology (3-5).

Upon ligand binding, the receptor undergoes conformational changes that release ER

from chaperone proteins. Following dimerization, ER binds to estrogen responsive

elements (ERE) in the promoters of ER-dependent genes, and subsequent recruitment of

coactivators initiates ER-dependent gene transcription (6,7).

In addition to maintaining normal reproductive physiology estrogens are

important mitogenic signals in the breast and endometrium, thus implicating the hormone

in breast and endometrial tumorigenesis. As a treatment for breast cancer, tamoxifen a

selective estrogen receptor modulator (SERM), binds to ER and blocks estrogen mediated

breast cancer cell growth (8,9). Tamoxifen is the most widely prescribed endocrine therapy for breast cancer, and the only agent approved for breast cancer chemoprevention

(10). However, tamoxifen therapy has two major drawbacks. Most tamoxifen responsive breast cancer patients succumb to tamoxifen resistance (11) in which tumors do not respond to the growth inhibitory properties of tamoxifen. In addition, tamoxifen displays estrogen-like effects in the endometrium increasing the incidence of endometrial cancer

(12). Alternative therapeutic strategies that can be used alone or in combination with

182 tamoxifen in ERα positive breast cancers may prove useful in combating tamoxifen

resistance in breast and estrogenic activities in other tissues.

Selenium is an essential micronutrient shown to inhibit cancer growth. Organic

selenium compounds are the agents of choice for chemopreventative studies. These

compounds have fewer side effects and lack the genotoxic action of inorganic selenium

compounds such as selenite (13). Organic selenium agents used in chemoprevention

trials such as methylselenocysteine (MSC) and seleno-L-methionine (Se-Met) are water- soluble compounds that are metabolized in tissues to the active selenium metabolite,

methylselenol (14-16). The clinical usefulness of MSC and Se-Met are in the ability of

these compounds to inhibit DNA synthesis and cell doubling and induce apoptotic cell

death. One of the greatest benefits of organic selenium compounds for chemoprevention

is the very low or absent toxicity (16,17).

In a double-blind placebo-controlled clinical trial Clark et al. demonstrated the

protective effects of selenium-enriched yeast against prostate, lung and colon cancer

(16,18). Although, the study failed to show statistical significance in breast cancer risk

due to insufficient cases there is extensive data demonstrating the growth inhibitory

properties of selenium in breast cancer cell lines and mammary tumor models. Our

previous study using methylseleninic acid (MSA), a rapidly metabolized selenium

compound useful in cell cultures studies (19), demonstrated that MSA inhibits estradiol

induced cell growth and ERα-mediated gene transcription in the ERα-positive MCF-7

breast cancer cell line with no significant toxicity (revised manuscript submitted to Breast

183 Cancer Research and Treatment4). The major mechanism by which MSA attenuates ER

signaling was through decrease in ERα mRNA levels and subsequent protein levels with

no effect on ERβ levels. These data suggested a novel mechanism of growth inhibition

by MSA through disruption of estrogen signaling.

Since breast cancers vary widely with regard to ERα expression and de novo

tamoxifen resistance, the present study examined the growth inhibitory mechanisms of

MSA in cell lines that represent different paradigms of ERα expression and tamoxifen

sensitivity/resistance. We show that MSA can inhibit ER signaling and potentiate the antiestrogen activity of tamoxifen via downregulation of ERα mRNA and protein levels.

MSA in combination with tamoxifen potentiated growth inhibitory properties when

compared to either agent alone in tamoxifen sensitive breast cancer cell lines, and

tamoxifen resistant breast and endometrial cell lines.

184

Material and Methods

Cell lines

MCF-7 and MDA-MB-468 were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (Cellgro, Herndon, VA) supplemented with 10% fetal bovine serum

(FBS) (Gibco, Grand Island, NY), 4 mM of glutamine (Gibco), and 1% penicillin-

streptomycin (Gibco) at 37°C with 5% CO2. MCF-7-LCC2 were maintained in IMEM

(Biosource, Rockville, MD) supplemented with 5% fetal calf serum (FCS) (Gibco) that had been charcoal stripped to remove endogenous steroids and 1%penicillin-streptomycin at 37°C with 5% CO2. Ishikawa and HEC1A were maintained in DMEM supplemented

with 5% FBS and 1% penicillin-streptomycin at 37°C with 5% CO2.

MTT Assay

MCF-7, MCF-7-LCC2, MDA-MB-468, Ishikawa, and HEC1A cells were plated

in 24 well plates (20,000 cells/well) and cultured in medium described above. Cells were

incubated with MSA (2.5 µM), 4-hydroxytamoxifen (10-7 M) (Sigma, St. Louis, MO) or combination of 4-hydroxytamoxifen and MSA at 24 h after plating. An aliquot of 125

µL of MTT reagent (ICN, Aurora, OH) (5 mg/ml of 2,5-diphenyl tetrazolium bromide in

PBS) was pipetted into each well after 24, 48, 72, or 96 h post treatment. The media with the MTT reagent was removed after 30 min- 1h and 300 µL of DMSO (Fisher Biotech,

Fairlawn, NJ) was added to each well. The plates were read at a wavelength of 570 nm.

185

Luciferase Assay

MCF-7, Ishikawa, and HEC1A were plated in 6-well plates (2 ×105 cell/well) and cultured in phenol red-free DMEM containing 2% charcoal-stripped FBS. MCF-7-LCC2 were plated in 6-well plates (2 ×105 cell/well) cultured in phenol red-free IMEM containing 2% charcoal-stripped FCS. 24 h after plating, MCF-7, MCF-7-LCC2,

Ishikawa, and HEC1A cells were transfected with 500 ng of EREe1b-luciferase reporter using Fugene transfection reagent (Roche, Madison, WI). 24 h post transfection MCF-7,

Ishikawa, and HEC1A cells were incubated with vehicle, estradiol (10-8 M) (Sigma, St.

Louis, MO), 4-hydroxytamoxifen (10-7 M), MSA (10 µM), or a combination of either

estradiol, tamoxifen, and MSA for 24 h. MCF-7-LCC2 were incubated with vehicle,

estradiol (10-9 M), 4-hydroxytamoxifen (10-8 M), MSA (10 µM), or a combination of

estradiol, tamoxifen and MSA for 24 h. Luciferase expression was measured and

normalized as previously described (20).

Western blot analysis

MCF-7, MCF-7-LCC2, and Ishikawa were plated in 100 mm dishes (3 ×106

cell/plate), and cultured in 2% charcoal-stripped FBS in DMEM. MCF-7-LCC2 were

plated in 100 mm dishes (3 ×106 cell/plate) and cultured in 2% charcoal-stripped FCS.

The cells were maintained in the stripped media for 3 days until 90% confluency. MCF-

7, MCF-7-LCC2, Ishikawa, and HEC1A were incubated with vehicle, estradiol (10-8 M),

4-hydroxytamoxifen (10-7 M), MSA (10 µM), or a combination of estradiol or 4-

186 hydroxytamoxifen and MSA for 6 h. The cells were lysed and prepared for Western

blotting as previously described (20). The membranes were incubated with an antibody

against ERα (Novacastra, Newcastle on Tyne, UK), and normalized to β-actin (Santa

Cruz Biotechnology INC, Santa Cruz, CA).

Real-Time RT-PCR

The culture conditions for MCF-7, MCF-7-LCC2, Ishikawa, and HEC1A were

identical to that described above for Western blot analysis. The cells were incubated with

vehicle, estradiol (10-8 M), 4-hydroxytamoxifen (10-7 M), MSA (10 µM), or a combination of estradiol or tamoxifen and MSA for 2 h when measuring ERα and ERβ

mRNA expression and 6 h when measuring c-myc and pS2 mRNA expression. Total

mRNA was extracted from the cell pellet, reverse transcribed and gene expression was

measured by real-time RT-PCR as described previously (20).

C-myc:

FWD-5’-CGTCTCCACACATCAGCACAA -3’

REV-5’-TGTTGGCAGCAGGATAGTCCTT -3’

Probe-5’-56FAM/ACGCAGCGCCTCCCTCCACTC/3BHQ-1/-3’

pS2:

FWD-5’-CGTGAAAGACAGAATTGTGGTTTT-3’

REV-5’- CGTCGAAACAGCAGCCCTTA-3’

187 Probe-5’-/56FAM/ TGTCACGCCCTCCCAGTGTGCA/3BHQ-1/-3’

ERα

FWD-5’- AGACGGACCAAAGCCACTTG -3’

REV-5’- CCCCGTGATGTAATACTTTTGCA -3’

Probe-5’-/56FAM/ TGCGGGCTCTACTTCATCGCATTCC /3BHQ-1/-3’

ERβ

FWD-5’- CCCAGTGCGCCCTTCAC-3’

REV-5’- CAACTCCTTGTCGGCCAACT -3’

Probe-5’-/56FAM/ AGGCCTCCATGATGTCCCTGA /3BHQ-1/-3’

Ligand Binding Assay

MCF-7 cells were plated in 6-well plates (2 ×105 cell/plate), and cultured in 2% charcoal stripped FBS in DMEM. The cells were maintained in the stripped media for 3 days until 90% confluent. MCF-7 cells were incubated with MSA (10µM) for 1 h.

3 Following 1 h incubation 10nM [ H] E2 in presence or absence 500 fold excess cold

estradiol was added to each well and incubated for 1 h. Following 1 h incubation, the

cells were washed 3X with cold 1X PBS. 700µL of ethanol was added to each well and incubated at room temperature for 30 min. 500uL of ethanolic extract was counted using liquid scintillation. The relative binding affinity (RBA) was calculated by (Specific

188 binding – nonspecific binding/ specific binding) × 100. Vehicle treated samples were set

as 1

Data Analysis

Results are expressed as mean ± S.D. P values were calculated using Anova

Dunnett’s T Test and Independent T Test. P<.05 was considered significant.

189

Results

MSA inhibits estradiol- and tamoxifen-dependent activation of an estrogen response

element (ERE)-luciferase reporter gene (ERE2e1b-luciferase).

The effects of MSA on ER signaling were assessed in MCF-7 cells, a well-characterized

ER-positive, tamoxifen sensitive human breast cancer cell, and in MCF-7-LCC2 cells, an

ER-positive tamoxifen resistant variant of the MCF-7 parental line. Two tamoxifen

resistant human endometrial cancer cell lines, Ishikawa and HEC1A, were also assessed

for MSA effects on the ERE2e1b-luciferase. MCF-7, HEC1A, and Ishikawa cells were

-8 transfected with the ERE2e1b-luciferase reporter gene and incubated with estradiol (10

M), 4-hydroxytamoxifen (10-7 M), or MSA (10µM) alone, or co-incubated with

combinations of estradiol, 4-hydroxytamoxifen and MSA as indicated (Fig. 1A, C, and

D). MCF-7-LCC2 cells were transfected with the ERE2e1b-luciferase reporter gene and incubated with estradiol (10-9 M), 4-hydroxytamoxifen (10-8 M), or MSA (10µM) alone, or co-incubated with combinations of estradiol, 4-hydroxytamoxifen and MSA as indicated (Fig. 1B). Although MCF-7-LCC2 cells are resistant to tamoxifen growth inhibition, the cells do not display a true tamoxifen agonist activation of the ERE2e1b- luciferase reporter (Fig 1B, Bar 5), an activation that is observed in the endometrial cancer cell lines HEC1A and Ishikawa (Fig 1C-D, Bar 5) as we and others have previously reported (20-22). Tamoxifen resistance in MCF-7-LCC2 cells is manifested by the inability of 4-hydroxytamoxifen to reverse estradiol activation of the reporter (Fig.

1B, Bar 7), which is observed at 10-9 M estradiol + 10-8 M 4-hydroxytamoxifen. In the

190 tamoxifen-sensitive MCF-7 parental cells a higher concentration of estradiol (10-8 M) was required to observe estradiol activation of the reporter. Consequently, a higher concentration of 4-hydroxytamoxifen (10-7 M) was used for reversing estradiol activation

in MCF-7 cells (Fig. 1A, Bar 7).

To determine whether MSA might impact reporter activation by estradiol and

tamoxifen, cells were co-incubated with estradiol, 4-hydroxtamoxifen, and MSA. MSA

alone decreased basal ERE2e1b-luciferase expression in MCF-7 and MCF-7-LCC2 cells

(Fig. 1A-B, bar 2) and inhibited estradiol-dependent stimulation of the reporter in all cell

lines (Fig. 1A-D, bars 3 and 4). Although MSA did not significantly impact 4-

hydroxytamoxifen action in either breast cancer cell line (Fig 1A and B, bar 6), MSA

completely blocked 4-hydroxytamoxifen activation of the reporter in both endometrial

cell lines (Fig. 1C and D, bar 6). Co-treatment with MSA potentiated the inhibitory

effect of 4-hydroxytamoxifen on estradiol activation of the reporter in MCF-7 cells (Fig

1A, compare bars 7,8). In MCF-7-LCC2 cells, MSA combined with tamoxifen reversed

tamoxifen resistance by blocking estradiol activation of the reporter greater than the

effect of MSA alone (Fig 1B, compare bars 4,7,8). Note that co-incubation with 4-

hydroxytamoxifen + estradiol + MSA resulted in greater inhibition of reporter activation

than estradiol + MSA (Fig 1A-B, compare bars 4, 8) or estradiol + 4-hydroxytamoxifen

(Fig 1A-B, compare bars 6, 8). These data demonstrate the MSA inhibits estradiol

activation of the ERE2e1b-luciferase reporter in breast and endometrial cancer cells, potentiates the antiestrogen effects of 4-hydroxytamoxifen in MCF-7-LCC2 cells, and blocks 4-hydroxytamoxifen agonist action in endometrial cancer cell lines.

191

MSA inhibits the endogenous ERα-regulated gene expression.

To determine whether MSA affected endogenous ER-regulated genes, the well-

characterized estrogen-regulated gene c-myc was assessed. MCF-7, MCF-7-LCC2,

HEC1A, and Ishikawa were incubated with either vehicle, estradiol (10-8 M), 4- hydroxytamoxifen (10-7 M) or MSA (10µM) alone or a combination of estradiol or 4-

hydroxytamoxifen with MSA for 6 h (Fig. 2A-D). MSA had no effect on basal c-myc

gene expression with the exception of HEC1A cells (fig 2A-D, bar 2). However, MSA inhibited estradiol-induced gene expression of c-myc in all cell lines (fig 2A-D, bars 3 and 4). 4-hydroxytamoxifen had no effect on basal c-myc gene expression in MCF-7 cells, and MSA in combination with 4-hydroxytamoxifen also had no effect when compared to vehicle or 4-hydroxytamoxifen incubated samples alone (Fig 2A, bars 5 and

6). In contrast to the inability of 4-hydroxytamoxifen to activate the ERE2e1b-luciferase

reporter in MCF-7-LCC2 cells, 4-hydroxytamoxifen displayed true agonist activation of

endogenous c-myc in these cells (Fig. 2B, bar 5) that was also evident in both

endometrial cell lines HEC1A and Ishikawa (Fig 2C-D, bar 5). MSA blocked 4-

hydroxytamoxifen activation of c-myc in MCF-7-LCC2, Ishikawa, and HEC1A cells (Fig

2B-D, bar 6). Similar results to those described in Figure 2 were found for the ER-

dependent pS2 gene (data not shown).

MSA reduces ERα protein levels in tamoxifen-sensitive and –resistant cell lines.

192 We previously demonstrated that ERα protein and mRNA downregulation was likely a

major mechanism by which MSA inhibited ER signaling in MCF-7 cells; MSA had no

effect on ERβ mRNA (revised manuscript submitted to Breast Cancer Research and

Treatment4). These experiments were extended to determine whether MSA altered ERα

protein in both tamoxifen-sensitive and resistant cells. In addition, the effect of estradiol

or 4-hydroxytamoxifen alone or in combination with MSA on ERα protein expression

was also assessed. Due to very low expression of ERα in HEC1A cells, the Western blot

analysis was inconclusive (data not shown). MCF-7, MCF-7-LCC2 and Ishikawa cells

were incubated with estradiol (10-8 M), 4-hydroxytamoxifen (10-7 M), or MSA (10µM)

alone, or estradiol or 4-hydroxytamoxifen in combination with MSA for 6 h and ERα

levels were assessed by Western blot analysis. Estradiol treatment alone reduced ERα

protein levels only in the MCF-7 cells (Fig 3A, bar 3) that is likely mediated through the

ubiquitin proteosome pathway (23). In contrast to estradiol, MSA alone significantly

reduced ERα protein in all cell lines (Fig 3A-C, bar 2). MSA further reduced ERα levels

when co-incubated with estradiol in MCF-7 cells (Fig 3A, bars 3 and 4) as we have

previously demonstrated (revised manuscript submitted to Breast Cancer Research and

Treatment4). Remarkably, in MCF-7-LCC2 and Ishikawa cells estradiol had no effect on

ERα protein expression, a previously unreported observation for estradiol regulation of

ERα (Fig. 3B and C, bar 3). Estradiol + MSA reduced ERα protein expression to the level detected with MSA treatment alone (Fig 3B and C, bars 3 and 4).

193 4-hydroxytamoxifen stabilized ERα protein expression in MCF-7 cells (Fig. 3A,

bar 5) as previously reported (24). 4-hydroxytamoxifen also stabilized ERα expression in

Ishikawa cells but had no effect on ERα levels in MCF-7-LCC2 cells (Fig 3B and C,

bar5). Co-incubation of 4-hydroxytamoxifen with MSA decreased ERα expression when

compared to either vehicle or 4-hydroxytamoxifen alone in all cell lines (Fig. 3A-C, bars

5 and 6).

Taken together, these data demonstrate that MSA downregulation of ERα is not

restricted to tamoxifen sensitive MCF-7 cells and occurs in the presence or absence of

ligand. Two unrelated findings from these experiments were that estradiol had no effect

on ERα protein expression in MCF-7-LCC2 and Ishikawa cells, and that 4-

hydroxytamoxifen stabilized ERα expression in Ishikawa cells (Fig 3C, bar 5), but had

no effect on ERα levels in MCF-7-LCC2 cells (Fig 3B, bar 5). The molecular

mechanisms of cell-specific and ligand-dependent receptor turnover are currently being

investigated.

MSA reduces ERα mRNA but has no affect on ERβ.

