Random Networks for Communication

Total Page:16

File Type:pdf, Size:1020Kb

Random Networks for Communication This page intentionally left blank Random Networks for Communication When is a network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions – and others – when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics. Massimo Franceschetti is assistant professor of electrical and computer engineering at the University of California, San Diego. His work in communication system theory sits at the interface between networks, information theory, control, and electromagnetics. Ronald Meester is professor of mathematics at the Vrije Universiteit Amsterdam. He has published broadly in percolation theory, spatial random processes, self-organised crit- icality, ergodic theory, and forensic statistics and is the author of Continuum Percolation (with Rahul Roy) and A Natural Introduction to Probability Theory. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS Editorial Board R. Gill (Mathematisch Instituut, Leiden University) B. D. Ripley (Department of Statistics, University of Oxford) S. Ross (Department of Industrial & Systems Engineering, University of Southern California) B. W. Silverman (St. Peter’s College, Oxford) M. Stein (Department of Statistics, University of Chicago) This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical pro- gramming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice. Already published 1. Bootstrap Methods and Their Application, by A. C. Davison and D. V. Hinkley 2. Markov Chains, by J. Norris 3. Asymptotic Statistics, by A. W. van der Vaart 4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden 5. Bayesian Methods, by Thomas Leonard and John S. J. Hsu 6. Empirical Processes in M-Estimation, by Sara van de Geer 7. Numerical Methods of Statistics, by John F. Monahan 8. A User’s Guide to Measure Theoretic Probability, by David Pollard 9. The Estimation and Tracking of Frequency, by B. G. Quinn and E. J. Hannan 10. Data Analysis and Graphics using R, by John Maindonald and W. John Braun 11. Statistical Models, by A. C. Davison 12. Semiparametric Regression, by D. Ruppert, M. P. Wand, R. J. Carroll 13. Exercises in Probability, by Loic Chaumont and Marc Yor 14. Statistical Analysis of Stochastic Processes in Time, by J. K. Lindsey 15. Measure Theory and Filtering, by Lakhdar Aggoun and Robert Elliott 16. Essentials of Statistical Inference, by G. A. Young and R. L. Smith 17. Elements of Distribution Theory, by Thomas A. Severini 18. Statistical Mechanics of Disordered Systems, by Anton Bovier 19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura 20. Random Graph Dynamics, by Rick Durrett 21. Networks, by Peter Whittle 22. Saddlepoint Approximations with Applications, by Ronald W. Butler 23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid Random Networks for Communication From Statistical Physics to Information Systems Massimo Franceschetti and Ronald Meester CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521854429 © M. Franceschetti and R. Meester 2007 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-37855-3 eBook (NetLibrary) ISBN-13 978-0-521-85442-9 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page ix List of notation xi 1 Introduction 1 1.1 Discrete network models 3 1.1.1 The random tree 3 1.1.2 The random grid 5 1.2 Continuum network models 6 1.2.1 Poisson processes 6 1.2.2 Nearest neighbour networks 10 1.2.3 Poisson random connection networks 11 1.2.4 Boolean model networks 12 1.2.5 Interference limited networks 13 1.3 Information-theoretic networks 14 1.4 Historical notes and further reading 15 2 Phase transitions in infinite networks 17 2.1 The random tree; infinite growth 17 2.2 The random grid; discrete percolation 21 2.3 Dependencies 29 2.4 Nearest neighbours; continuum percolation 31 2.5 Random connection model 37 2.6 Boolean model 48 2.7 Interference limited networks 51 2.7.1 Mapping on a square lattice 56 2.7.2 Percolation on the square lattice 58 2.7.3 Percolation of the interference model 62 2.7.4 Bound on the percolation region 63 2.8 Historical notes and further reading 66 vi Contents 3 Connectivity of finite networks 69 3.1 Preliminaries: modes of convergence and Poisson approximation 69 3.2 The random grid 71 3.2.1 Almost connectivity 71 3.2.2 Full connectivity 72 3.3 Boolean model 77 3.3.1 Almost connectivity 78 3.3.2 Full connectivity 81 3.4 Nearest neighbours; full connectivity 88 3.5 Critical node lifetimes 92 3.6 A central limit theorem 98 3.7 Historical notes and further reading 98 4 More on phase transitions 100 4.1 Preliminaries: Harris–FKG Inequality 100 4.2 Uniqueness