Our previous study found that MSA decreased ERα mRNA in MCF-7 cells and the

decrease in mRNA preceded a decrease in ERα protein (revised manuscript submitted to

Breast Cancer Research and Treatment4). We extended these studies to tamoxifen resistant cell lines and also included assessment of 4-hydroxytamoxifen + MSA. ERα mRNA in MCF-7, MCF-7-LCC2, HEC1A and Ishikawa cells was measured by real-time

194 RT-PCR following incubation of cells with estradiol (10-8 M), 4-hydroxytamoxifen (10-7

M) or MSA (10µM) alone or estradiol or 4-hydroxytamoxifen + MSA for 2 h. As previously shown, MSA reduced ERα expression in MCF-7 cells (Fig. 4A, bar 2). MSA also decreased ERα mRNA in MCF-7-LCC2, HEC1A, and Ishikawa cells (Fig. 4B-C, bar 2). Estradiol or 4-hydroxytamoxifen had no effect on ERα gene expression in MCF-

7, MCF-7-LCC2, and HEC1A (Fig. 4A-C, bars 3 and 5), although 4-hydroxytamoxifen significantly decreased ERα mRNA in Ishikawa cells (Fig 4D bar 5). Co-incubation of estradiol or 4-hydroxytamoxifen with MSA decreased ERα mRNA to levels observed with MSA alone (Fig. 4A-D, bars 4 and 6). MSA, estradiol, or 4-hydroxytamoxifen alone or in combination had no effect on ERβ mRNA expression in all cell lines (Fig 5A-

D) suggesting selective effects of MSA on ERα.

At two hours incubation with MSA, ERα mRNA was reduced with no observed effects on ERα protein levels (data not shown). This suggests that the MSA-dependent decrease in ERα mRNA may account for subsequent decrease in ERα protein.

Remarkably, although 4-hydroxtamoxifen decreased ERα mRNA in Ishikawa cells (Fig.

4D, bar 5), ERα protein actually increased with treatment (Fig. 3D, bar 5). The mechanisms underlying this novel observation are under investigation.

MSA potentiates the growth inhibitory properties of 4-hydroxytamoxifen.

Our previous study found that MSA decreased the growth of MCF-7 cells through a combination of decreased DNA synthesis and elevated apoptosis (revised manuscript

195 submitted to Breast Cancer Research and Treatment4). MCF-7 cells are also sensitive to growth inhibition by tamoxifen (25). It was of interest to determine whether co- incubation of 4-hydroxytamoxifen with MSA could further potentiate growth inhibition compared to either agent alone. Furthermore, since long-term tamoxifen treatment is associated with tamoxifen resistance and endometrial proliferation, it was desirable to

know whether co-incubation of MSA + 4-hydroxytamoxifen could reverse tamoxifen

resistance in breast cancer cells and inhibit tamoxifen-induced endometrial cell

proliferation. MCF-7, MCF-7-LCC2, HEC1A, Ishikawa and an additional tamoxifen-

sensitive ER-positive breast cancer cell line, T47D, were incubated with 4-

hydroxytamoxifen (10-7 M), MSA (2.5µM) or both agents for 24, 48, 72 and 96 h and growth was assessed by the MTT assay. Only tamoxifen-sensitive MCF-7 and T47D cells were growth inhibited by 4-hydroxytamoxifen whereas no effect was observed in the tamoxifen-resistant MCF-7-LCC2, HEC1A, and Ishikawa cells (Fig. 6A). Increasing incubation time with 4-hydroxytamoxifen to 9 days resulted in proliferation of HEC1A and Ishikawa cells (20). In all cell lines, MSA decreased cell growth by 96 hours incubation (Fig. 6B-F). In tamoxifen sensitive MCF-7 and T47D cells, MSA potentiated

4-hydroxytamoxifen effects on reducing cell growth with the combined treatment more effective than either agent alone (Fig. 6B and C). Remarkably, in tamoxifen resistant

MCF-7-LCC2, HEC1A and Ishikawa cells in which 4-hydroxytamoxifen alone has no effect on cell growth, co-incubation of 4-hydroxytamoxifen with MSA resulted in a marked decrease in cell growth that was substantially greater than MSA treatment alone

(Fig. 6D-F). These results demonstrate that MSA not only potentiates the antiestrogen

196 effect of 4-hydroxytamoxifen in tamoxifen-sensitive cells, but MSA also resensitizes

tamoxifen-resistant cells to the growth inhibitory properties of 4-hydroxytamoxifen.

Tamoxifen and MSA do not synergize for growth inhibition in ERα negative cell lines.

MDA-MB-468 cells, an ERα-negative (26), ERβ-positive (27) human breast cancer cell line, were incubated with 4-hydroxytamoxifen (10-8 M) for 24, 48, 72, and 96 h and growth was assessed by the MTT assay. No growth inhibitory effects were observed after incubation with 4-hydroxytamoxifen (Fig. 7A) as previously reporter (28).

Although MSA (1µM) alone decreased cell growth (Fig. 7A), co-incubation of 4- hydroxytamoxifen with MSA did not further decrease cell growth (Fig. 7A) suggesting that ERα may be required for the additive and/or synergistic effect of tamoxifen + MSA on cell growth. Similar results were found with the ERα-negative MDA-MB-231 cell line (data not shown).

Inorganic selenite is reported to interact with the ligand binding domain of ERα and activate ERα transcriptional activity (29). To determine whether MSA altered estradiol binding to ERα, whole cell ligand binding assays were performed in MCF-7

cells. One hour incubation of MCF-7 cells with MSA (10µM) did not alter [3H] estradiol binding to ERα (Fig. 7B).

197 Discussion

Tamoxifen resistance and tamoxifen-induced endometrial proliferation are major

limitations of tamoxifen therapy and chemoprevention. The present study demonstrates

that MSA inhibition of ERα signaling is not restricted to tamoxifen sensitive MCF-7

cells. MSA antagonism of estradiol-dependent ERE2e1b-luciferase and endogenous c- myc and pS2 gene expression was demonstrated in MCF-7-LCC2 cells, an ERα-positive,

tamoxifen resistant variant of the MCF-7 parental line and in two ERα-positive human

endometrial cancer cell lines, Ishikawa and HEC1A (Fig. 1 and 2). In addition, MSA

also blocked tamoxifen activation of these genes in endometrial Ishikawa and HEC1A

cells (Fig. 1 and 2 C-D, bar 6). The major mechanism for MSA disruption of ER

signaling in all ERα positive cells lines was via rapid decrease of ERα mRNA and

protein that preceded disruption of ERα-regulated gene expression (Fig. 3 and 4). MSA

alone inhibited the growth of tamoxifen-sensitive and tamoxifen-resistant cells. MSA

also potentiated tamoxifen growth inhibition of ERα-positive, tamoxifen-sensitive cells

(MCF-7 and T47D) and tamoxifen-resistant cells (MCF-7-LCC2, Ishikawa, and HEC1A)

(Fig. 6) but not ERα-negative, tamoxifen resistant cells (MDA-MB-468) (Fig. 7A)

suggesting that ERα is required for the additive and/or synergistic effect on cell growth

inhibition when MSA is combined with tamoxifen.

Interestingly our studies demonstrated that sensitivity to MSA growth inhibition is

cell line specific. HEC1A exhibited a marked decrease in cell growth after treatment

with 2.5 µM MSA for 48 h, whereas MCF-7-LCC2 cells do not show a significant

198 decrease in cell growth until 72 h incubation with MSA (Fig. 6 D and E). In addition,

1µM MSA reduced growth of MDA-MB-468 at 72 h (Fig. 7A), whereas the same

concentration did not affect growth of MCF-7, MCF-7-LCC2, HEC1A, and Ishikawa

cells (data not shown). Currently the cell specific sensitivity of MSA is under

investigation.

A review of the literature from cancer cell lines and in vivo tumors reveals that

MSA and tamoxifen exhibit similarities in growth inhibitory mechanisms. Both agents

induce G1 arrest that is associated with a similar profile of changes in cell cycle

regulatory proteins (19,30-32). Both agents induce a dose dependent apoptosis that is

p53 independent and may involve activation of the same caspases as well as reduction in

bcl-2 (14,15,33-35). This suggests that the added efficacy observed with combination of selenium with tamoxifen is the result of more pronounced perturbations in several common regulatory proteins resulting in elevated apoptosis and reduced proliferation when compared to effects of either agent alone.

As we have previously demonstrated, low concentrations of MSA (1-2.5 µM) had no effect on ERα mRNA and protein expression while still capable of inhibiting estradiol-dependent gene expression (revised manuscript submitted to Breast Cancer

Research and Treatment4). Therefore at low MSA concentrations, disruption of ER signaling occurred via mechanisms independent of ERα depletion suggesting that MSA also affected ERα function. Dong et al. (35) demonstrated that MSA regulates

199 expression of several proteins known to be important mediators of ERα action. In this study it was shown that MSA decreased cyclin D1 levels in premalignant human breast cancer cells. In addition to its functions as a cell cycle regulator, cyclin D1 is also an ERα coactivator (36) and its overexpression is correlated with tamoxifen resistance in ERα- positive postmenopausal breast cancer (37,38). Exogenous expression of cyclin D1 in tamoxifen sensitive breast cancer cells reverse the growth inhibitory properties of tamoxifen (39). In addition to cyclin D1, other coactivators are important in the mechanism of tamoxifen resistance. Overexpression of AIB1 (amplified in breast cancer-

1 (SRC-3/RAC-3/ACTR)) in patients receiving tamoxifen was correlated with tamoxifen resistance (40). Elevated SRC-1 (steroid receptor coactivator-1 (NcoA-1)), but not TIF-2

(transcriptional intermediary factor-2 (SRC-2/NcoA-2/GRIP1)) or AIB1 was correlated with tamoxifen agonist activity in Ishikawa cells (41). Corepressor levels have been associated with tamoxifen resistance. A decrease in nuclear corepressor (N-CoR) levels have been associated with a shorter relapse free survival in tamoxifen treated patients, suggesting that N-CoR may be a good independent prognostic marker of tamoxifen resistance (42). Dong et al. (35) reported that MSA reduced AKT levels, which is interesting in light of several reports demonstrating increased AKT activity in tamoxifen resistant breast caner cells (43,44). Future studies will elucidate the molecular mechanisms underlying the ability of MSA to restore tamoxifen sensitivity in resistant cells.

200 Although clinical trials with selenium are currently limited to chemoprevention,

recent evidence now strongly demonstrate the potential of utilizing selenium in a new

way; as a novel therapy for overt cancer through combination with well-established

chemotherapeutic and hormonal agents. Several studies have demonstrated growth

inhibition of established tumors by selenium in in vivo models (45-49). However these

studies used inorganic selenium compounds that are genotoxic and no longer used for

selenium chemoprevention. More recently, Cao et al. demonstrated a synergistic

interaction of organic selenium compounds with the topoisomerase 1 poison irinotecan

(50). Xenograft mice bearing squamous cell carcinomas of the head/neck and colon were

given selenium in the form of MSC and Se-Met orally seven days prior to intravenous

injection of irinotecan. Combination treatment of irinotecan + selenium decreased the toxicity of the chemotherapeutic agent and increased the cure rate of the tumor-bearing mice inoculated with cancer cells sensitive and resistant to irinotecan (50). The present study provides a compelling rationale to explore therapeutic regimens combining tamoxifen with organic selenium compounds for hormone dependent breast cancer.

201

Figure Legends

Fig. 1. MSA inhibits estrogen and tamoxifen activated ERE2e1b-luciferase reporter.

(A) MCF-7, (B) MCF-7-LCC2, (C) HEC1A, and (D) Ishikawa cells (2 x 105 cells/well)

were transfected with ERE2e1b-luciferase reporter (0.5 µg/well). 24 hours

posttransfection cells were incubated with vehicle (Veh), 10-8 M estradiol (E2) for MCF-

7, HEC1A and Ishikawa or 10-9 M E2 for MCF-7-LCC2 cells, 10-7 M 4- hydroxytamoxifen (Tam) for MCF-7, HEC1A and Ishikawa or 10-8 M Tam for MCF-7-

LCC2 cells or 10µM MSA alone or co-incubated with E2 and MSA, Tam and MSA, or

E2, Tam and MSA for 24 h. Standard luciferase assays were performed on cell extracts in triplicate as described in the Materials and Methods. Each bar represents the mean value

± S.D. (*) = P<.05 compared to vehicle incubated samples. (†) = P<.05 compared to estradiol or 4-hydroxytamoxifen treated samples. (‡) = P<.05 compared to compared to estradiol and 4-hydroxtamoxifen co-incubated samples.

Fig. 2. MSA inhibits estradiol and tamoxifen-dependent activation of c-myc gene expression. (A) MCF-7, (B) MCF-7-LCC2, (C) HEC1A, and (D) Ishikawa cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol (E2) 10-7 M 4- hydroxytamoxifen (Tam) or 10µM MSA alone or co-incubated with E2 and MSA or Tam and MSA for 6 h. C-myc mRNA was measured by real time RT-PCR as described in the

Materials and Methods. Expression was normalized to GAPDH and each bar represents

202 the mean value ± S.D. (*)= P<.05 compared to vehicle incubated samples (†) = P<.05

compared to estradiol or 4-hydroxytamoxifen incubated samples.

Fig. 3. MSA reduces ERα protein. (A) MCF-7, (B) MCF-7-LCC2, and (C) Ishikawa

cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol (E2) 10-7 M

4-hydroxytamoxifen (Tam) or 10µM MSA alone or co-incubated with E2 and MSA or

Tam and MSA for 6 h. Western blot analysis was performed. Quantitation of the

Western blot signal for ERα was normalized to the Western blot signal for β-actin levels

(Fig 3A,B, and C, Right panels), and each bar represents the mean value ± S.D. (*)=

P<.05 compared to vehicle incubated samples (†) = P<.05 compared to estradiol or 4- hydroxtamoxifen incubated samples.

Fig. 4. MSA reduces ERα mRNA. (A) MCF-7, (B) MCF-7-LCC2, (C) HEC1A, and

(D) Ishikawa cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M estradiol (E2), 10-7 M 4-hydroxytamoxifen (Tam), or 10µM MSA alone or co-incubated with E2 and MSA or Tam and MSA for 2 h. ERα mRNA was measured by real time RT-

PCR as described in the Materials and Methods. Expression was normalized to GAPDH

and each bar represents the mean value ± S.D. (*)= P<.05 compared to vehicle incubated

samples (†) = P<.05 compared to estradiol or 4-hydroxytamoxifen incubated samples.

Fig. 5. MSA does not alter ERβ mRNA. (A) MCF-7, (B) MCF-7-LCC2, (C) HEC1A, and (D) Ishikawa cells (2 x 106 cells/plate) were incubated with vehicle (Veh), 10-8 M

203 estradiol (E2), 10-7 M 4-hydroxytamoxifen (Tam), or 10µM MSA alone or co-incubated with E2 and MSA or Tam and MSA for 2 h. ERβ mRNA was measured by real time RT-

PCR as described in the Materials and Methods. Expression was normalized to GAPDH and each bar represents the mean value ± S.D.

Fig. 6. MSA increases the growth inhibitory properties of 4-hydroxytamoxifen. (A)

Growth inhibitory effects of 4-hydroxtamoxifen as measured by MTT assay (A) MCF-7,

T47D, MCF-7-LCC2, HEC1A, and Ishikawa cells (2 x 104 cells/well) were incubated with vehicle or 10-7 M 4-hydroxytamoxifen for 24, 48, 72, and 96 h. Each bar represents the mean value ± S.D. The graph is expressed as % vehicle, where vehicle incubated samples are set as 100% (*) = P<.05 compared to vehicle. (B) MCF-7, (C) T47D, (D)

MCF-7-LCC2, (E) HEC1A, and (F) Ishikawa cells (2 x 104 cells/well) were incubated with vehicle, 10-7 M 4-hydroxtamoxifen (Tam) or 2.5µM MSA or co-incubated with Tam and MSA for 24, 48, 72, and 96 h and MTT assays were performed. The graph is expressed as % vehicle, where vehicle incubated samples are set as 100% (*) = P<.05 compared to 4-hydroxtamoxifen or MSA incubated samples alone.

Fig. 7. Tamoxifen and MSA do not synergize for growth inhibition in ERα negative cell lines. (A) MDA-MB-468 cells (2 x 104 cells/well) were incubated with vehicle, 10-7

M 4-hydroxtamoxifen (Tam) or 1µM MSA or co-incubated with Tam and MSA for 24,

48, 72, and 96 h and MTT assays were performed. The graph is expressed as % vehicle, where vehicle incubated samples are set as 100% (B) MSA has no effect on ER ligand

204 binding. MCF-7 cells (4 x 105 cells/well) were incubated with vehicle (Veh) or 10µM

3 MSA for 1 h. Following 1 h incubation 10nM [ H] E2 in presence or absence 500 fold

excess cold estradiol was added to each well and incubated for 1 h. Relative binding

affinity was measured as described in Material and Methods, and vehicle incubated

samples were set as 1.

205

Reference List

1. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 1988. 240: 889-895.

2. Tsai, M. J. and O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994. 63:451-86.: 451-486.

3. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996. 93: 5925-5930.

4. Mosselman, S., Polman, J., and Dijkema, R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996. 19;392: 49- 53.

5. Tremblay, G. B., Tremblay, A., Copeland, N. G. et al. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol 1997. 11: 353-365.

6. Klinge, C. M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2001. 29: 2905-2919.

7. McKenna, N. J., Lanz, R. B., and O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999. 20: 321-344.

8. Dutertre, M. and Smith, C. L. Molecular mechanisms of selective estrogen receptor modulator (SERM) action. J Pharmacol Exp Ther 2000. 295: 431-437.

9. Jordan, V. C. and Koerner, S. Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. Eur J Cancer 1975. 11: 205-206.

10. Jordan, V. C. Tamoxifen: a personal retrospective. Lancet Oncol 2000. 1: 43-49.

11. Clarke, R., Leonessa, F., Welch, J. N., and Skaar, T. C. Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 2001. 53: 25- 71.

12. Fisher, B., Costantino, J. P., Redmond, C. K. et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 1994. 86: 527-537.

206 13. Sinha, R., Said, T. K., and Medina, D. Organic and inorganic selenium compounds inhibit mouse mammary cell growth in vitro by different cellular pathways. Cancer Lett 1996. 107: 277-284.

14. Wang, Z., Jiang, C., and Lu, J. Induction of caspase-mediated apoptosis and cell- cycle G1 arrest by selenium metabolite methylselenol. Mol Carcinog 2002. 34: 113- 120.

15. Ip, C. and Dong, Y. Methylselenocysteine modulates proliferation and apoptosis biomarkers in premalignant lesions of the rat mammary gland. Anticancer Res 2001. 21: 863-867.

16. Clark, L. C., Combs, G. F., Jr., Turnbull, B. W. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996. 276: 1957-1963.

17. Nelson, M. A., Porterfield, B. W., Jacobs, E. T., and Clark, L. C. Selenium and prostate cancer prevention. Semin Urol Oncol 1999. 17: 91-96.

18. Duffield-Lillico, A. J., Reid, M. E., Turnbull, B. W. et al. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomarkers Prev 2002. 11: 630-639.

19. Ip, C., Thompson, H. J., Zhu, Z., and Ganther, H. E. In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 2000. 60: 2882-2886.

20. Shah, Y. M., Basrur, V., and Rowan, B. G. Selective estrogen receptor modulator regulated proteins in endometrial cancer cells. Mol Cell Endocrinol 2004. 219: 127- 139.

21. Castro-Rivera, E. and Safe, S. Estrogen- and antiestrogen-responsiveness of HEC1A endometrial adenocarcinoma cells in culture. J Steroid Biochem Mol Biol 1998. 64: 287-295.

22. Croxtall, J. D., Elder, M. G., and White, J. O. Hormonal control of proliferation in the Ishikawa endometrial adenocarcinoma cell line. J Steroid Biochem 1990. 35: 665-669.

23. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L., and O'Malley, B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 1999. 96: 1858-1862.

207 24. Leclercq, G., Legros, N., and Piccart, M. J. Accumulation of a non-binding form of estrogen receptor in MCF-7 cells under hydroxytamoxifen treatment. J Steroid Biochem Mol Biol 1992. 41: 545-552.

25. Jozan, S., Elalamy, H., and Bayard, F. [Mechanism of action of a triphenylethylene type antiestrogen on growth of the human breast cancer cell line. MCF-7 in culture]. C R Seances Acad Sci III 1981. 292: 767-770.

26. Zugmaier, G., Ennis, B. W., Deschauer, B. et al. Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 1989. 141: 353-361.

27. Vladusic, E. A., Hornby, A. E., Guerra-Vladusic, F. K., Lakins, J., and Lupu, R. Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol Rep 2000. 7: 157-167.

28. Lindner, D. J. and Borden, E. C. Synergistic antitumor effects of a combination of interferon and tamoxifen on estrogen receptor-positive and receptor-negative human tumor cell lines in vivo and in vitro. J Interferon Cytokine Res 1997. 17: 681-693.

29. Stoica, A., Pentecost, E., and Martin, M. B. Effects of selenite on estrogen receptor- alpha expression and activity in MCF-7 breast cancer cells. J Cell Biochem 2000. 79: 282-292.

30. Zhu, Z., Jiang, W., Ganther, H. E., and Thompson, H. J. Mechanisms of cell cycle arrest by methylseleninic acid. Cancer Res 2002. 62: 156-164.

31. Sutherland, R. L., Hall, R. E., and Taylor, I. W. Cell proliferation kinetics of MCF- 7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Res 1983. 43: 3998-4006.

32. Sinha, R., Unni, E., Ganther, H. E., and Medina, D. Methylseleninic acid, a potent growth inhibitor of synchronized mouse mammary epithelial tumor cells in vitro. Biochem Pharmacol 2001. 61: 311-317.

33. Mandlekar, S., Hebbar, V., Christov, K., and Kong, A. N. Pharmacodynamics of tamoxifen and its 4-hydroxy and N-desmethyl metabolites: activation of caspases and induction of apoptosis in rat mammary tumors and in human breast cancer cell lines. Cancer Res 2000. 60: 6601-6606.

34. Kandouz, M., Siromachkova, M., Jacob, D. et al. Antagonism between estradiol and progestin on Bcl-2 expression in breast-cancer cells. Int J Cancer 1996. 68: 120-125.

208 35. Dong, Y., Ganther, H. E., Stewart, C., and Ip, C. Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Res 2002. 62: 708-714.

36. Neuman, E., Ladha, M. H., Lin, N. et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 1997. 17: 5338- 5347.

37. Stendahl, M., Kronblad, A., Ryden, L. et al. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer 2004. 90: 1942-1948.

38. Kenny, F. S., Hui, R., Musgrove, E. A. et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res 1999. 5: 2069-2076.

39. Wilcken, N. R., Prall, O. W., Musgrove, E. A., and Sutherland, R. L. Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res 1997. 3: 849-854.

40. Osborne, C. K., Bardou, V., Hopp, T. A. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 2003. 95: 353-361.

41. Shang, Y. and Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 2002. 295: 2465-2468.

42. Girault, I., Lerebours, F., Amarir, S. et al. Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res 2003. 9: 1259-1266.

43. Campbell, R. A., Bhat-Nakshatri, P., Patel, N. M. et al. Phosphatidylinositol 3- kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti- estrogen resistance. J Biol Chem 2001. 276: 9817-9824.

44. Clark, A. S., West, K., Streicher, S., and Dennis, P. A. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002. 1: 707-717.

45. Greeder, G. A. and Milner, J. A. Factors influencing the inhibitory effect of selenium on mice inoculated with Ehrlich ascites tumor cells. Science 1980. 209: 825-827.

46. Medina, D. and Oborn, C. J. Differential effects of selenium on the growth of mouse mammary cells in vitro. Cancer Lett 1981. 13: 333-344.

209 47. Poirier, K. A. and Milner, J. A. Factors influencing the antitumorigenic properties of selenium in mice. J Nutr 1983. 113: 2147-2154.

48. Watrach, A. M., Milner, J. A., Watrach, M. A., and Poirier, K. A. Inhibition of human breast cancer cells by selenium. Cancer Lett 1984. 25: 41-47.

49. Watrach, A. M., Milner, J. A., and Watrach, M. A. Effect of selenium on growth rate of canine mammary carcinoma cells in athymic nude mice. Cancer Lett 1982. 15: 137-143.

50. Cao, S., Durrani, F. A., and Rustum, Y. M. Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin Cancer Res 2004. 10: 2561-2569.

210 A 90000000 * 80000000 70000000 60000000 MCF-7 U 50000000 RL 40000000 † 30000000 20000000 * ‡ 10000000 * 0 * h A 2 A m A m A e S E S a S a S n 2 T V 0 E m M T M Co M 1 M 0 + 0 + m A + 1 Ta 1 2 Ta + 0 2 A m A + 1 E S a S E m A MS M E2 a S +M T + T M + + E2 m 2 m Ta E a +T E2

B 80000000 MCF-7-LCC2 70000000 * 60000000 50000000 U † 40000000

RL ‡ 30000000 20000000 10000000 0 h A 2 A m A m A e S E S a S a S V n 9 T 8 T M 0 E M 0 T M 0 T8 M Co 1 + 1 + + + + 0 A 2 1 2 9 1 A m A E E m MS E S a S a SA M T M T M + + + + E9 T8 2 T8 E + E9 Fig 1

211 C

14000000 * 12000000 HEC1A 10000000 U

L 8000000 R 6000000 † * 4000000 † 2000000

0 h A 2 A m A Ceon MSSA 10 EE2 E2+MS SA Taa m Tam+SMSA V M M T M + 10 + 10 2 m E a T

D 18000000 16000000 * 14000000 Ishikawa 12000000

U 10000000 †

RL 8000000 * 6000000 4000000 † 2000000 0 h A 2 A m A e S E S a S VCon MSA 10 E2 E2+MSA Tam Tam+MSA M M T M + 10 + 10 2 m E a T Fig 1

212 A 2.5 * ce 2 MCF-7

eren 1.5 ff i D d

l 1 † o F 0.5

0 A A h A S e 2 S m n AS E E2 A am CoV MS MS TaT M SA M + M + M 2 + + E2 m m E a Ta T

10 * 9 MCF-7-LCC2 8 B 7 * 6 erence f f

i 5 4 † ld D

o 3 F 2 1 † 0 h A A m A Coe n MSSA EE22E2+SMSA Tam TamS+MSA V M M Ta M + + 2 m E a T

Fig 2

213 C HEC1A 2.5 * * 2 ence r

e 1.5 f f i † † D 1 d l o

F * 0.5

0 A A Cohn MSAA E22 E2+SMSA Tamm TamS+MSA e S E a V M T M M + + 2 m E a T

Ishikawa D 18 * 16 14 * 12 † ence 10

er † f

f 8 i

D 6 d l

o 4 F 2 0 A A Conh MSAA E22 E2S+MSA Tmam TaSm+MSA e S E a V M T M M + + 2 m E a T

Fig 2

214

MCF-7 3

A * A S 2.5 A S M + M A S 2 m h S + m e 2 2 a a O

V M E E T T P n

ti 1.5 ac ERα β 1 *

ER/ † 0.5 *† β-actin 0 A hCon MASA E22 E2A+MSA Tamm TamS+MSA e S E S a V M M M T + + m B MCF-7-LCC2 E2 Ta A S A S M + M 1.4 A S h S + m m e a 1.2 V M E2 E2 Ta T PO

n 1 i t ERα 0.8 ac *† β / 0.6 † ER β-actin 0.4 0.2

0 Chon MSAA E22 E2+AMSA Tmam Tam+AMSA e S E S a S V M M T M + + E2 m C Ishikawa Ta A S A 1.8 S * M + 1.6 M A S m h S + m e 2 2 a a 1.4 V M E E T T PO

n 1.2 i t 1 ERα ac β 0.8 † † ER/ 0.6 * β-actin 0.4 0.2 0 h A 2 A m A eCon MSSA EE2 E2S+MSA aTam TamS+MSA V M M T M + + m Fig 3 E2 a T

215

A MCF-7

1.6 1.4 1.2

ence 1 er f f 0.8 *†† Di

d 0.6 l o

F 0.4 0.2 0 h A 2 A m A e S 2E S V n SA A m SA M M Ta M + 2 + m E a T

B MCF-7-LCC2 1.8 1.6 1.4

ence 1.2 er f

f 1 i

D 0.8 † † d

l *

o 0.6 F 0.4 0.2 0 h 2 e A A m A n AS E AS a S V E2 S mT A Co MSM MM Ta M + MS+ 2+ m+ E a m E2 T Ta

Fig 4

216 C HEC1A 1. 6 1. 4 e c 1. 2 1 fferen i 0. 8 †

ld D 0. 6 *† o F 0. 4 0. 2 0 h e A A m A S E22 S S V n A E Tam Co M M A MA MS + S Ta S M +M E22+ m+ E am TT

D 1.2 1 Ishikawa

0.8 rence e f

f *

i 0.6

D † d l 0.4 *

o † F 0.2

0 h 2 e A A m A AS 2E S S Vn E A Tam A Co MSM MS Ta MS +M +M 2+ + E2E m Ta Ta

Fig 4

217 A 1.6 MCF-7

1.4

1.2 ce 1 eren f f

i 0.8 D d

l 0.6 o

F 0.4

0.2

0 Cohn MASA E22 E2+AMSA Tmam TamA+MSA e S E S a V S M M T M + 2 + m E a T

B 1.8 MCF-7-LCC2 1.6 1.4

ce 1.2 1 eren f f i 0.8 D d

l 0.6 o

F 0.4

0.2 0 A 2 A m A Cehon MSSA E2E E2+SMSA aTam Tam+MSA V S M M T M + 2 + m E a T

Fig 5

218 HEC1A C 1.8 1.6 1.4

nce 1.2

ere 1 ff i 0.8 D d l

o 0.6 F 0.4 0.2 0 Con MASA E22 E2+MASA Tamm Tam+MASA eh S E S a S V M M T M + + 2 m E a T

D Ishikawa 2 1.8 1.6 1.4

nce 1.2

ere 1 ff i 0.8 D d l 0.6 o F 0.4 0.2 0 h A 2 A m A Ce on SMSA EE2 E2S+MSA aTam TamS+MSA V M M T M + + 2 m E a T Fig 5

219 A 120

100 HEC1A 80 * Ishikawa

e

l *

c MCF-7-LCC2 i 60 h * MCF-7

e

V * 40 T47D

% * 20

0 2412348 72 96 4 (Hours)

120 B MCF-7 100

80

e Tam

l

c i 60 MSA

h

e

V Tam+MSA 40 % ** * 20

0 124 482732 964 (Hours)

120 C T47D 100

80

e

l Tam

c

i

h MSA

e 60

V Tam+MSA

% 40 *

20 * * 0 24 48 72 96 24h 48h 72h 96h Fig 6 (Hours)

220 D 120 MCF-7-LCC2 100

80

e Tam

l

c * i MSA h 60

e

V Tam+MSA 40

% * 20

0 123424 48 72 96 (Hours)

E 120 HEC1A 100

80

e Tam

l

c

i 60 MSA

h e Tam+MSA

V 40

% 20

0 * 124 482723496 (Hours)

F 120 Ishikawa 100

80

e l Tam

c

i

h 60 MSA

e

V Tam+MSA

40

% * 20 * 0 124 248 723946 (Hours) Fig 6

221 A

120 MDA-MB-468

100

e 80

l

c Tam

i

h

e 60 MSA

V

Tam+MSA

% 40

20

0 2244 4488 72 9696 (Hours)

B 1.4

y 1.2

t

n

i

f f 1

A

g

n

i 0.8

d

n

i

B

0.6

e

v

i

t

a 0.4

l

e R 0.2

0 Ch on MSAA e S V M

Fig 7

222 SUMMARY

The research projects in this dissertation focus on the molecular mechanisms of

tamoxifen sensitivity and resistance with the goal of improving tamoxifen efficacy in

breast and endometrial cancer. These studies have provided protein profiles that may

serve as novel indices of SERM response and may also provide insight into novel

-8 mechanisms of SERM-mediated growth. Following 24-hour incubation with 10 M

-7 -7 estradiol, 10 M 4-hydroxytamoxifen, or 10 M EM-652 (Acolbifene), nine proteins

exhibited significant increase in expression. The proteins identified were heat shock

protein 90 (HSP90)-α, and –β, heterogeneous nuclear ribonucleoprotein F (hnRNP F),

RNA polymerase II-mediating protein (RMP), cytoskeletal keratin 8 (Ck 8), cytoskeletal

keratin 18 (Ck 18), ubiquitin-conjugating enzyme E2-18kDa (UbcH7), and nucleoside

diphosphate kinase B (NDPK B). Interestingly, we have shown NDPK B to be induced

by estradiol and tamoxifen in both the secreted and cytoplasmic fraction of Ishikawa

cells. Previous studies have shown ectopic expression of NDPK B to increase cellular

proliferation (Caligo et al., 1995, 1996). Therefore, future studies will assess whether

NDPK B participates in estrogen- and tamoxifen-dependent proliferation in Ishikawa and

other endometrium-derived cell lines. The NDPK B may serve as a biomarker for the

tamoxifen resistant phenotype, and since NDPK B is a secreted protein it could easily be

assayed by non-invasive procedures.

In addition, these studies present a mechanistic groundwork for rational design of

preclinical therapeutic strategies designed to inhibit src kinase and combine tamoxifen

with organic selenium compounds to circumvent tamoxifen resistant breast cancer and

223 relieve the deleterious estrogen-like side effects of tamoxifen and other SERMs in non- target tissues. It was found that src kinase inhibitors and MSA disrupted ERα signaling and potentiated the antagonist action of tamoxifen in sensitive and resistant breast and endometrial cell lines via separate mechanisms. Src kinase inhibitors blocked ERα promoter interaction through decrease phosphorylation at serine 167 and inhibited SRC-1 transactivation. Seven phosphorylation sites have been identified on SRC-1 (Rowan et al., 2000b), although no single site was responsible for src kinase mediated potentiation of SRC-1. Several possibilities will be assessed in the future: 1) Since all seven SRC-1 phosphorylation sites contain consensus sequences for serine/threonine-proline directed kinases it is possible that only one or few kinases contribute to steady state SRC-1 phosphorylation; 2) Src kinase increases phosphorylation at multiple sites; 3) Activation of src kinase mediates a dephosphorylation event on SRC-1; 4) A different protein in the

SRC-1 complex may be a direct or indirect substrate of src kinase; and 5) A novel phosphorylation site may be involved in src kinase dependent increase in SRC-1 activity.

The MSA decreased ERα mRNA and protein levels in tamoxifen-sensitive and resistant breast and endometrial cancer cell lines in vitro. Future experiments will delineate molecular mechanisms modulating MSA decrease of ERα levels by assessing

ERα transcription rates, hnRNA and cytosolic mRNA stability, nuclear mRNA export, translation rates and protein turnover. A decrease in ERα expression is thought to be the major mechanism in disruption of ERα-regulated gene expression and potentiation of tamoxifen-mediated growth inhibition. However, low concentrations of MSA (1-2.5 µM) had no effect on ERα mRNA and protein expression while still capable of inhibiting

224 estradiol-dependent gene transcription. Therefore at low MSA concentrations, disruption

of ER signaling occurred via mechanisms independent of ERα depletion suggesting that

MSA also affects other parameters of ERα function. The MSA inhibits in vitro DNA binding by AR (Dong et al., 2004). Dong et al. (2002a) demonstrated that MSA decreased cyclin D1 levels in premalignant breast neoplasms. In addition to its functions as a cell cycle regulator, cyclin D1 is also an ERα coactivator (Neuman et al., 1997) and its overexpression is correlated with tamoxifen resistance in ERα-positive postmenopausal breast cancer (Kenny et al., 1999; Stendahl et al., 2004). Dong et al.

(Dong et al., 2002a) reported that MSA reduced AKT levels, which have been shown to be important in tamoxifen resistant breast caner cells (Campbell et al., 2001; Clark et al.,

2002). Future experiments will assess the effects of MSA on ERα promoter interaction as well as expression levels of other coregulators and kinases.

Future studies will utilize animal models to further validate the SERM-regulated proteins identified in this dissertation and for the development of non-cross-resistant therapies utilizing inhibitors of src kinase or selenium in combination with tamoxifen.

The studies presented in the dissertation are particularly important in the prevention and therapy of breast cancer. By understanding the precise molecular mechanisms better therapeutic strategies can be developed to inhibit tamoxifen resistant breast cancer and relieve the deleterious estrogen-like side effects of tamoxifen and other SERMs in non- target tissues.

225 BIBLIOGRAPHY

(1997). Breast cancer and hormone replacement therapy: collaborative reanalysis of data

from 51 epidemiological studies of 52,705 women with breast cancer and 108,411

women without breast cancer. Collaborative Group on Hormonal Factors in

Breast Cancer. Lancet 350, 1047-1059.

(1998). Tamoxifen for early breast cancer: an overview of the randomised trials. Early

Breast Cancer Trialists' Collaborative Group. Lancet 351, 1451-1467.

(2002). Endogenous sex hormones and breast cancer in postmenopausal women:

reanalysis of nine prospective studies. J Natl Cancer Inst 94, 606-616.

Abram, C. L. and Courtneidge, S. A. (2000). Src family tyrosine kinases and growth

factor signaling. Exp Cell Res 254, 1-13.

Adesanya, O. O., Zhou, J., Samathanam, C., Powell-Braxton, L., and Bondy, C. A.

(1999). Insulin-like growth factor 1 is required for G2 progression in the

estradiol-induced mitotic cycle. Proc Natl Acad Sci U S A 96, 3287-3291.

Agus, D. B., Gordon, M. S., Taylor, C., Natale, R. B., Karlan, B., Mendelson, D. S.,

Press, M. F., Allison, D. E., Sliwkowski, M. X., Lieberman, G., Kelsey, S. M.,

and Fyfe, G. (2005). Phase I Clinical Study of Pertuzumab, a Novel HER

Dimerization Inhibitor, in Patients With Advanced Cancer. J Clin Oncol .

226 Ali, S., Metzger, D., Bornert, J. M., and Chambon, P. (1993). Modulation of

transcriptional activation by ligand-dependent phosphorylation of the human

oestrogen receptor A/B region. EMBO J 12, 1153-1160.