of the infinite cluster 101 4.3 Cluster size distribution and crossing paths 107 4.4 Threshold behaviour of fixed size networks 114 4.5 Historical notes and further reading 119 5 Information flow in random networks 121 5.1 Information-theoretic preliminaries 121 5.1.1 Channel capacity 122 5.1.2 Additive Gaussian channel 124 5.1.3 Communication with continuous time signals 127 5.1.4 Information-theoretic random networks 129 5.2 Scaling limits; single source–destination pair 131 5.3 Multiple source–destination pairs; lower bound 136 5.3.1 The highway 138 5.3.2 Capacity of the highway 139 5.3.3 Routing protocol 142 5.4 Multiple source–destination pairs; information-theoretic upper bounds 146 5.4.1 Exponential attenuation case 148 5.4.2 Power law attenuation case 151 5.5 Historical notes and further reading 155 6 Navigation in random networks 157 6.1 Highway discovery 157 6.2 Discrete short-range percolation (large worlds) 159 6.3 Discrete long-range percolation (small worlds) 161 6.3.1 Chemical distance, diameter, and navigation length 162 6.3.2 More on navigation length 167 6.4 Continuum long-range percolation (small worlds) 171 Contents vii 6.5 The role of scale invariance in networks 181 6.6 Historical notes and further reading 182 Appendix 185 A.1 Landau’s order notation 185 A.2 Stirling’s formula 185 A.3 Ergodicity and the ergodic theorem 185 A.4 Deviations from the mean 187 A.5 The Cauchy–Schwartz inequality 188 A.6 The singular value decomposition 189 References 190 Index 194 Preface What is this book about, and who is it written for? To start with the first question, this book introduces a subject placed at the interface between mathematics, physics, and information theory of systems. In doing so, it is not intended to be a comprehensive monograph and collect all the mathematical results available in the literature, but rather pursues the more ambitious goal of laying the foundations. We have tried to give emphasis to the relevant mathematical techniques that are the essential ingredients for anybody interested in the field of random networks. Dynamic coupling, renormalisation, ergodicity and deviations from the mean, correlation inequalities, Poisson approximation, as well as some other tricks and constructions that often arise in the proofs are not only applied, but also discussed with the objective of clarifying the philosophy behind their arguments. We have also tried to make available to a larger community the main mathematical results on random networks, and to place them into a new communication theory framework, trying not to sacrifice mathematical rigour. As a result, the choice of the topics was influenced by personal taste, by the willingness to keep the flow consistent, and by the desire to present a modern, communication-theoretic view of a topic that originated some fifty years ago and that has had an incredible impact in mathematics and statistical physics since then. Sometimes this has come at the price of sacrificing the presentation of results that either did not fit well in what we thought was the ideal flow of the book, or that could be obtained using the same basic ideas, but at the expense of highly technical complications. One important topic that the reader will find missing, for example, is a complete treatment of the classic Erdös–Rényi model of random graphs and of its more recent extensions, including preferential attachment models used to describe properties of the Internet.
Recommended publications
  • Franceschetti M., Meester R. Random Networks for Communication
    This page intentionally left blank Random Networks for Communication When is a network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions – and others – when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics. Massimo Franceschetti is assistant professor of electrical and computer engineering at the University of California, San Diego. His work in communication system theory sits at the interface between networks, information theory, control, and electromagnetics. Ronald Meester is professor of mathematics at the Vrije Universiteit Amsterdam. He has published broadly in percolation theory, spatial random processes, self-organised crit- icality, ergodic theory, and forensic statistics and is the author of Continuum Percolation (with Rahul Roy) and A Natural Introduction to Probability Theory. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS Editorial Board R. Gill (Mathematisch Instituut, Leiden University) B. D. Ripley (Department of Statistics, University of Oxford) S. Ross (Department of Industrial & Systems Engineering, University of Southern California) B.