Anderson, L. and Seilhamer, J. (1997). A comparison of selected mRNA and protein

abundances in human liver. Electrophoresis 18, 533-537.

Anzai, Y., Holinka, C. F., Kuramoto, H., and Gurpide, E. (1989). Stimulatory effects of

4-hydroxytamoxifen on proliferation of human endometrial adenocarcinoma cells

(Ishikawa line). Cancer Res 49, 2362-2365.

Anzick, S. L., Kononen, J., Walker, R. L., Azorsa, D. O., Tanner, M. M., Guan, X. Y.,

Sauter, G., Kallioniemi, O. P., Trent, J. M., and Meltzer, P. S. (1997). AIB1, a

steroid receptor coactivator amplified in breast and ovarian cancer. Science 277,

965-968.

Apostolakis, E. M., Ramamurphy, M., Zhou, D., Onate, S., and O'Malley, B. W. (2002).

Acute disruption of select steroid receptor coactivators prevents reproductive

behavior in rats and unmasks genetic adaptation in knockout mice. Mol

Endocrinol 16, 1511-1523.

Arao, Y., Kikuchi, A., Ikeda, K., Nomoto, S., Horiguchi, H., and Kayama, F. (2002).

A+U-rich-element RNA-binding factor 1/heterogeneous nuclear

ribonucleoprotein D gene expression is regulated by oestrogen in the rat uterus.

Biochem J 361, 125-132.

227 Ardizzoni, A. and Tiseo, M. (2004). Second-line chemotherapy in the treatment of

advanced non-small cell lung cancer (NSCLC). J Chemother 16 Suppl 4:104-107.

Arnold, S. F., Obourn, J. D., Jaffe, H., and Notides, A. C. (1994). Serine 167 is the major

estradiol-induced phosphorylation site on the human estrogen receptor. Mol

Endocrinol 8, 1208-1214.

Arnold, S. F., Obourn, J. D., Jaffe, H., and Notides, A. C. (1995a). Phosphorylation of the

human estrogen receptor by mitogen-activated protein kinase and casein kinase II:

consequence on DNA binding. J Steroid Biochem Mol Biol 55, 163-172.

Arnold, S. F., Vorojeikina, D. P., and Notides, A. C. (1995b). Phosphorylation of tyrosine

537 on the human estrogen receptor is required for binding to an estrogen

response element. J Biol Chem 270, 30205-30212.

Arnold, S. F., Obourn, J. D., Jaffe, H., and Notides, A. C. (1995c). Phosphorylation of the

human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine

kinases in vitro. Mol Endocrinol 9, 24-33.

Arnold, S. F., Melamed, M., Vorojeikina, D. P., Notides, A. C., and Sasson, S. (1997).

Estradiol-binding mechanism and binding capacity of the human estrogen

receptor is regulated by tyrosine phosphorylation. Mol Endocrinol 11, 48-53.

Auboeuf, D., Honig, A., Berget, S. M., and O'Malley, B. W. (2002). Coordinate

regulation of transcription and splicing by steroid receptor coregulators. Science

298, 416-419.

228 Baba, H., Urano, T., Okada, K., Furukawa, K., Nakayama, E., Tanaka, H., Iwasaki, K.,

and Shiku, H. (1995). Two isotypes of murine nm23/nucleoside diphosphate

kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a

murine melanoma line. Cancer Res 55, 1977-1981.

Bakin, A. V., Safina, A., Rinehart, C., Daroqui, C., Darbary, H., and Helfman, D. M.

(2004). A critical role of tropomyosins in TGF-beta regulation of the actin

cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15, 4682-4694.

Bakir, S., Mori, T., Durand, J., Chen, Y. F., Thompson, J. A., and Oparil, S. (2000).

Estrogen-induced vasoprotection is estrogen receptor dependent: evidence from

the balloon-injured rat carotid artery model. Circulation 101, 2342-2344.

Balasenthil, S., Barnes, C. J., Rayala, S. K., and Kumar, R. (2004). Estrogen receptor

activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells.

FEBS Lett 567, 243-247.

Benz, C. C., Scott, G. K., Sarup, J. C., Johnson, R. M., Tripathy, D., Coronado, E.,

Shepard, H. M., and Osborne, C. K. (1993). Estrogen-dependent, tamoxifen-

resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast

Cancer Res Treat 24, 85-95.

Berry, M., Metzger, D., and Chambon, P. (1990). Role of the two activating domains of

the oestrogen receptor in the cell-type and promoter-context dependent agonistic

activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9, 2811-2818.

229 Berstein, L. M., Zheng, H., Yue, W., Wang, J. P., Lykkesfeldt, A. E., Naftolin, F.,

Harada, H., Shanabrough, M., and Santen, R. J. (2003). New approaches to the

understanding of tamoxifen action and resistance. Endocr Relat Cancer 10, 267-

277.

Bocchinfuso, W. P. and Korach, K. S. (1997). Mammary gland development and

tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol

Neoplasia 2, 323-334.

Bocchinfuso, W. P., Hively, W. P., Couse, J. F., Varmus, H. E., and Korach, K. S.

(1999). A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland

hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer

Res 59, 1869-1876.

Bord, S., Horner, A., Beavan, S., and Compston, J. (2001). Estrogen receptors alpha and

beta are differentially expressed in developing human bone. J Clin Endocrinol

Metab 86, 2309-2314.

Boss, S. M., Huster, W. J., Neild, J. A., Glant, M. D., Eisenhut, C. C., and Draper, M. W.

(1997). Effects of raloxifene hydrochloride on the endometrium of

postmenopausal women. Am J Obstet Gynecol 177, 1458-1464.

Braidman, I. P., Hainey, L., Batra, G., Selby, P. L., Saunders, P. T., and Hoyland, J. A.

(2001). Localization of estrogen receptor beta protein expression in adult human

bone. J Bone Miner Res 16, 214-220.

230 Bression, D., Michard, M., Le Dafniet, M., Pagesy, P., and Peillon, F. (1986). Evidence

for a specific estradiol binding site on rat pituitary membranes. Endocrinology

119, 1048-1051.

Bross, P. F., Baird, A., Chen, G., Jee, J. M., Lostritto, R. T., Morse, D. E., Rosario, L. A.,

Williams, G. M., Yang, P., Rahman, A., Williams, G., and Pazdur, R. (2003).

Fulvestrant in postmenopausal women with advanced breast cancer. Clin Cancer

Res 9, 4309-4317.

Brown, M. T. and Cooper, J. A. (1996). Regulation, substrates and functions of src.

Biochim Biophys Acta 1287, 121-149.

Brubaker, K. D. and Gay, C. V. (1994). Specific binding of estrogen to osteoclast

surfaces. Biochem Biophys Res Commun 200, 899-907.

Buckley, M. M. and Goa, K. L. (1989). Tamoxifen. A reappraisal of its

pharmacodynamic and pharmacokinetic properties, and therapeutic use. Drugs 37,

451-490.

Bunone, G., Briand, P. A., Miksicek, R. J., and Picard, D. (1996). Activation of the

unliganded estrogen receptor by EGF involves the MAP kinase pathway and

direct phosphorylation. EMBO J 15, 2174-2183.

Burakov, D., Wong, C. W., Rachez, C., Cheskis, B. J., and Freedman, L. P. (2000).

Functional interactions between the estrogen receptor and DRIP205, a subunit of

the heteromeric DRIP coactivator complex. J Biol Chem 275, 20928-20934.

231 Burakov, D., Crofts, L. A., Chang, C. P., and Freedman, L. P. (2002). Reciprocal

recruitment of DRIP/mediator and p160 coactivator complexes in vivo by

estrogen receptor. J Biol Chem 277, 14359-14362.

Caligo, M. A., Cipollini, G., Fiore, L., Calvo, S., Basolo, F., Collecchi, P., Ciardiello, F.,

Pepe, S., Petrini, M., and Bevilacqua, G. (1995). NM23 gene expression

correlates with cell growth rate and S-phase. Int J Cancer 60, 837-842.

Caligo, M. A., Cipollini, G., Petrini, M., Valentini, P., and Bevilacqua, G. (1996). Down

regulation of NM23.H1, NM23.H2 and c-myc genes during differentiation

induced by 1,25 dihydroxyvitamin D3. Leuk Res 20, 161-167.

Campbell, R. A., Bhat-Nakshatri, P., Patel, N. M., Constantinidou, D., Ali, S., and

Nakshatri, H. (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of

estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem

276, 9817-9824.

Cao, S., Durrani, F. A., and Rustum, Y. M. (2004). Selective modulation of the

therapeutic efficacy of anticancer drugs by selenium containing compounds

against human tumor xenografts. Clin Cancer Res 10, 2561-2569.

Cardiff, R. D. and Muller, W. J. (1993). Transgenic mouse models of mammary

tumorigenesis. Cancer Surv 16, 97-113.

Carson, J. H., Kwon, S., and Barbarese, E. (1998). RNA trafficking in myelinating cells.

Curr Opin Neurobiol 8, 607-612.

232 Castano, E., Vorojeikina, D. P., and Notides, A. C. (1997). Phosphorylation of serine-167

on the human oestrogen receptor is important for oestrogen response element

binding and transcriptional activation. Biochem J 326, 149-157.

Castoria, G., Barone, M. V., Di Domenico, M., Bilancio, A., Ametrano, D., Migliaccio,

A., and Auricchio, F. (1999). Non-transcriptional action of oestradiol and

progestin triggers DNA synthesis. EMBO J 18, 2500-2510.

Castoria, G., Migliaccio, A., Bilancio, A., Di Domenico, M., de Falco, A., Lombardi, M.,

Fiorentino, R., Varricchio, L., Barone, M. V., and Auricchio, F. (2001). PI3-

kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated

MCF-7 cells. EMBO J 20, 6050-6059.

Castro-Rivera, E. and Safe, S. (1998). Estrogen- and antiestrogen-responsiveness of

HEC1A endometrial adenocarcinoma cells in culture. J Steroid Biochem Mol Biol

64, 287-295.

Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G., Juguilon,

H., Montminy, M., and Evans, R. M. (1996). Role of CBP/P300 in nuclear

receptor signalling. Nature 383, 99-103.

Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., Aswad, D. W.,

and Stallcup, M. R. (1999a). Regulation of transcription by a protein

methyltransferase. Science 284, 2174-2177.

233 Chen, D., Pace, P. E., Coombes, R. C., and Ali, S. (1999b). Phosphorylation of human

estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol

19, 1002-1015.

Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L.,

Nakatani, Y., and Evans, R. M. (1997). Nuclear receptor coactivator ACTR is a

novel histone acetyltransferase and forms a multimeric activation complex with

P/CAF and CBP/p300. Cell 90, 569-580.

Chen, J., Godt, D., Gunsalus, K., Kiss, I., Goldberg, M., and Laski, F. A. (2001).

Cofilin/ADF is required for cell motility during Drosophila ovary development

and oogenesis. Nat Cell Biol 3, 204-209.

Chen, J. D. and Evans, R. M. (1995). A transcriptional co-repressor that interacts with

nuclear hormone receptors. Nature 377, 454-457.

Choi, I., Gudas, L. J., and Katzenellenbogen, B. S. (2000). Regulation of keratin 19 gene

expression by estrogen in human breast cancer cells and identification of the

estrogen responsive gene region. Mol Cell Endocrinol 164, 225-237.

Chopra, P., Singh, A., Koul, A., Ramachandran, S., Drlica, K., Tyagi, A. K., and Singh,

Y. (2003). Cytotoxic activity of nucleoside diphosphate kinase secreted from

Mycobacterium tuberculosis. Eur J Biochem 270, 625-634.

234 Chu, S., Nishi, Y., Yanase, T., Nawata, H., and Fuller, P. J. (2004). Transrepression of

estrogen receptor beta signaling by nuclear factor-kappab in ovarian granulosa

cells. Mol Endocrinol 18, 1919-1928.

Clark, A. S., West, K., Streicher, S., and Dennis, P. A. (2002). Constitutive and inducible

Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in

breast cancer cells. Mol Cancer Ther 1, 707-717.

Clark, L. C., Combs, G. F., Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J.,

Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., Krongrad, A., Lesher, J.

L., Jr., Park, H. K., Sanders, B. B., Jr., Smith, C. L., and Taylor, J. R. (1996).

Effects of selenium supplementation for cancer prevention in patients with

carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of

Cancer Study Group. JAMA 276, 1957-1963.

Clarke, R., Leonessa, F., Welch, J. N., and Skaar, T. C. (2001). Cellular and molecular

pharmacology of antiestrogen action and resistance. Pharmacol Rev 53, 25-71.

Clarke, R. B., Laidlaw, I. J., Jones, L. J., Howell, A., and Anderson, E. (1993). Effect of

tamoxifen on Ki67 labelling index in human breast tumours and its relationship to

oestrogen and progesterone receptor status. Br J Cancer 67, 606-611.

Clarke, R. B., Howell, A., Potten, C. S., and Anderson, E. (1997). Dissociation between

steroid receptor expression and cell proliferation in the human breast. Cancer Res

57, 4987-4991.

235 Colditz, G. A., Hankinson, S. E., Hunter, D. J., Willett, W. C., Manson, J. E., Stampfer,

M. J., Hennekens, C., Rosner, B., and Speizer, F. E. (1995). The use of estrogens

and progestins and the risk of breast cancer in postmenopausal women. N Engl J

Med 332, 1589-1593.

Coleman, K. M. and Smith, C. L. (2001). Intracellular signaling pathways: nongenomic

actions of estrogens and ligand-independent activation of estrogen receptors.

Front Biosci 6, D1379-91.

Coleman, K. M., Dutertre, M., El Gharbawy, A., Rowan, B. G., Weigel, N. L., and Smith,

C. L. (2003). Mechanistic differences in the activation of estrogen receptor-alpha

(ER alpha)- and ER beta-dependent gene expression by cAMP signaling

pathway(s). J Biol Chem 278, 12834-12845.

Couillard, S., Gutman, M., Labrie, C., Belanger, A., Candas, B., and Labrie, F. (1998).

Comparison of the effects of the antiestrogens EM-800 and tamoxifen on the

growth of human breast ZR-75-1 cancer xenografts in nude mice. Cancer Res 58,

60-64.

Courtneidge, S. A. (2003). Isolation of novel Src substrates. Biochem Soc Trans 31, 25-

28.

Couse, J. E., Mahato, D., Eddy, E. M., and Korach, K. S. (2001). Molecular mechanism

of estrogen action in the male: insights from the estrogen receptor null mice.

Reprod Fertil Dev 13, 211-219.

236 Couse, J. F., Hewitt, S. C., Bunch, D. O., Sar, M., Walker, V. R., Davis, B. J., and

Korach, K. S. (1999). Postnatal sex reversal of the ovaries in mice lacking

estrogen receptors alpha and beta. Science 286, 2328-2331.

Coutts, A. S., Davie, J. R., Dotzlaw, H., and Murphy, L. C. (1996). Estrogen regulation of

nuclear matrix-intermediate filament proteins in human breast cancer cells. J Cell

Biochem 63, 174-184.

Cowley, S. M., Hoare, S., Mosselman, S., and Parker, M. G. (1997). Estrogen receptors

alpha and beta form heterodimers on DNA. J Biol Chem 272, 19858-19862.

Crombet-Ramos, T., Rak, J., Perez, R., and Viloria-Petit, A. (2002). Antiproliferative,

antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR

antibody. Int J Cancer 20;101, 567-575.

Croxtall, J. D., Elder, M. G., and White, J. O. (1990). Hormonal control of proliferation

in the Ishikawa endometrial adenocarcinoma cell line. J Steroid Biochem 35, 665-

669.

Cummings, S. R., Eckert, S., Krueger, K. A., Grady, D., Powles, T. J., Cauley, J. A.,

Norton, L., Nickelsen, T., Bjarnason, N. H., Morrow, M., Lippman, M. E., Black,

D., Glusman, J. E., Costa, A., and Jordan, V. C. (1999). The effect of raloxifene

on risk of breast cancer in postmenopausal women: results from the MORE

randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281, 2189-

2197.

237 Cunha, G. R., Young, P., Hom, Y. K., Cooke, P. S., Taylor, J. A., and Lubahn, D. B.

(1997). Elucidation of a role for stromal steroid hormone receptors in mammary

gland growth and development using tissue recombinants. J Mammary Gland Biol

Neoplasia 2, 393-402.

Davis, B. A. and Cowing, B. E. (2000). Pyridoxal supplementation reduces cell

proliferation and DNA synthesis in estrogen-dependent and -independent

mammary carcinoma cell lines. Nutr Cancer 38, 281-286.

Delaunay, F., Pettersson, K., Tujague, M., and Gustafsson, J. A. (2000). Functional

differences between the amino-terminal domains of estrogen receptors alpha and

beta. Mol Pharmacol 58, 584-590.

Delmas, P. D., Bjarnason, N. H., Mitlak, B. H., Ravoux, A. C., Shah, A. S., Huster, W. J.,

Draper, M., and Christiansen, C. (1997). Effects of raloxifene on bone mineral

density, serum cholesterol concentrations, and uterine endometrium in

postmenopausal women. N Engl J Med 337, 1641-1647.

Delva, L., Bastie, J. N., Rochette-Egly, C., Kraiba, R., Balitrand, N., Despouy, G.,

Chambon, P., and Chomienne, C. (1999). Physical and functional interactions

between cellular retinoic acid binding protein II and the retinoic acid-dependent

nuclear complex. Mol Cell Biol 19, 7158-7167.

238 Desouki, M. M. and Rowan, B. G. (2004). SRC kinase and mitogen-activated protein

kinases in the progression from normal to malignant endometrium. Clin Cancer

Res 10, 546-555.

Dixon, J. M., Anderson, T. J., Page, D. L., Lee, D., and Duffy, S. W. (1982). Infiltrating

lobular carcinoma of the breast. Histopathology 6, 149-161.

Donaldson, S. H., Picher, M., and Boucher, R. C. (2002). Secreted and cell-associated

adenylate kinase and nucleoside diphosphokinase contribute to extracellular

nucleotide metabolism on human airway surfaces. Am J Respir Cell Mol Biol 26,

209-215.

Dong, L., Wang, W., Wang, F., Stoner, M., Reed, J. C., Harigai, M., Samudio, I., Kladde,

M. P., Vyhlidal, C., and Safe, S. (1999). Mechanisms of transcriptional activation

of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem

274, 32099-32107.

Dong, Y., Ganther, H. E., Stewart, C., and Ip, C. (2002a). Identification of molecular

targets associated with selenium-induced growth inhibition in human breast cells

using cDNA microarrays. Cancer Res 62, 708-714.

Dong, Y., Ip, C., and Ganther, H. (2002b). Evidence of a field effect associated with

mammary cancer chemoprevention by methylseleninic acid. Anticancer Res 22,

27-32.

239 Dong, Y., Zhang, H., Hawthorn, L., Ganther, H. E., and Ip, C. (2003). Delineation of the

molecular basis for selenium-induced growth arrest in human prostate cancer cells

by oligonucleotide array. Cancer Res 63, 52-59.

Dong, Y., Lee, S. O., Zhang, H., Marshall, J., Gao, A. C., and Ip, C. (2004). Prostate

specific antigen expression is down-regulated by selenium through disruption of

androgen receptor signaling. Cancer Res 64, 19-22.

Donovan, J. C., Milic, A., and Slingerland, J. M. (2001). Constitutive MEK/MAPK

activation leads to p27(Kip1) deregulation and antiestrogen resistance in human

breast cancer cells. J Biol Chem 276, 40888-40895.

Dorjsuren, D., Lin, Y., Wei, W., Yamashita, T., Nomura, T., Hayashi, N., and Murakami,

S. (1998). RMP, a novel RNA polymerase II subunit 5-interacting protein,

counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18, 7546-

7555.

Drevs, J. (2003). PTK/ZK (Novartis). IDrugs 6, 787-794.

Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., Lydon, N.

B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., and Sawyers, C. L. (2001a).

Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in

chronic myeloid leukemia. N Engl J Med 344, 1031-1037.

Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. M.,

Capdeville, R., and Talpaz, M. (2001b). Activity of a specific inhibitor of the

240 BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and

acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med

344, 1038-1042.

Dubal, D. B., Zhu, H., Yu, J., Rau, S. W., Shughrue, P. J., Merchenthaler, I., Kindy, M.

S., and Wise, P. M. (2001). Estrogen receptor alpha, not beta, is a critical link in

estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 98,

1952-1957.

Dubey, R. K., Jackson, E. K., Gillespie, D. G., Zacharia, L. C., Imthurn, B., and Keller,

P. J. (2000). Clinically used estrogens differentially inhibit human aortic smooth

muscle cell growth and mitogen-activated protein kinase activity. Arterioscler

Thromb Vasc Biol 20, 964-972.

Dubik, D. and Shiu, R. P. (1992). Mechanism of estrogen activation of c-myc oncogene

expression. Oncogene 7, 1587-1594.

Duffield-Lillico, A. J., Reid, M. E., Turnbull, B. W., Combs, G. F., Jr., Slate, E. H.,

Fischbach, L. A., Marshall, J. R., and Clark, L. C. (2002). Baseline characteristics

and the effect of selenium supplementation on cancer incidence in a randomized

clinical trial: a summary report of the Nutritional Prevention of Cancer Trial.

Cancer Epidemiol Biomarkers Prev 11, 630-639.

Dutertre, M. and Smith, C. L. (2000). Molecular mechanisms of selective estrogen

receptor modulator (SERM) action. J Pharmacol Exp Ther 295, 431-437.

241 Dutertre, M. and Smith, C. L. (2003). Ligand-independent interactions of p160/steroid

receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-

alpha: regulation by phosphorylation sites in the A/B region depends on other

receptor domains. Mol Endocrinol 17, 1296-1314.

El Bayoumy, K., Chae, Y. H., Upadhyaya, P., and Ip, C. (1996). Chemoprevention of

mammary cancer by diallyl selenide, a novel organoselenium compound.

Anticancer Res 16, 2911-2915.

El Bayoumy, K. and Sinha, R. (2004). Mechanisms of mammary cancer

chemoprevention by organoselenium compounds. Mutat Res 551, 181-197.

El Tanani, M. K. and Green, C. D. (1997). Two separate mechanisms for ligand-

independent activation of the estrogen receptor. Mol Endocrinol 11, 928-937.

Ellis, M. (2004). Overcoming endocrine therapy resistance by signal transduction

inhibition. Oncologist 9 Suppl 3:20-26.

Elsayed, Y. A. and Sausville, E. A. (2001). Selected novel anticancer treatments targeting

cell signaling proteins. Oncologist 6, 517-537.

Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa,

J., Metzger, D., Hashimoto, S., and Kato, S. (1999). Purification and identification

of p68 RNA helicase acting as a transcriptional coactivator specific for the

activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19, 5363-

5372.

242 Enmark, E., Pelto-Huikko, M., Grandien, K., Lagercrantz, S., Lagercrantz, J., Fried, G.,

Nordenskjold, M., and Gustafsson, J. A. (1997). Human estrogen receptor beta-

gene structure, chromosomal localization, and expression pattern. J Clin

Endocrinol Metab 82, 4258-4265.

Esslimani-Sahla, M., Simony-Lafontaine, J., Kramar, A., Lavaill, R., Mollevi, C.,

Warner, M., Gustafsson, J. A., and Rochefort, H. (2004). Estrogen receptor beta

(ER beta) level but not its ER beta cx variant helps to predict tamoxifen resistance

in breast cancer. Clin Cancer Res 10, 5769-5776.

Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science 240,

889-895.

Fairfield, K. M. and Fletcher, R. H. (2002). Vitamins for chronic disease prevention in

adults: scientific review. JAMA 19;287, 3116-3126.

Feng, W., Webb, P., Nguyen, P., Liu, X., Li, J., Karin, M., and Kushner, P. J. (2001).

Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through

a serine 118-independent pathway. Mol Endocrinol 15, 32-45.

Fico, M. E., Poirier, K. A., Watrach, A. M., Watrach, M. A., and Milner, J. A. (1986).

Differential effects of selenium on normal and neoplastic canine mammary cells.

Cancer Res 46, 3384-3388.

Filardo, E. J., Quinn, J. A., Bland, K. I., and Frackelton, A. R., Jr. (2000). Estrogen-

induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor

243 homolog, GPR30, and occurs via trans-activation of the epidermal growth factor

receptor through release of HB-EGF. Mol Endocrinol 14, 1649-1660.

Filardo, E. J., Quinn, J. A., Frackelton, A. R., Jr., and Bland, K. I. (2002). Estrogen action

via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and

cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK

signaling axis. Mol Endocrinol 16, 70-84.

Fisher, B., Costantino, J. P., Redmond, C. K., Fisher, E. R., Wickerham, D. L., and

Cronin, W. M. (1994). Endometrial cancer in tamoxifen-treated breast cancer

patients: findings from the National Surgical Adjuvant Breast and Bowel Project

(NSABP) B-14. J Natl Cancer Inst 86, 527-537.

Fondell, J. D., Ge, H., and Roeder, R. G. (1996). Ligand induction of a transcriptionally

active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A

93, 8329-8333.

Font, de Mora and Brown, M. (2000). AIB1 is a conduit for kinase-mediated growth

factor signaling to the estrogen receptor. Mol Cell Biol 20, 5041-5047.

Fornander, T., Rutqvist, L. E., Cedermark, B., Glas, U., Mattsson, A., Silfversward, C.,

Skoog, L., Somell, A., Theve, T., Wilking, N., and . (1989). Adjuvant tamoxifen

in early breast cancer: occurrence of new primary cancers. Lancet 1, 117-120.

Foster, J. S., Henley, D. C., Ahamed, S., and Wimalasena, J. (2001). Estrogens and cell-

cycle regulation in breast cancer. Trends Endocrinol Metab 12, 320-327.

244 Frasor, J., Danes, J. M., Komm, B., Chang, K. C., Lyttle, C. R., and Katzenellenbogen, B.

S. (2003). Profiling of estrogen up- and down-regulated gene expression in human

breast cancer cells: insights into gene networks and pathways underlying

estrogenic control of proliferation and cell phenotype. Endocrinology 144, 4562-

4574.

Fujimoto, N. and Katzenellenbogen, B. S. (1994). Alteration in the agonist/antagonist

balance of antiestrogens by activation of protein kinase A signaling pathways in

breast cancer cells: antiestrogen selectivity and promoter dependence. Mol

Endocrinol 8, 296-304.

Gee, J. M., Robertson, J. F., Ellis, I. O., and Nicholson, R. I. (2001). Phosphorylation of

ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-

hormonal therapy and decreased patient survival in clinical breast cancer. Int J

Cancer 20;95, 247-254.

Gehin, M., Mark, M., Dennefeld, C., Dierich, A., Gronemeyer, H., and Chambon, P.

(2002). The function of TIF2/GRIP1 in mouse reproduction is distinct from those

of SRC-1 and p/CIP. Mol Cell Biol 22, 5923-5937.

Girault, I., Lerebours, F., Amarir, S., Tozlu, S., Tubiana-Hulin, M., Lidereau, R., and

Bieche, I. (2003). Expression analysis of estrogen receptor alpha coregulators in

breast carcinoma: evidence that NCOR1 expression is predictive of the response

to tamoxifen. Clin Cancer Res 9, 1259-1266.

245 Gottardis, M. M., Robinson, S. P., Satyaswaroop, P. G., and Jordan, V. C. (1988).

Contrasting actions of tamoxifen on endometrial and breast tumor growth in the

athymic mouse. Cancer Res 48, 812-815.

Grabowski, P. J. (1998). Splicing regulation in neurons: tinkering with cell-specific

control. Cell 20;92, 709-712.

Gradishar, W., Glusman, J., Lu, Y., Vogel, C., Cohen, F. J., and Sledge, G. W., Jr.

(2000). Effects of high dose raloxifene in selected patients with advanced breast

carcinoma. Cancer 88, 2047-2053.

Graham, J., Muhsin, M., and Kirkpatrick, P. (2004). Cetuximab. Nat Rev Drug Discov 3,

549-550.

Greeder, G. A. and Milner, J. A. (1980). Factors influencing the inhibitory effect of

selenium on mice inoculated with Ehrlich ascites tumor cells. Science 209, 825-

827.

Gu, W., Malik, S., Ito, M., Yuan, C. X., Fondell, J. D., Zhang, X., Martinez, E., Qin, J.,

and Roeder, R. G. (1999). A novel human SRB/MED-containing cofactor

complex, SMCC, involved in transcription regulation. Mol Cell 3, 97-108.

Hall, J. M. and McDonnell, D. P. (1999). The estrogen receptor beta-isoform (ERbeta) of

the human estrogen receptor modulates ERalpha transcriptional activity and is a

key regulator of the cellular response to estrogens and antiestrogens.

Endocrinology 140, 5566-5578.

246 Harper, M. J. and Walpole, A. L. (1967). A new derivative of triphenylethylene: effect on

implantation and mode of action in rats. J Reprod Fertil 13, 101-119.

Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997). A signature motif in

transcriptional co-activators mediates binding to nuclear receptors. Nature 387,

733-736.

Heinzel, T., Lavinsky, R. M., Mullen, T. M., Soderstrom, M., Laherty, C. D., Torchia, J.,

Yang, W. M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose,

D. W., Glass, C. K., and Rosenfeld, M. G. (1997). A complex containing N-CoR,

mSin3 and histone deacetylase mediates transcriptional repression. Nature 387,

43-48.

Hewitt, S. C., Bocchinfuso, W. P., Zhai, J., Harrell, C., Koonce, L., Clark, J., Myers, P.,

and Korach, K. S. (2002). Lack of ductal development in the absence of

functional estrogen receptor alpha delays mammary tumor formation induced by

transgenic expression of ErbB2/neu. Cancer Res 62, 2798-2805.

Hiroi, H., Inoue, S., Watanabe, T., Goto, W., Orimo, A., Momoeda, M., Tsutsumi, O.,

Taketani, Y., and Muramatsu, M. (1999). Differential immunolocalization of

estrogen receptor alpha and beta in rat ovary and uterus. J Mol Endocrinol 22, 37-

44.

Homma, H., Kurachi, H., Nishio, Y., Takeda, T., Yamamoto, T., Adachi, K., Morishige,

K., Ohmichi, M., Matsuzawa, Y., and Murata, Y. (2000). Estrogen suppresses

247 transcription of lipoprotein lipase gene. Existence of a unique estrogen response

element on the lipoprotein lipase promoter. J Biol Chem 275, 11404-11411.

Hong, H., Kohli, K., Trivedi, A., Johnson, D. L., and Stallcup, M. R. (1996). GRIP1, a

novel mouse protein that serves as a transcriptional coactivator in yeast for the

hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A 93,

4948-4952.

Hong, S. H., Wong, C. W., and Privalsky, M. L. (1998). Signaling by tyrosine kinases

negatively regulates the interaction between transcription factors and SMRT

(silencing mediator of retinoic acid and thyroid hormone receptor) corepressor.

Mol Endocrinol 12, 1161-1171.

Hong, S. H. and Privalsky, M. L. (2000). The SMRT corepressor is regulated by a MEK-

1 kinase pathway: inhibition of corepressor function is associated with SMRT

phosphorylation and nuclear export. Mol Cell Biol 20, 6612-6625.

Hopp, T. A., Weiss, H. L., Parra, I. S., Cui, Y., Osborne, C. K., and Fuqua, S. A. (2004).

Low levels of estrogen receptor beta protein predict resistance to tamoxifen

therapy in breast cancer. Clin Cancer Res 10, 7490-7499.

Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A.,

Kamei, Y., Soderstrom, M., Glass, C. K., and . (1995). Ligand-independent

repression by the thyroid hormone receptor mediated by a nuclear receptor co-

repressor. Nature 377, 397-404.

248 Howell, A., DeFriend, D., Robertson, J., Blamey, R., and Walton, P. (1995). Response to

a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet

345, 29-30.

Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., Hoctin-Boes,

G., Houghton, J., Locker, G. Y., and Tobias, J. S. (2005). Results of the ATAC

(Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years'

adjuvant treatment for breast cancer. Lancet 365, 60-62.

Hu, X. and Lazar, M. A. (1999). The CoRNR motif controls the recruitment of

corepressors by nuclear hormone receptors. Nature 402, 93-96.

Hulka, B. S., Liu, E. T., and Lininger, R. A. (1994). Steroid hormones and risk of breast

cancer. Cancer 74, 1111-1124.

Ip, C. and Lisk, D. J. (1994). Enrichment of selenium in allium vegetables for cancer

prevention. Carcinogenesis 15, 1881-1885.

Ip, C., Zhu, Z., Thompson, H. J., Lisk, D., and Ganther, H. E. (1999). Chemoprevention

of mammary cancer with Se-allylselenocysteine and other selenoamino acids in

the rat. Anticancer Res 19, 2875-2880.

Ip, C., Thompson, H. J., Zhu, Z., and Ganther, H. E. (2000a). In vitro and in vivo studies

of methylseleninic acid: evidence that a monomethylated selenium metabolite is

critical for cancer chemoprevention. Cancer Res 60, 2882-2886.

249 Ip, C., Thompson, H. J., and Ganther, H. E. (2000b). Selenium modulation of cell

proliferation and cell cycle biomarkers in normal and premalignant cells of the rat

mammary gland. Cancer Epidemiol Biomarkers Prev 9, 49-54.

Ip, C. and Dong, Y. (2001). Methylselenocysteine modulates proliferation and apoptosis

biomarkers in premalignant lesions of the rat mammary gland. Anticancer Res 21,

863-867.

Ip, C., Dong, Y., and Ganther, H. E. (2002). New concepts in selenium chemoprevention.

Cancer Metastasis Rev 21, 281-289.

Irby, R. B. and Yeatman, T. J. (2000). Role of Src expression and activation in human

cancer. Oncogene 20;19, 5636-5642.

Jakacka, M., Ito, M., Martinson, F., Ishikawa, T., Lee, E. J., and Jameson, J. L. (2002).

An estrogen receptor (ER)alpha deoxyribonucleic acid-binding domain knock-in

mutation provides evidence for nonclassical ER pathway signaling in vivo. Mol

Endocrinol 16, 2188-2201.

Jepsen, K., Hermanson, O., Onami, T. M., Gleiberman, A. S., Lunyak, V., McEvilly, R.

J., Kurokawa, R., Kumar, V., Liu, F., Seto, E., Hedrick, S. M., Mandel, G., Glass,

C. K., Rose, D. W., and Rosenfeld, M. G. (2000). Combinatorial roles of the

nuclear receptor corepressor in transcription and development. Cell 102, 753-763.

Jepsen, K. and Rosenfeld, M. G. (2002). Biological roles and mechanistic actions of co-

repressor complexes. J Cell Sci 115, 689-698.

250 Jessop, H. L., Suswillo, R. F., Rawlinson, S. C., Zaman, G., Lee, K., Das-Gupta, V.,

Pitsillides, A. A., and Lanyon, L. E. (2004). Osteoblast-like cells from estrogen

receptor alpha knockout mice have deficient responses to mechanical strain. J

Bone Miner Res 19, 938-946.

Jiang, C., Wang, Z., Ganther, H., and Lu, J. (2001). Caspases as key executors of methyl

selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells. Cancer Res

61, 3062-3070.

Jiang, C., Wang, Z., Ganther, H., and Lu, J. (2002). Distinct effects of methylseleninic

acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in

DU145 human prostate cancer cells. Mol Cancer Ther 1, 1059-1066.

Jiang, S. Y., Langan-Fahey, S. M., Stella, A. L., McCague, R., and Jordan, V. C. (1992).

Point mutation of estrogen receptor (ER) in the ligand-binding domain changes

the pharmacology of antiestrogens in ER-negative breast cancer cells stably

expressing complementary DNAs for ER. Mol Endocrinol 6, 2167-2174.

Jing, Y., Waxman, S., and Lopez, R. (1997). The cellular retinoic acid binding protein II

is a positive regulator of retinoic acid signaling in breast cancer cells. Cancer Res

57, 1668-1672.

Johnston, S. R., MacLennan, K. A., Sacks, N. P., Salter, J., Smith, I. E., and Dowsett, M.

(1994). Modulation of Bcl-2 and Ki-67 expression in oestrogen receptor-positive

human breast cancer by tamoxifen. Eur J Cancer 30A, 1663-1669.

251 Johnston, S. R., Saccani-Jotti, G., Smith, I. E., Salter, J., Newby, J., Coppen, M., Ebbs, S.

R., and Dowsett, M. (1995). Changes in estrogen receptor, progesterone receptor,

and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55,

3331-3338.

Jordan, V. C. and Koerner, S. (1975). Tamoxifen (ICI 46,474) and the human carcinoma

8S oestrogen receptor. Eur J Cancer 11, 205-206.

Jordan, V. C. (1982). Metabolites of tamoxifen in animals and man: identification,

pharmacology, and significance. Breast Cancer Res Treat 2, 123-138.

Jordan, V. C. (2000). Tamoxifen: a personal retrospective. Lancet Oncol 1, 43-49.

Jozan, S., Elalamy, H., and Bayard, F. (1981). Mechanism of action of a

triphenylethylene type antiestrogen on growth of the human breast cancer cell

line. MCF-7 in culture. C R Seances Acad Sci III 292, 767-770.

Kahlert, S., Nuedling, S., van Eickels, M., Vetter, H., Meyer, R., and Grohe, C. (2000).

Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol

Chem 275, 18447-18453.

Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman,

R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996). A CBP integrator

complex mediates transcriptional activation and AP-1 inhibition by nuclear

receptors. Cell 85, 403-414.

252 Kandouz, M., Siromachkova, M., Jacob, D., Chretien, Marquet B., Therwath, A., and

Gompel, A. (1996). Antagonism between estradiol and progestin on Bcl-2

expression in breast-cancer cells. Int J Cancer 68, 120-125.