    [Show full text]
  • Markov Model Checking of Probabilistic Boolean Networks Representations of Genes
    Markov Model Checking of Probabilistic Boolean Networks Representations of Genes Marie Lluberes1, Jaime Seguel2 and Jaime Ramírez-Vick3 1, 2 Electrical and Computer Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico 3 General Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico or, on contrary, to prevent or to stop an undesirable Abstract - Our goal is to develop an algorithm for the behavior. This “guiding” of the network dynamics is automated study of the dynamics of Probabilistic Boolean referred to as intervention. The power to intervene with the Network (PBN) representation of genes. Model checking is network dynamics has a significant impact in diagnostics an automated method for the verification of properties on and drug design. systems. Continuous Stochastic Logic (CSL), an extension of Biological phenomena manifest in the continuous-time Computation Tree Logic (CTL), is a model-checking tool domain. But, in describing such phenomena we usually that can be used to specify measures for Continuous-time employ a binary language, for instance, expressed or not Markov Chains (CTMC). Thus, as PBNs can be analyzed in expressed; on or off; up or down regulated. Studies the context of Markov theory, the use of CSL as a method for conducted restricting genes expression to only two levels (0 model checking PBNs could be a powerful tool for the or 1) suggested that information retained by these when simulation of gene network dynamics. Particularly, we are binarized is meaningful to the extent that it is remains in a interested in the subject of intervention. This refers to the continuous domain [2].
    [Show full text]
  • Online Spectral Clustering on Network Streams Yi
    Online Spectral Clustering on Network Streams By Yi Jia Submitted to the graduate degree program in Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Jun Huan, Chairperson Swapan Chakrabarti Committee members Jerzy Grzymala-Busse Bo Luo Alfred Tat-Kei Ho Date defended: The Dissertation Committee for Yi Jia certifies that this is the approved version of the following dissertation : Online Spectral Clustering on Network Streams Jun Huan, Chairperson Date approved: ii Abstract Graph is an extremely useful representation of a wide variety of practical systems in data analysis. Recently, with the fast accumulation of stream data from various type of networks, significant research interests have arisen on spectral clustering for network streams (or evolving networks). Compared with the general spectral clustering problem, the data analysis of this new type of problems may have additional requirements, such as short processing time, scalability in distributed computing environments, and temporal variation tracking. However, to design a spectral clustering method to satisfy these requirement cer- tainly presents non-trivial efforts. There are three major challenges for the new algorithm design. The first challenge is online clustering computation. Most of the existing spectral methods on evolving networks are off-line methods, using standard eigensystem solvers such as the Lanczos method. It needs to recompute solutions from scratch at each time point. The second challenge is the paralleliza- tion of algorithms. To parallelize such algorithms is non-trivial since standard eigen solvers are iterative algorithms and the number of iterations can not be pre- determined.
    [Show full text]
  • Random Graphs in Evolution François Bienvenu
    Random graphs in evolution François Bienvenu To cite this version: François Bienvenu. Random graphs in evolution. Combinatorics [math.CO]. Sorbonne Université, 2019. English. NNT : 2019SORUS180. tel-02932179 HAL Id: tel-02932179 https://tel.archives-ouvertes.fr/tel-02932179 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale de Sciences Mathématiques de Paris Centre Laboratoire de Probabilités, Statistiques et Modélisation Sorbonne Université Thèse de doctorat Discipline : mathématiques présentée par François Bienvenu Random Graphs in Evolution Sous la direction d’Amaury Lambert Après avis des rapporteurs : M. Simon Harris (University of Auckland) Mme Régine Marchand (Université de Lorraine) Soutenue le 13 septembre 2019 devant le jury composé de : M. Nicolas Broutin Sorbonne Université Examinateur M. Amaury Lambert Sorbonne Université Directeur de thèse Mme Régine Marchand Université de Lorraine Rapporteuse Mme. Céline Scornavacca Chargée de recherche CNRS Examinatrice M. Viet Chi Tran Université de Lille Examinateur Contents Contents3 1 Introduction5 1.1 A very brief history of random graphs................. 6 1.2 A need for tractable random graphs in evolution ........... 7 1.3 Outline of the thesis........................... 8 Literature cited in the introduction.....................