Karnik, P. S., Kulkarni, S., Liu, X. P., Budd, G. T., and Bukowski, R. M. (1994).

Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res 54,

349-353.

Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige,

S., Gotoh, Y., Nishida, E., Kawashima, H., and . (1995). Activation of the

estrogen receptor through phosphorylation by mitogen-activated protein kinase.

Science 270, 1491-1494.

Kelsey, J. L. and Berkowitz, G. S. (1988). Breast cancer epidemiology. Cancer Res 48,

5615-5623.

Kelsey, J. L. and Gammon, M. D. (1991). The epidemiology of breast cancer. CA Cancer

J Clin 41, 146-165.

Kenny, F. S., Hui, R., Musgrove, E. A., Gee, J. M., Blamey, R. W., Nicholson, R. I.,

Sutherland, R. L., and Robertson, J. F. (1999). Overexpression of cyclin D1

messenger RNA predicts for poor prognosis in estrogen receptor-positive breast

cancer. Clin Cancer Res 5, 2069-2076.

253 Kershah, S. M., Desouki, M. M., Koterba, K. L., and Rowan, B. G. (2004). Expression of

estrogen receptor coregulators in normal and malignant human endometrium.

Gynecol Oncol 92, 304-313.

Kim, H. P., Lee, J. Y., Jeong, J. K., Bae, S. W., Lee, H. K., and Jo, I. (1999).

Nongenomic stimulation of nitric oxide release by estrogen is mediated by

estrogen receptor alpha localized in caveolae. Biochem Biophys Res Commun

263, 257-262.

Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H., and Kornberg, R. D. (1994). A

multiprotein mediator of transcriptional activation and its interaction with the C-

terminal repeat domain of RNA polymerase II. Cell 20;77, 599-608.

Kirfel, J., Magin, T. M., and Reichelt, J. (2003). Keratins: a structural scaffold with

emerging functions. Cell Mol Life Sci 60, 56-71.

Klein-Hitpass, L., Schorpp, M., Wagner, U., and Ryffel, G. U. (1986). An estrogen-

responsive element derived from the 5' flanking region of the Xenopus

vitellogenin A2 gene functions in transfected human cells. Cell 46, 1053-1061.

Kleinman, D., Karas, M., Danilenko, M., Arbell, A., Roberts, C. T., LeRoith, D., Levy,

J., and Sharoni, Y. (1996). Stimulation of endometrial cancer cell growth by

tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced

tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology

137, 1089-1095.

254 Klinge, C. M. (2000). Estrogen receptor interaction with co-activators and co-repressors.

Steroids 65, 227-251.

Klotz, D. M., Hewitt, S. C., Ciana, P., Raviscioni, M., Lindzey, J. K., Foley, J., Maggi,

A., DiAugustine, R. P., and Korach, K. S. (2002). Requirement of estrogen

receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses

and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem 277,

8531-8537.

Krasilnikov, M. A. (2000). Phosphatidylinositol-3 kinase dependent pathways: the role in

control of cell growth, survival, and malignant transformation. Biochemistry

(Mosc ) 65, 59-67.

Kraus, W. L., McInerney, E. M., and Katzenellenbogen, B. S. (1995). Ligand-dependent,

transcriptionally productive association of the amino- and carboxyl-terminal

regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci U S A 19;92,

12314-12318.

Krege, J. H., Hodgin, J. B., Couse, J. F., Enmark, E., Warner, M., Mahler, J. F., Sar, M.,

Korach, K. S., Gustafsson, J. A., and Smithies, O. (1998). Generation and

reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad

Sci U S A 95, 15677-15682.

Kuang, S. Q., Liao, L., Zhang, H., Lee, A. V., O'Malley, B. W., and Xu, J. (2004).

AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and

255 suppresses v-Ha-ras-induced breast cancer initiation and progression in mice.

Cancer Res 64, 1875-1885.

Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. (1996).

Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad

Sci U S A 93, 5925-5930.

Kumar, V., Green, S., Stack, G., Berry, M., Jin, J. R., and Chambon, P. (1987).

Functional domains of the human estrogen receptor. Cell 51, 941-951.

Labrie, F., Labrie, C., Belanger, A., Simard, J., Giguere, V., Tremblay, A., and Tremblay,

G. (2001). EM-652 (SCH57068), a pure SERM having complete antiestrogenic

activity in the mammary gland and endometrium. J Steroid Biochem Mol Biol 79,

213-225.

Labrie, F., El Alfy, M., Berger, L., Labrie, C., Martel, C., Belanger, A., Candas, B., and

Pelletier, G. (2003). The combination of a novel selective estrogen receptor

modulator with an estrogen protects the mammary gland and uterus in a rodent

model: the future of postmenopausal women's health? Endocrinology 144, 4700-

4706.

Lahooti, H., White, R., Danielian, P. S., and Parker, M. G. (1994). Characterization of

ligand-dependent phosphorylation of the estrogen receptor. Mol Endocrinol 8,

182-188.

Lannigan, D. A. (2003). Estrogen receptor phosphorylation. Steroids 68, 1-9.

256 Lanz, R. B., McKenna, N. J., Onate, S. A., Albrecht, U., Wong, J., Tsai, S. Y., Tsai, M.

J., and O'Malley, B. W. (1999). A steroid receptor coactivator, SRA, functions as

an RNA and is present in an SRC-1 complex. Cell 97, 17-27.

Lavinsky, R. M., Jepsen, K., Heinzel, T., Torchia, J., Mullen, T. M., Schiff, R., Del Rio,

A. L., Ricote, M., Ngo, S., Gemsch, J., Hilsenbeck, S. G., Osborne, C. K., Glass,

C. K., Rosenfeld, M. G., and Rose, D. W. (1998). Diverse signaling pathways

modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc

Natl Acad Sci U S A 95, 2920-2925.

Le Goff, P., Montano, M. M., Schodin, D. J., and Katzenellenbogen, B. S. (1994).

Phosphorylation of the human estrogen receptor. Identification of hormone-

regulated sites and examination of their influence on transcriptional activity. J

Biol Chem 269, 4458-4466.

Leake, R. (1996). 100 years of the endocrine battle against breast cancer. Lancet 347,

1780-1781.

Leclercq, G., Legros, N., and Piccart, M. J. (1992). Accumulation of a non-binding form

of estrogen receptor in MCF-7 cells under hydroxytamoxifen treatment. J Steroid

Biochem Mol Biol 41, 545-552.

Lee, H., Jiang, F., Wang, Q., Nicosia, S. V., Yang, J., Su, B., and Bai, W. (2000).

MEKK1 activation of human estrogen receptor alpha and stimulation of the

257 agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells.

Mol Endocrinol 14, 1882-1896.

Lee, H. and Bai, W. (2002). Regulation of estrogen receptor nuclear export by ligand-

induced and p38-mediated receptor phosphorylation. Mol Cell Biol 22, 5835-

5845.

Lee, K. C., Jessop, H., Suswillo, R., Zaman, G., and Lanyon, L. E. (2004). The adaptive

response of bone to mechanical loading in female transgenic mice is deficient in

the absence of oestrogen receptor-alpha and -beta. J Endocrinol 182, 193-201.

Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M., Liotta, L. A., and

Steeg, P. S. (1991). Reduced tumor incidence, metastatic potential, and cytokine

responsiveness of nm23-transfected melanoma cells. Cell 65, 25-35.

Leone, A., Flatow, U., VanHoutte, K., and Steeg, P. S. (1993). Transfection of human

nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on

tumor metastatic potential, colonization and enzymatic activity. Oncogene 8,

2325-2333.

Leung, B. S. and Potter, A. H. (1987). Mode of estrogen action on cell proliferative

kinetics in CAMA-1 cells. I. Effect of serum and estrogen. Cancer Invest 5, 187-

194.

Levin, E. R. (2003). Bidirectional signaling between the estrogen receptor and the

epidermal growth factor receptor. Mol Endocrinol 17, 309-317.

258 Leygue, E., Dotzlaw, H., Watson, P. H., and Murphy, L. C. (1998). Altered estrogen

receptor alpha and beta messenger RNA expression during human breast

tumorigenesis. Cancer Res 58, 3197-3201.

Li, H., Gomes, P. J., and Chen, J. D. (1997). RAC3, a steroid/nuclear receptor-associated

coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 94,

8479-8484.

Lin, K. H., Wang, W. J., Wu, Y. H., and Cheng, S. Y. (2002). Activation of

antimetastatic Nm23-H1 gene expression by estrogen and its alpha-receptor.

Endocrinology 143, 467-475.

Lindner, D. J. and Borden, E. C. (1997). Synergistic antitumor effects of a combination

of interferon and tamoxifen on estrogen receptor-positive and receptor-negative

human tumor cell lines in vivo and in vitro. J Interferon Cytokine Res 17, 681-

693.

Liu, X. F. and Bagchi, M. K. (2004). Recruitment of Distinct Chromatin-modifying

Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene

Promoters in Vivo. J Biol Chem 279, 15050-15058.

Liu, Y., el Ashry, D., Chen, D., Ding, I. Y., and Kern, F. G. (1995). MCF-7 breast cancer

cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in

estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-

sensitivity in vivo. Breast Cancer Res Treat 34, 97-117.

259 Liu, Z., Wong, J., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (2001). Sequential

recruitment of steroid receptor coactivator-1 (SRC-1) and p300 enhances

progesterone receptor-dependent initiation and reinitiation of transcription from

chromatin. Proc Natl Acad Sci U S A 98, 12426-12431.

Lonard, D. M., Nawaz, Z., Smith, C. L., and O'Malley, B. W. (2000). The 26S

proteasome is required for estrogen receptor-alpha and coactivator turnover and

for efficient estrogen receptor-alpha transactivation. Mol Cell 5, 939-948.

Lopez, G. N., Turck, C. W., Schaufele, F., Stallcup, M. R., and Kushner, P. J. (2001).

Growth factors signal to steroid receptors through mitogen-activated protein

kinase regulation of p160 coactivator activity. J Biol Chem 276, 22177-22182.

Lu, J., Jiang, C., Kaeck, M., Ganther, H., Vadhanavikit, S., Ip, C., and Thompson, H.

(1995). Dissociation of the genotoxic and growth inhibitory effects of selenium.

Biochem Pharmacol 50, 213-219.

Lubahn, D. B., Moyer, J. S., Golding, T. S., Couse, J. F., Korach, K. S., and Smithies, O.

(1993). Alteration of reproductive function but not prenatal sexual development

after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad

Sci U S A 90, 11162-11166.

Luo, S., Sourla, A., Labrie, C., Gauthier, S., Merand, Y., Belanger, A., and Labrie, F.

(1998). Effect of twenty-four-week treatment with the antiestrogen EM-800 on

260 estrogen-sensitive parameters in intact and ovariectomized mice. Endocrinology

139, 2645-2656.

Maa, M. C., Leu, T. H., McCarley, D. J., Schatzman, R. C., and Parsons, S. J. (1995).

Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src:

implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S

A 92, 6981-6985.

Maciver, S. K. and Weeds, A. G. (1994). Actophorin preferentially binds monomeric

ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett

347, 251-256.

Magnusson, C., Baron, J. A., Correia, N., Bergstrom, R., Adami, H. O., and Persson, I.

(1999). Breast-cancer risk following long-term oestrogen- and oestrogen-

progestin-replacement therapy. Int J Cancer 81, 339-344.

Mallon, E., Osin, P., Nasiri, N., Blain, I., Howard, B., and Gusterson, B. (2000). The

basic pathology of human breast cancer. J Mammary Gland Biol Neoplasia 5,

139-163.

Mandlekar, S., Hebbar, V., Christov, K., and Kong, A. N. (2000). Pharmacodynamics of

tamoxifen and its 4-hydroxy and N-desmethyl metabolites: activation of caspases

and induction of apoptosis in rat mammary tumors and in human breast cancer

cell lines. Cancer Res 60, 6601-6606.

261 Mandlekar, S. and Kong, A. N. (2001). Mechanisms of tamoxifen-induced apoptosis.

Apoptosis 6, 469-477.

Mark, M., Yoshida-Komiya, H., Gehin, M., Liao, L., Tsai, M. J., O'Malley, B. W.,

Chambon, P., and Xu, J. (2004). Partially redundant functions of SRC-1 and TIF2

in postnatal survival and male reproduction. Proc Natl Acad Sci U S A 101, 4453-

4458.

Marquez, D. C. and Pietras, R. J. (2001). Membrane-associated binding sites for estrogen

contribute to growth regulation of human breast cancer cells. Oncogene 20, 5420-

5430.

Marshall, J. R. (2001). Larry Clark's legacy: randomized controlled, selenium-based

prostate cancer chemoprevention trials. Nutr Cancer 40, 74-77.

Martel, C., Labrie, C., Belanger, A., Gauthier, S., Merand, Y., Li, X., Provencher, L.,

Candas, B., and Labrie, F. (1998). Comparison of the effects of the new orally

active antiestrogen EM-800 with ICI 182 780 and toremifene on estrogen-

sensitive parameters in the ovariectomized mouse. Endocrinology 139, 2486-

2492.

Martel, C., Picard, S., Richard, V., Belanger, A., Labrie, C., and Labrie, F. (2000).

Prevention of bone loss by EM-800 and raloxifene in the ovariectomized rat. J

Steroid Biochem Mol Biol 74, 45-56.

262 Martin, M. B., Franke, T. F., Stoica, G. E., Chambon, P., Katzenellenbogen, B. S., Stoica,

B. A., McLemore, M. S., Olivo, S. E., and Stoica, A. (2000). A role for Akt in

mediating the estrogenic functions of epidermal growth factor and insulin-like

growth factor I. Endocrinology 141, 4503-4511.

Matunis, E. L., Matunis, M. J., and Dreyfuss, G. (1993). Association of individual

hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 121, 219-228.

Matunis, M. J., Xing, J., and Dreyfuss, G. (1994). The hnRNP F protein: unique primary

structure, nucleic acid-binding properties, and subcellular localization. Nucleic

Acids Res 22, 1059-1067.

Mayeda, A. and Krainer, A. R. (1992). Regulation of alternative pre-mRNA splicing by

hnRNP A1 and splicing factor SF2. Cell 68, 365-375.

McClelland, R. A., Gee, J. M., Francis, A. B., Robertson, J. F., Blamey, R. W., Wakeling,

A. E., and Nicholson, R. I. (1996). Short-term effects of pure anti-oestrogen ICI

182780 treatment on oestrogen receptor, epidermal growth factor receptor and

transforming growth factor-alpha protein expression in human breast cancer. Eur

J Cancer 32A, 413-416.

McKeage, K., Curran, M. P., and Plosker, G. L. (2004). Fulvestrant: a review of its use in

hormone receptor-positive metastatic breast cancer in postmenopausal women

with disease progression following antiestrogen therapy. Drugs 64, 633-648.

263 McKenna, N. J., Lanz, R. B., and O'Malley, B. W. (1999). Nuclear receptor coregulators:

cellular and molecular biology. Endocr Rev 20, 321-344.

McKenna, N. J. and O'Malley, B. W. (2000). From ligand to response: generating

diversity in nuclear receptor coregulator function. J Steroid Biochem Mol Biol 74,

351-356.

McPherson, K., Steel, C. M., and Dixon, J. M. (2000). ABC of breast diseases. Breast

cancer-epidemiology, risk factors, and genetics. BMJ 321, 624-628.

Medina, D. and Oborn, C. J. (1981). Differential effects of selenium on the growth of

mouse mammary cells in vitro. Cancer Lett 13, 333-344.

Medina, D., Thompson, H., Ganther, H., and Ip, C. (2001). Se-methylselenocysteine: a

new compound for chemoprevention of breast cancer. Nutr Cancer 40, 12-17.

Merrill, A. H., Jr., Henderson, J. M., Wang, E., McDonald, B. W., and Millikan, W. J.

(1984). Metabolism of vitamin B-6 by human liver. J Nutr 114, 1664-1674.

Michalides, R., Griekspoor, A., Balkenende, A., Verwoerd, D., Janssen, L., Jalink, K.,

Floore, A., Velds, A., van't Veer, L., and Neefjes, J. (2004). Tamoxifen resistance

by a conformational arrest of the estrogen receptor alpha after PKA activation in

breast cancer. Cancer Cell 5, 597-605.

264 Migliaccio, A., Di Domenico, M., Castoria, G., de Falco, A., Bontempo, P., Nola, E., and

Auricchio, F. (1996). Tyrosine kinase/p21ras/MAP-kinase pathway activation by

estradiol-receptor complex in MCF-7 cells. EMBO J 15, 1292-1300.

Migliaccio, A., Castoria, G., Di Domenico, M., de Falco, A., Bilancio, A., Lombardi, M.,

Barone, M. V., Ametrano, D., Zannini, M. S., Abbondanza, C., and Auricchio, F.

(2000). Steroid-induced androgen receptor-oestradiol receptor beta-Src complex

triggers prostate cancer cell proliferation. EMBO J 19, 5406-5417.

Mosselman, S., Polman, J., and Dijkema, R. (1996). ER beta: identification and

characterization of a novel human estrogen receptor. FEBS Lett 19;392, 49-53.

Mueller, S. O. and Korach, K. S. (2001). Estrogen receptors and endocrine diseases:

lessons from estrogen receptor knockout mice. Curr Opin Pharmacol 1, 613-619.

Murphy, L. C., Dotzlaw, H., Leygue, E., Coutts, A., and Watson, P. (1998). The

pathophysiological role of estrogen receptor variants in human breast cancer. J

Steroid Biochem Mol Biol 65, 175-180.

Nagaoka, R., Abe, H., Kusano, K., and Obinata, T. (1995). Concentration of cofilin, a

small actin-binding protein, at the cleavage furrow during cytokinesis. Cell Motil

Cytoskeleton 30, 1-7.

Nagy, L., Kao, H. Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S.

L., and Evans, R. M. (1997). Nuclear receptor repression mediated by a complex

containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373-380.

265 Nakamori, S., Ishikawa, O., Ohigashi, H., Imaoka, S., Sasaki, Y., Kameyama, M.,

Kabuto, T., Furukawa, H., Iwanakga, T., and Kimura, N. (1993).

Clinicopathological features and prognostic significance of nucleoside

diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms.

Int J Pancreatol 14, 125-133.

Nakielny, S. and Dreyfuss, G. (1997). Nuclear export of proteins and RNAs. Curr Opin

Cell Biol 9, 420-429.

Nawaz, Z., Lonard, D. M., Smith, C. L., Lev-Lehman, E., Tsai, S. Y., Tsai, M. J., and

O'Malley, B. W. (1999a). The Angelman syndrome-associated protein, E6-AP, is

a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19,

1182-1189.

Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L., and O'Malley, B. W. (1999b).

Proteasome-dependent degradation of the human estrogen receptor. Proc Natl

Acad Sci U S A 96, 1858-1862.

Nelson, C. C., Hendy, S. C., Shukin, R. J., Cheng, H., Bruchovsky, N., Koop, B. F., and

Rennie, P. S. (1999a). Determinants of DNA sequence specificity of the

androgen, progesterone, and glucocorticoid receptors: evidence for differential

steroid receptor response elements. Mol Endocrinol 13, 2090-2107.

266 Nelson, K. G., Takahashi, T., Bossert, N. L., Walmer, D. K., and McLachlan, J. A.

(1991). Epidermal growth factor replaces estrogen in the stimulation of female

genital-tract growth and differentiation. Proc Natl Acad Sci U S A 88, 21-25.

Nelson, M. A., Porterfield, B. W., Jacobs, E. T., and Clark, L. C. (1999b). Selenium and

prostate cancer prevention. Semin Urol Oncol 17, 91-96.

Neuman, E., Ladha, M. H., Lin, N., Upton, T. M., Miller, S. J., DiRenzo, J., Pestell, R.

G., Hinds, P. W., Dowdy, S. F., Brown, M., and Ewen, M. E. (1997). Cyclin D1

stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol

Cell Biol 17, 5338-5347.

Ngo, E. O., LePage, G. R., Thanassi, J. W., Meisler, N., and Nutter, L. M. (1998).

Absence of pyridoxine-5'-phosphate oxidase (PNPO) activity in neoplastic cells:

isolation, characterization, and expression of PNPO cDNA. Biochemistry 37,

7741-7748.

Ngwenya, S. and Safe, S. (2003). Cell context-dependent differences in the induction of

E2F-1 gene expression by 17 beta-estradiol in MCF-7 and ZR-75 cells.

Endocrinology 144, 1675-1685.

Nicholson, R. I., McClelland, R. A., Robertson, J. F., and Gee, J. M. (1999). Involvement

of steroid hormone and growth factor cross-talk in endocrine response in breast

cancer. Endocr Relat Cancer 6, 373-387.

267 Norfleet, A. M., Clarke, C. H., Gametchu, B., and Watson, C. S. (2000). Antibodies to

the estrogen receptor-alpha modulate rapid prolactin release from rat pituitary

tumor cells through plasma membrane estrogen receptors. FASEB J 14, 157-165.

Norris, J. D., Paige, L. A., Christensen, D. J., Chang, C. Y., Huacani, M. R., Fan, D.,

Hamilton, P. T., Fowlkes, D. M., and McDonnell, D. P. (1999). Peptide

antagonists of the human estrogen receptor. Science 285, 744-746.

Nuber, U., Schwarz, S., Kaiser, P., Schneider, R., and Scheffner, M. (1996). Cloning of

human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and

characterization of their interaction with E6-AP and RSP5. J Biol Chem 271,

2795-2800.

O'brien, S., Tefferi, A., and Valent, P. (2004). Chronic myelogenous leukemia and

myeloproliferative disease. Hematology (Am Soc Hematol Educ Program ) :146-

62.

Ogawa, S., Inoue, S., Watanabe, T., Hiroi, H., Orimo, A., Hosoi, T., Ouchi, Y., and

Muramatsu, M. (1998). The complete primary structure of human estrogen

receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in

vitro. Biochem Biophys Res Commun 243, 122-126.

Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. (2000). The ErbB signaling

network: receptor heterodimerization in development and cancer. EMBO J 19,

3159-3167.

268 Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1995). Sequence and

characterization of a coactivator for the steroid hormone receptor superfamily.

Science 270, 1354-1357.

Osborne, C. K. (1998). Tamoxifen in the treatment of breast cancer. N Engl J Med 339,

1609-1618.

Osborne, C. K., Bardou, V., Hopp, T. A., Chamness, G. C., Hilsenbeck, S. G., Fuqua, S.

A., Wong, J., Allred, D. C., Clark, G. M., and Schiff, R. (2003). Role of the

estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen

resistance in breast cancer. J Natl Cancer Inst 95, 353-361.

Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze,

M. W. (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP

E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89, 597-606.

Overholser, J. P., Prewett, M. C., Hooper, A. T., Waksal, H. W., and Hicklin, D. J.

(2000). Epidermal growth factor receptor blockade by antibody IMC-C225

inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer

89, 74-82.

Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J., and

Scanlan, T. S. (1997). Differential ligand activation of estrogen receptors ERalpha

and ERbeta at AP1 sites. Science 277, 1508-1510.

269 Palmieri, C., Saji, S., Sakaguchi, H., Cheng, G., Sunters, A., O'Hare, M. J., Warner, M.,

Gustafsson, J. A., Coombes, R. C., and Lam, E. W. (2004). The expression of

oestrogen receptor (ER)-beta and its variants, but not ERalpha, in adult human

mammary fibroblasts. J Mol Endocrinol 33, 35-50.

Paramio, J. M. and Jorcano, J. L. (2002). Beyond structure: do intermediate filaments

modulate cell signalling Bioessays 24, 836-844.

Patrick, L. (2004). Selenium biochemistry and cancer: a review of the literature. Altern

Med Rev 9, 239-258.

Patterson, B. H. and Levander, O. A. (1997). Naturally occurring selenium compounds in

cancer chemoprevention trials: a workshop summary. Cancer Epidemiol

Biomarkers Prev 6, 63-69.

Perillo, B., Sasso, A., Abbondanza, C., and Palumbo, G. (2000). 17beta-estradiol inhibits

apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive

elements present in the coding sequence. Mol Cell Biol 20, 2890-2901.

Pettersson, K., Grandien, K., Kuiper, G. G., and Gustafsson, J. A. (1997). Mouse

estrogen receptor beta forms estrogen response element-binding heterodimers

with estrogen receptor alpha. Mol Endocrinol 11, 1486-1496.

Picard, F., Gehin, M., Annicotte, J., Rocchi, S., Champy, M. F., O'Malley, B. W.,

Chambon, P., and Auwerx, J. (2002). SRC-1 and TIF2 control energy balance

between white and brown adipose tissues. Cell 111, 931-941.

270 Pietras, R. J., Arboleda, J., Reese, D. M., Wongvipat, N., Pegram, M. D., Ramos, L.,

Gorman, C. M., Parker, M. G., Sliwkowski, M. X., and Slamon, D. J. (1995).

HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-

independent growth in human breast cancer cells. Oncogene 10, 2435-2446.

Poirier, K. A. and Milner, J. A. (1983). Factors influencing the antitumorigenic properties

of selenium in mice. J Nutr 113, 2147-2154.

Porter, W., Saville, B., Hoivik, D., and Safe, S. (1997). Functional synergy between the

transcription factor Sp1 and the estrogen receptor. Mol Endocrinol 11, 1569-1580.

Potera, C., Rose, D. P., and Brown, R. R. (1977). Vitamin B6 deficiency in cancer

patients. Am J Clin Nutr 30, 1677-1679.

Powers, C. A., Mathur, M., Raaka, B. M., Ron, D., and Samuels, H. H. (1998). TLS

(translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid

hormone, and retinoid receptors. Mol Endocrinol 12, 4-18.

Pratt, W. B. and Toft, D. O. (1997). Steroid receptor interactions with heat shock protein

and immunophilin chaperones. Endocr Rev 18, 306-360.

Pringa, E., Meier, I., Muller, U., Martinez-Noel, G., and Harbers, K. (2000). Disruption

of the gene encoding the ubiquitin-conjugating enzyme UbcM4 has no effect on

proliferation and in vitro differentiation of mouse embryonic stem cells. Biochim

Biophys Acta 1494, 75-82.

271 Pritchard, K. I., Paterson, A. H., Fine, S., Paul, N. A., Zee, B., Shepherd, L. E., Abu-

Zahra, H., Ragaz, J., Knowling, M., Levine, M. N., Verma, S., Perrault, D.,

Walde, P. L., Bramwell, V. H., Poljicak, M., Boyd, N., Warr, D., Norris, B. D.,

Bowman, D., Armitage, G. R., Weizel, H., and Buckman, R. A. (1997).

Randomized trial of cyclophosphamide, methotrexate, and fluorouracil

chemotherapy added to tamoxifen as adjuvant therapy in postmenopausal women

with node-positive estrogen and/or progesterone receptor-positive breast cancer: a

report of the National Cancer Institute of Canada Clinical Trials Group. Breast

Cancer Site Group. J Clin Oncol 15, 2302-2311.

Qin, C., Singh, P., and Safe, S. (1999). Transcriptional activation of insulin-like growth

factor-binding protein-4 by 17beta-estradiol in MCF-7 cells: role of estrogen

receptor-Sp1 complexes. Endocrinology 140, 2501-2508.

Rabenoelina, F., Semlali, A., Duchesne, M. J., Freiss, G., Pons, M., and Badia, E. (2002).

Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen

activated kinase cascade. Int J Cancer 98, 698-706.

Rachez, C., Suldan, Z., Ward, J., Chang, C. P., Burakov, D., Erdjument-Bromage, H.,

Tempst, P., and Freedman, L. P. (1998). A novel protein complex that interacts

with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR

transactivation in a cell-free system. Genes Dev 12, 1787-1800.

272 Ramachandran, C., Catelli, M. G., Schneider, W., and Shyamala, G. (1988). Estrogenic

regulation of uterine 90-kilodalton heat shock protein. Endocrinology 123, 956-

961.

Redman, C., Scott, J. A., Baines, A. T., Basye, J. L., Clark, L. C., Calley, C., Roe, D.,

Payne, C. M., and Nelson, M. A. (1998). Inhibitory effect of selenomethionine on

the growth of three selected human tumor cell lines. Cancer Lett 125, 103-110.

Reissig, D., Clement, J., Sanger, J., Berndt, A., Kosmehl, H., and Bohmer, F. D. (2001).

Elevated activity and expression of Src-family kinases in human breast carcinoma

tissue versus matched non-tumor tissue. J Cancer Res Clin Oncol 127, 226-230.

Repp, R., van Ojik, H. H., Valerius, T., Groenewegen, G., Wieland, G., Oetzel, C.,

Stockmeyer, B., Becker, W., Eisenhut, M., Steininger, H., Deo, Y. M., Blijham,

G. H., Kalden, J. R., van de Winkel, J. G., and Gramatzki, M. (2003). Phase I

clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-

2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast

cancer. Br J Cancer 89, 2234-2243.

Rowan, B. G., Garrison, N., Weigel, N. L., and O'Malley, B. W. (2000a). 8-Bromo-cyclic

AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-

independent activation of the chicken progesterone receptor and are critical for

functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol

20, 8720-8730.

273 Rowan, B. G., Weigel, N. L., and O'Malley, B. W. (2000b). Phosphorylation of steroid

receptor coactivator-1. Identification of the phosphorylation sites and

phosphorylation through the mitogen-activated protein kinase pathway. J Biol

Chem 275, 4475-4483.

Russo, J., Tay, L. K., and Russo, I. H. (1982). Differentiation of the mammary gland and

susceptibility to carcinogenesis. Breast Cancer Res Treat 2, 5-73.

Ryan (1999). Ryan: Kistner's Gynecology & Women's Health, 7th ed.

Sakamoto, T., Eguchi, H., Omoto, Y., Ayabe, T., Mori, H., and Hayashi, S. (2002).

Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer

cells. Mol Cell Endocrinol 192, 93-104.

Samudio, I., Vyhlidal, C., Wang, F., Stoner, M., Chen, I., Kladde, M., Barhoumi, R.,

Burghardt, R., and Safe, S. (2001). Transcriptional activation of deoxyribonucleic

acid polymerase alpha gene expression in MCF-7 cells by 17 beta-estradiol.

Endocrinology 142, 1000-1008.

Sar, M. and Welsch, F. (1999). Differential expression of estrogen receptor-beta and

estrogen receptor-alpha in the rat ovary. Endocrinology 140, 963-971.

Sarkar, S., Biswas, S. C., Chatterjee, O., and Sarkar, P. K. (1999). Protein kinase A

linked phosphorylation mediates triiodothyronine induced actin gene expression

in developing brain. Brain Res Mol Brain Res 67, 158-164.

274 Schiff, R., Massarweh, S., Shou, J., and Osborne, C. K. (2003). Breast cancer endocrine

resistance: how growth factor signaling and estrogen receptor coregulators

modulate response. Clin Cancer Res 9, 447S-454S.

Schlaepfer, D. D., Jones, K. C., and Hunter, T. (1998). Multiple Grb2-mediated integrin-

stimulated signaling pathways to ERK2/mitogen-activated protein kinase:

summation of both c-Src- and focal adhesion kinase-initiated tyrosine

phosphorylation events. Mol Cell Biol 18, 2571-2585.

Schomberg, D. W., Couse, J. F., Mukherjee, A., Lubahn, D. B., Sar, M., Mayo, K. E., and

Korach, K. S. (1999). Targeted disruption of the estrogen receptor-alpha gene in

female mice: characterization of ovarian responses and phenotype in the adult.

Endocrinology 140, 2733-2744.

Shah, Y. M., Basrur, V., and Rowan, B. G. (2004). Selective estrogen receptor modulator

regulated proteins in endometrial cancer cells. Mol Cell Endocrinol 219, 127-139.

Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A., and Brown, M. (2000). Cofactor dynamics

and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843-852.

Shang, Y. and Brown, M. (2002). Molecular determinants for the tissue specificity of

SERMs. Science 295, 2465-2468.

Shibata, H., Spencer, T. E., Onate, S. A., Jenster, G., Tsai, S. Y., Tsai, M. J., and

O'Malley, B. W. (1997). Role of co-activators and co-repressors in the mechanism

275 of steroid/thyroid receptor action. Recent Prog Horm Res 52:141-64; discussion

164-5., 141-164.

Shoker, B. S., Jarvis, C., Sibson, D. R., Walker, C., and Sloane, J. P. (1999a). Oestrogen

receptor expression in the normal and pre-cancerous breast. J Pathol 188, 237-

244.

Shoker, B. S., Jarvis, C., Clarke, R. B., Anderson, E., Hewlett, J., Davies, M. P., Sibson,

D. R., and Sloane, J. P. (1999b). Estrogen receptor-positive proliferating cells in

the normal and precancerous breast. Am J Pathol 155, 1811-1815.

Shyamala, G., Gauthier, Y., Moore, S. K., Catelli, M. G., and Ullrich, S. J. (1989).

Estrogenic regulation of murine uterine 90-kilodalton heat shock protein gene

expression. Mol Cell Biol 9, 3567-3570.

Simard, J., Labrie, C., Belanger, A., Gauthier, S., Singh, S. M., Merand, Y., and Labrie,

F. (1997). Characterization of the effects of the novel non-steroidal antiestrogen

EM-800 on basal and estrogen-induced proliferation of T-47D, ZR-75-1 and

MCF-7 human breast cancer cells in vitro. Int J Cancer 73, 104-112.

Sinha, R., Said, T. K., and Medina, D. (1996). Organic and inorganic selenium

compounds inhibit mouse mammary cell growth in vitro by different cellular

pathways. Cancer Lett 107, 277-284.

276 Sinha, R. and Medina, D. (1997). Inhibition of cdk2 kinase activity by

methylselenocysteine in synchronized mouse mammary epithelial tumor cells.

Carcinogenesis 18, 1541-1547.

Sinha, R., Kiley, S. C., Lu, J. X., Thompson, H. J., Moraes, R., Jaken, S., and Medina, D.

(1999). Effects of methylselenocysteine on PKC activity, cdk2 phosphorylation

and gadd gene expression in synchronized mouse mammary epithelial tumor

cells. Cancer Lett 146, 135-145.

Sinha, R., Unni, E., Ganther, H. E., and Medina, D. (2001). Methylseleninic acid, a

potent growth inhibitor of synchronized mouse mammary epithelial tumor cells in

vitro. Biochem Pharmacol 61, 311-317.

Sivaraman, L., Nawaz, Z., Medina, D., Conneely, O. M., and O'Malley, B. W. (2000).

The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator

E6-AP is overexpressed in mouse mammary tumorigenesis. Breast Cancer Res

Treat 62, 185-195.

Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A.,

Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J., and Norton, L.

(2001). Use of chemotherapy plus a monoclonal antibody against HER2 for

metastatic breast cancer that overexpresses HER2. N Engl J Med 344, 783-792.

277 Smith, C. L., Conneely, O. M., and O'Malley, B. W. (1993). Modulation of the ligand-

independent activation of the human estrogen receptor by hormone and

antihormone. Proc Natl Acad Sci U S A 90, 6120-6124.

Smith, C. L., Nawaz, Z., and O'Malley, B. W. (1997). Coactivator and corepressor

regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-

hydroxytamoxifen. Mol Endocrinol 11, 657-666.

Smith, C. L., DeVera, D. G., Lamb, D. J., Nawaz, Z., Jiang, Y. H., Beaudet, A. L., and

O'Malley, B. W. (2002). Genetic ablation of the steroid receptor coactivator-

ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and

defects in reproduction. Mol Cell Biol 22, 525-535.

Sourla, A., Luo, S., Labrie, C., Belanger, A., and Labrie, F. (1997). Morphological

changes induced by 6-month treatment of intact and ovariectomized mice with

tamoxifen and the pure antiestrogen EM-800. Endocrinology 138, 5605-5617.

Speirs, V., Carder, P. J., Lane, S., Dodwell, D., Lansdown, M. R., and Hanby, A. M.

(2004). Oestrogen receptor beta: what it means for patients with breast cancer.

Lancet Oncol 5, 174-181.

Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A.,

McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.

(1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389,

194-198.

278 Sridhar, S. S. and Shepherd, F. A. (2003a). Targeting angiogenesis: a review of

angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 42 Suppl

1:S81-91.

Sridhar, S. S., Seymour, L., and Shepherd, F. A. (2003b). Inhibitors of epidermal-growth-

factor receptors: a review of clinical research with a focus on non-small-cell lung

cancer. Lancet Oncol 4, 397-406.

Stack, G., Kumar, V., Green, S., Ponglikitmongkol, M., Berry, M., Rio, M. C., Nunez, A.

M., Roberts, M., Koehl, C., Bellocq, P., and . (1988). Structure and function of

the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat

Res 40, 185-206.

Stallard, S., Hole, D. A., Purushotham, A. D., Hiew, L. Y., Mehanna, H., Cordiner, C.,

Dobson, H., Mallon, E. A., and George, W. D. (2001). Ductal carcinoma in situ of

the breast -- among factors predicting for recurrence, distance from the nipple is

important. Eur J Surg Oncol 27, 373-377.

Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L.

A., and Sobel, M. E. (1988). Evidence for a novel gene associated with low tumor

metastatic potential. J Natl Cancer Inst 80, 200-204.

Stefano, G. B., Cadet, P., Breton, C., Goumon, Y., Prevot, V., Dessaint, J. P.,

Beauvillain, J. C., Roumier, A. S., Welters, I., and Salzet, M. (2000a). Estradiol-

stimulated nitric oxide release in human granulocytes is dependent on intracellular

279 calcium transients: evidence of a cell surface estrogen receptor. Blood 95, 3951-

3958.