    [Show full text]
  • Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence
    Hindawi Publishing Corporation EURASIP Journal on Bioinformatics and Systems Biology Volume 2007, Article ID 32454, 15 pages doi:10.1155/2007/32454 Research Article Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence Stephen Marshall,1 Le Yu,1 Yufei Xiao,2 and Edward R. Dougherty2, 3, 4 1 Department of Electronic and Electrical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, G1 1XW, UK 2 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA 3 Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA 4 Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA Received 10 July 2006; Revised 29 January 2007; Accepted 26 February 2007 Recommended by Tatsuya Akutsu The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of proba- bilistic Boolean networks (PBNs) from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be de- termined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all) of the zeros.
    [Show full text]
  • Boolean Network Control with Ideals
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 1-2021 Boolean Network Control with Ideals Ian H. Dinwoodie Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac Part of the Physical Sciences and Mathematics Commons Let us know how access to this document benefits ou.y Citation Details Dinwoodie, Ian H., "Boolean Network Control with Ideals" (2021). Mathematics and Statistics Faculty Publications and Presentations. 302. https://pdxscholar.library.pdx.edu/mth_fac/302 This Working Paper is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Boolean Network Control with Ideals I H Dinwoodie Portland State University January 2021 Abstract A method is given for finding controls to transition an initial state x0 to a target set in deterministic or stochastic Boolean network control models. The algorithms use multivariate polynomial algebra. Examples illustrate the application. 1 Introduction A Boolean network is a dynamical system on d nodes (or coordinates) with binary node values, and with transition map F : {0, 1}d → {0, 1}d. The c coordinate maps F = (f1,...,fd) may use binary parameters u ∈ {0, 1} that can be adjusted or controlled at each step, so the image can be writ- ten F (x, u) and F takes {0, 1}d+c → {0, 1}d, usually written in logical nota- tion.
    [Show full text]
  • Random Boolean Networks As a Toy Model for the Brain
    UNIVERSITY OF GENEVA SCIENCE FACULTY VRIJE UNIVERSITEIT OF AMSTERDAM PHYSICS SECTION Random Boolean Networks as a toy model for the brain MASTER THESIS presented at the science faculty of the University of Geneva for obtaining the Master in Theoretical Physics by Chlo´eB´eguin Supervisor (VU): Pr. Greg J Stephens Co-Supervisor (UNIGE): Pr. J´er^ome Kasparian July 2017 Contents Introduction1 1 Biology, physics and the brain4 1.1 Biological description of the brain................4 1.2 Criticality in the brain......................8 1.2.1 Physics reminder..................... 10 1.2.2 Experimental evidences.................. 15 2 Models of neural networks 20 2.1 Classes of models......................... 21 2.1.1 Spiking models...................... 21 2.1.2 Rate-based models.................... 23 2.1.3 Attractor networks.................... 24 2.1.4 Links between the classes of models........... 25 2.2 Random Boolean Networks.................... 28 2.2.1 General definition..................... 28 2.2.2 Kauffman network.................... 30 2.2.3 Hopfield network..................... 31 2.2.4 Towards a RBN for the brain.............. 32 2.2.5 The model......................... 33 3 Characterisation of RBNs 34 3.1 Attractors............................. 34 3.2 Damage spreading........................ 36 3.3 Canonical specific heat...................... 37 4 Results 40 4.1 One population with Gaussian weights............. 40 4.2 Dale's principle and balance of inhibition - excitation..... 46 4.3 Lognormal distribution of the weights.............. 51 4.4 Discussion............................. 55 i 5 Conclusion 58 Bibliography 60 Acknowledgements 66 A Python Code 67 A.1 Dynamics............................. 67 A.2 Attractor search.......................... 69 A.3 Hamming Distance........................ 73 A.4 Canonical specific heat.....................