Stefano, G. B., Prevot, V., Beauvillain, J. C., Cadet, P., Fimiani, C., Welters, I.,

Fricchione, G. L., Breton, C., Lassalle, P., Salzet, M., and Bilfinger, T. V.

(2000b). Cell-surface estrogen receptors mediate calcium-dependent nitric oxide

release in human endothelia. Circulation 101, 1594-1597.

Steinmetz, A. C., Renaud, J. P., and Moras, D. (2001). Binding of ligands and activation

of transcription by nuclear receptors. Annu Rev Biophys Biomol Struct 30, 329-

59.

Stendahl, M., Kronblad, A., Ryden, L., Emdin, S., Bengtsson, N. O., and Landberg, G.

(2004). Cyclin D1 overexpression is a negative predictive factor for tamoxifen

response in postmenopausal breast cancer patients. Br J Cancer 90, 1942-1948.

Stoica, A., Pentecost, E., and Martin, M. B. (2000). Effects of selenite on estrogen

receptor-alpha expression and activity in MCF-7 breast cancer cells. J Cell

Biochem 79, 282-292.

Sun, M., Paciga, J. E., Feldman, R. I., Yuan, Z., Coppola, D., Lu, Y. Y., Shelley, S. A.,

Nicosia, S. V., and Cheng, J. Q. (2001). Phosphatidylinositol-3-OH Kinase

(PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen

receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res

61, 5985-5991.

280 Sutherland, R. L., Hall, R. E., and Taylor, I. W. (1983). Cell proliferation kinetics of

MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on

exponentially growing and plateau-phase cells. Cancer Res 43, 3998-4006.

Swain, S. M. (1989a). Noninvasive breast cancer: Part 2. Lobular carcinoma in situ--

incidence, presentation, guidelines to treatment. Oncology (Huntingt) 3, 35-40.

Swain, S. M. (1989b). Noninvasive breast cancer: Part 1. Ductal carcinoma in situ--

incidence, presentation, guidelines to treatment. Oncology (Huntingt) 3, 25-31.

Swede, H., Dong, Y., Reid, M., Marshall, J., and Ip, C. (2003). Cell cycle arrest

biomarkers in human lung cancer cells after treatment with selenium in culture.

Cancer Epidemiol Biomarkers Prev 12, 1248-1252.

Takeshita, A., Yen, P. M., Misiti, S., Cardona, G. R., Liu, Y., and Chin, W. W. (1996).

Molecular cloning and properties of a full-length putative thyroid hormone

receptor coactivator. Endocrinology 137, 3594-3597.

Tang, P. Z., Gannon, M. J., Andrew, A., and Miller, D. (1995). Evidence for oestrogenic

regulation of heat shock protein expression in human endometrium and steroid-

responsive cell lines. Eur J Endocrinol 133, 598-605.

Terenius, L. (1971). Structure-activity relationships of anti-oestrogens with regard to

interaction with 17-beta-oestradiol in the mouse uterus and vagina. Acta

Endocrinol (Copenh) 66, 431-447.

281 Thomas, S. M. and Brugge, J. S. (1997). Cellular functions regulated by Src family

kinases. Annu Rev Cell Dev Biol 13, 513-609.

Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., and Chambon, P.

(1989). The human estrogen receptor has two independent nonacidic

transcriptional activation functions. Cell 59, 477-487.

Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and

Rosenfeld, M. G. (1997). The transcriptional co-activator p/CIP binds CBP and

mediates nuclear-receptor function. Nature 387, 677-684.

Traxler, P., Bold, G., Buchdunger, E., Caravatti, G., Furet, P., Manley, P., O'Reilly, T.,

Wood, J., and Zimmermann, J. (2001). Tyrosine kinase inhibitors: from rational

design to clinical trials. Med Res Rev 21, 499-512.

Tremblay, A., Tremblay, G. B., Labrie, C., Labrie, F., and Giguere, V. (1998). EM-800, a

novel antiestrogen, acts as a pure antagonist of the transcriptional functions of

estrogen receptors alpha and beta. Endocrinology 139, 111-118.

Tremblay, A., Tremblay, G. B., Labrie, F., and Giguere, V. (1999). Ligand-independent

recruitment of SRC-1 to estrogen receptor beta through phosphorylation of

activation function AF-1. Mol Cell 3, 513-519.

Tremblay, G. B., Tremblay, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Labrie, F.,

and Giguere, V. (1997). Cloning, chromosomal localization, and functional

analysis of the murine estrogen receptor beta. Mol Endocrinol 11, 353-365.

282 Tsai, M. J. and O'Malley, B. W. (1994). Molecular mechanisms of action of

steroid/thyroid receptor superfamily members. Annu Rev Biochem 63, 451-86.

Twal, W. O., Czirok, A., Hegedus, B., Knaak, C., Chintalapudi, M. R., Okagawa, H.,

Sugi, Y., and Argraves, W. S. (2001). Fibulin-1 suppression of fibronectin-

regulated cell adhesion and motility. J Cell Sci 114, 4587-4598.

Tzeng, D. Z. and Klinge, C. M. (1996). Phosphorylation of purified estradiol-liganded

estrogen receptor by casein kinase II increases estrogen response element binding

but does not alter ligand stability. Biochem Biophys Res Commun 223, 554-560.

Tzukerman, M. T., Esty, A., Santiso-Mere, D., Danielian, P., Parker, M. G., Stein, R. B.,

Pike, J. W., and McDonnell, D. P. (1994). Human estrogen receptor

transactivational capacity is determined by both cellular and promoter context and

mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8,

21-30.

Vidal, O., Kindblom, L. G., and Ohlsson, C. (1999). Expression and localization of

estrogen receptor-beta in murine and human bone. J Bone Miner Res 14, 923-929.

Vladusic, E. A., Hornby, A. E., Guerra-Vladusic, F. K., Lakins, J., and Lupu, R. (2000).

Expression and regulation of estrogen receptor beta in human breast tumors and

cell lines. Oncol Rep 7, 157-167.

283 Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P., and Gronemeyer, H. (1996). TIF2, a

160 kDa transcriptional mediator for the ligand-dependent activation function AF-

2 of nuclear receptors. EMBO J 15, 3667-3675.

Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher,

L., Slamon, D. J., Murphy, M., Novotny, W. F., Burchmore, M., Shak, S.,

Stewart, S. J., and Press, M. (2002). Efficacy and safety of trastuzumab as a single

agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J

Clin Oncol 20, 719-726.

Wagner, B. L., Norris, J. D., Knotts, T. A., Weigel, N. L., and McDonnell, D. P. (1998).

The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and

8-bromo-cyclic AMP-dependent transcriptional activity of the human

progesterone receptor. Mol Cell Biol 18, 1369-1378.

Wakeling, A. E., Dukes, M., and Bowler, J. (1991). A potent specific pure antiestrogen

with clinical potential. Cancer Res 51, 3867-3873.

Walinder, O. (1968). Identification of a phosphate-incorporating protein from bovine

liver as nucleoside diphosphate kinase and isolation of 1-32P-phosphohistidine, 3-

32P-phosphohistidine, and N-epsilon-32P-phospholysine from erythrocytic

nucleoside diphosphate kinase, incubated with adenosine triphosphate-32P. J Biol

Chem 243, 3947-3952.

284 Wallace, P. K., Romet-Lemonne, J. L., Chokri, M., Kasper, L. H., Fanger, M. W., and

Fadul, C. E. (2000). Production of macrophage-activated killer cells for targeting

of glioblastoma cells with bispecific antibody to FcgammaRI and the epidermal

growth factor receptor. Cancer Immunol Immunother 49, 493-503.

Walter, S. and Buchner, J. (2002). Molecular chaperones--cellular machines for protein

folding. Angew Chem Int Ed Engl 41, 1098-1113.

Wang, F., Samudio, I., and Safe, S. (2001a). Transcriptional activation of rat creatine

kinase B by 17beta-estradiol in MCF-7 cells involves an estrogen responsive

element and GC-rich sites. J Cell Biochem 84, 156-172.

Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D.,

Briggs, S. D., Allis, C. D., Wong, J., Tempst, P., and Zhang, Y. (2001b).

Methylation of histone H4 at arginine 3 facilitating transcriptional activation by

nuclear hormone receptor. Science 293, 853-857.

Wang, R. A., Mazumdar, A., Vadlamudi, R. K., and Kumar, R. (2002). P21-activated

kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes

hyperplasia in mammary epithelium. EMBO J 21, 5437-5447.

Wang, Z., Rose, D. W., Hermanson, O., Liu, F., Herman, T., Wu, W., Szeto, D.,

Gleiberman, A., Krones, A., Pratt, K., Rosenfeld, R., Glass, C. K., and Rosenfeld,

M. G. (2000). Regulation of somatic growth by the p160 coactivator p/CIP. Proc

Natl Acad Sci U S A 97, 13549-13554.

285 Wang, Z., Jiang, C., Ganther, H., and Lu, J. (2001c). Antimitogenic and proapoptotic

activities of methylseleninic acid in vascular endothelial cells and associated

effects on PI3K-AKT, ERK, JNK and p38 MAPK signaling. Cancer Res 61,

7171-7178.

Wang, Z., Jiang, C., and Lu, J. (2002). Induction of caspase-mediated apoptosis and cell-

cycle G1 arrest by selenium metabolite methylselenol. Mol Carcinog 34, 113-120.

Washburn, T., Hocutt, A., Brautigan, D. L., and Korach, K. S. (1991). Uterine estrogen

receptor in vivo: phosphorylation of nuclear specific forms on serine residues.

Mol Endocrinol 5, 235-242.

Watrach, A. M., Milner, J. A., and Watrach, M. A. (1982). Effect of selenium on growth

rate of canine mammary carcinoma cells in athymic nude mice. Cancer Lett 15,

137-143.

Watrach, A. M., Milner, J. A., Watrach, M. A., and Poirier, K. A. (1984). Inhibition of

human breast cancer cells by selenium. Cancer Lett 25, 41-47.

Watson, C. S., Norfleet, A. M., Pappas, T. C., and Gametchu, B. (1999). Rapid actions of

estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of

estrogen receptor-alpha. Steroids 64, 5-13.

Watts, N. B. (1999). Postmenopausal osteoporosis. Obstet Gynecol Surv 54, 532-538.

286 Weatherman, R. V., Fletterick, R. J., and Scanlan, T. S. (1999). Nuclear-receptor ligands

and ligand-binding domains. Annu Rev Biochem 68, 559-81.

Webb, P., Lopez, G. N., Uht, R. M., and Kushner, P. J. (1995). Tamoxifen activation of

the estrogen receptor/AP-1 pathway: potential origin for the cell-specific

estrogen-like effects of antiestrogens. Mol Endocrinol 9, 443-456.

Webb, P., Nguyen, P., Shinsako, J., Anderson, C., Feng, W., Nguyen, M. P., Chen, D.,

Huang, S. M., Subramanian, S., McKinerney, E., Katzenellenbogen, B. S.,

Stallcup, M. R., and Kushner, P. J. (1998). Estrogen receptor activation function 1

works by binding p160 coactivator proteins. Mol Endocrinol 12, 1605-1618.

Webb, P., Nguyen, P., Valentine, C., Lopez, G. N., Kwok, G. R., McInerney, E.,

Katzenellenbogen, B. S., Enmark, E., Gustafsson, J. A., Nilsson, S., and Kushner,

P. J. (1999). The estrogen receptor enhances AP-1 activity by two distinct

mechanisms with different requirements for receptor transactivation functions.

Mol Endocrinol 13, 1672-1685.

Weigel, N. L. and Zhang, Y. (1998). Ligand-independent activation of steroid hormone

receptors. J Mol Med 76, 469-479.

Weis, K. E., Ekena, K., Thomas, J. A., Lazennec, G., and Katzenellenbogen, B. S.

(1996). Constitutively active human estrogen receptors containing amino acid

substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 10, 1388-

1398.

287 Weissman, A. M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell

Biol 2, 169-178.

Weniger, J. P. (1990). Aromatase activity in fetal gonads of mammals. J Dev Physiol 14,

303-306.

Wilcken, N. R., Prall, O. W., Musgrove, E. A., and Sutherland, R. L. (1997). Inducible

overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory

effects of antiestrogens. Clin Cancer Res 3, 849-854.

Willems, R., Slegers, H., Rodrigus, I., Moulijn, A. C., Lenjou, M., Nijs, G., Berneman, Z.

N., and Van Bockstaele, D. R. (2002). Extracellular nucleoside diphosphate

kinase NM23/NDPK modulates normal hematopoietic differentiation. Exp

Hematol 30, 640-648.

Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W., and Liu, Y. (2001). Estrogens:

trophic and protective factors in the adult brain. Front Neuroendocrinol 22, 33-66.

Won, J., Yim, J., and Kim, T. K. (2002). Sp1 and Sp3 recruit histone deacetylase to

repress transcription of human telomerase reverse transcriptase (hTERT)

promoter in normal human somatic cells. J Biol Chem 277, 38230-38238.

Wu, K., Helzlsouer, K. J., Comstock, G. W., Hoffman, S. C., Nadeau, M. R., and Selhub,

J. (1999). A prospective study on folate, B12, and pyridoxal 5'-phosphate (B6)

and breast cancer. Cancer Epidemiol Biomarkers Prev 8, 209-217.

288 Wu, R. C., Qin, J., Yi, P., Wong, J., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (2004).

Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic

reponses to multiple cellular signaling pathways. Mol Cell 15, 937-949.

Wu, W. X., Derks, J. B., Zhang, Q., and Nathanielsz, P. W. (1996). Changes in heat

shock protein-90 and -70 messenger ribonucleic acid in uterine tissues of the ewe

in relation to parturition and regulation by estradiol and progesterone.

Endocrinology 137, 5685-5693.

Xie, W., Duan, R., and Safe, S. (1999). Estrogen induces adenosine deaminase gene

expression in MCF-7 human breast cancer cells: role of estrogen receptor-Sp1

interactions. Endocrinology 140, 219-227.

Xu, J., Qiu, Y., DeMayo, F. J., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1998).

Partial hormone resistance in mice with disruption of the steroid receptor

coactivator-1 (SRC-1) gene. Science 20;279, 1922-1925.

Xu, J., Liao, L., Ning, G., Yoshida-Komiya, H., Deng, C., and O'Malley, B. W. (2000).

The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is

required for normal growth, puberty, female reproductive function, and mammary

gland development. Proc Natl Acad Sci U S A 97, 6379-6384.

Yan, F., Gao, X., Lonard, D. M., and Nawaz, Z. (2003). Specific ubiquitin-conjugating

enzymes promote degradation of specific nuclear receptor coactivators. Mol

Endocrinol 17, 1315-1331.

289 Yan, L., Boylan, L. M., and Spallholz, J. E. (1991). Effect of dietary selenium and

magnesium on human mammary tumor growth in athymic nude mice. Nutr

Cancer 16, 239-248.

Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P., and Davis, C. G. (2001). Development

of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer

therapy. Crit Rev Oncol Hematol 38, 17-23.

Yarden, Y. and Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nat

Rev Mol Cell Biol 2, 127-137.

Yokouchi, M., Kondo, T., Houghton, A., Bartkiewicz, M., Horne, W. C., Zhang, H.,

Yoshimura, A., and Baron, R. (1999). Ligand-induced ubiquitination of the

epidermal growth factor receptor involves the interaction of the c-Cbl RING

finger and UbcH7. J Biol Chem 274, 31707-31712.

Yokouchi, M., Kondo, T., Sanjay, A., Houghton, A., Yoshimura, A., Komiya, S., Zhang,

H., and Baron, R. (2001). Src-catalyzed phosphorylation of c-Cbl leads to the

interdependent ubiquitination of both proteins. J Biol Chem 276, 35185-35193.

Zhang, S. M., Willett, W. C., Selhub, J., Hunter, D. J., Giovannucci, E. L., Holmes, M.

D., Colditz, G. A., and Hankinson, S. E. (2003). Plasma folate, vitamin B6,

vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst 95, 373-

380.

290 Zhu, Z., Jiang, W., Ganther, H. E., and Thompson, H. J. (2002). Mechanisms of cell

cycle arrest by methylseleninic acid. Cancer Res 62, 156-164.

Zu, K. and Ip, C. (2003). Synergy between selenium and vitamin E in apoptosis induction

is associated with activation of distinctive initiator caspases in human prostate

cancer cells. Cancer Res 63, 6988-6995.

Zugmaier, G., Ennis, B. W., Deschauer, B., Katz, D., Knabbe, C., Wilding, G., Daly, P.,

Lippman, M. E., and Dickson, R. B. (1989). Transforming growth factors type

beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell

lines. J Cell Physiol 141, 353-361.

291 ABSTRACT

Tamoxifen is the most widely prescribed selective estrogen receptor modulator

(SERM) for breast cancer. Despite the benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients develop resistance to therapy and tamoxifen exhibits ER agonist action in the uterus that is associated with an increased incidence of endometrial cancer. These problems with tamoxifen therapy indicate a need to identify new biomarkers for tamoxifen therapy that are predictive of tamoxifen resistance and/or the agonist effects associated in the endometrium. Protein expression profiles associated with a graded estrogen response were generated in an ER-positive and tamoxifen resistant

Ishikawa endometrial adenocarcinoma cell-line using two-dimensional gel electrophoresis and mass spectrometry sequencing. Among the identified proteins were chaperones proteins, RNA and RNA polymerase binding proteins, cytoskeletal proteins, an ubiquitin ligase, and a multi-functional kinase. The proteins identified may serve as useful biomarkers for development of tamoxifen resistance or serve as novel tumor targets.

In related projects designed to identify novel mechanisms to increase tamoxifen efficacy, it was found that src kinase inhibitors and the micronutrient selenium modulated

ERα signaling and potentiated the antagonist action of tamoxifen in sensitive and resistant breast and endometrial cell lines through discrete mechanisms. Src kinase induced ERα phosphorylation at serine 167 via the PI3K/AKT pathway that was shown to be critical for ERα promoter interaction. In addition, src specifically enhanced the

292 transcriptional activity of steroid receptor coactivator-1 (SRC-1), which was sufficient to enhance its coactivation of ERα. Inhibition of src kinase blocked these mechanisms and prevented tamoxifen agonist action in tamoxifen resistant cell lines.

Methylseleninic acid (MSA) is a monomethylated selenium compound that inhibits growth of cancer cells in vitro. MSA decreased ERα mRNA and protein levels

in tamoxifen-sensitive and -resistant breast and endometrial cancer cell lines in vitro that resulted in subsequent antagonism of estradiol-dependent ERE2e1b-luciferase and

endogenous c-myc and pS2 gene expression. MSA also reversed tamoxifen activation of

these genes in endometrial Ishikawa and HEC-1A cells. In addition, MSA potentiated

the growth inhibitory affects of tamoxifen in tamoxifen-sensitive and -resistant breast and

endometrial cancer cells.

293