    [Show full text]
  • Who Would Have Thought Card Shuffling Was So Involved?
    Who would have thought card shuffling was so involved? Leah Cousins August 26, 2019 Abstract In this paper we present some interesting mathematical results on card shuffling for two types of shuffling: the famous riffle shuffle and the random-to-top shuffle. A natural question is how long it takes for a deck to be randomized under a particular shuffling technique. Mathematically, this is the mixing time of a Markov chain. In this paper we present these results for both the riffle shuffle and the random-to-top shuffle. For the same two shuffles, we also include natural results for card shuffling which directly relate to well-known combinatorial objects such as Bell numbers and Young tableaux. Contents 1 Introduction 2 2 What is Card Shuffling, Really? 3 2.1 Shuffles are Bijective Functions . .3 2.2 Random Walks and Markov Chains . .4 2.3 What is Randomness? . .5 2.4 There are even shuffle algebras ?.........................6 3 The Riffle Shuffle 7 3.1 The Mixing Time . .8 3.2 Riffle Shuffling for Different Card Games . 11 3.3 Carries and Card Shuffles . 14 4 The Random-to-top Shuffle 17 4.1 Lifting Cards . 17 4.2 Properties of the Lifting Process . 18 4.3 Bell Numbers and the Random-to-top Shuffle . 18 4.4 Young Diagrams . 22 4.5 The Mixing Time . 29 5 Concluding Remarks 36 1 1 Introduction Humans have been shuffling decks of cards since playing cards were first invented in 1000AD in Eastern Asia [25]. It is unclear when exactly card shuffling theory was first studied, but since card shuffling theory began with magicians' card tricks, it is fair to think that it was around the time that magicians were studying card tricks.
    [Show full text]
  • A Random Boolean Network Model and Deterministic Chaos
    A Random Boolean Network Model and Deterministic Chaos Mihaela T. Matache* Jack Heidel Department of Mathematics University of Nebraska at Omaha Omaha, NE 68182-0243, USA *[email protected] Abstract This paper considers a simple Boolean network with N nodes, each node’s state at time t being determined by a certain number of parent nodes, which may vary from one node to another. This is an extension of a model studied by Andrecut and Ali ( [5]) who consider the same number of parents for all nodes. We make use of the same Boolean rule as the authors of [5], provide a generalization of the formula for the probability of finding a node in state 1 at a time t and use simulation methods to generate consecutive states of the network for both the real system and the model. The results match well. We study the dynamics of the model through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point analysis. We show that the route to chaos is due to a cascade of period- doubling bifurcations which turn into reversed (period - halving) bifurcations for certain combinations of parameter values. 1. Introduction In recent years various studies ( [5], [16], [19], [20], [21], [22], [30], [31]) have shown that a large class of biological networks and cellular automata can be modelled as Boolean networks. These models, besides being easy to understand, are relatively easy to handle. The interest for Boolean networks and their appli- cations in biology and automata networks has actually started much earlier ( [8], [13], [14], [15], [25], [29], [32]), with publications such as the one of Kauffman ( [25]) whose work on the self-organization and adap- tation in complex systems has inspired many other research endeavors.
    [Show full text]
  • Reward-Driven Training of Random Boolean Network Reservoirs for Model-Free Environments
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-27-2013 Reward-driven Training of Random Boolean Network Reservoirs for Model-Free Environments Padmashri Gargesa Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Dynamics and Dynamical Systems Commons, and the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Gargesa, Padmashri, "Reward-driven Training of Random Boolean Network Reservoirs for Model-Free Environments" (2013). Dissertations and Theses. Paper 669. https://doi.org/10.15760/etd.669 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Reward-driven Training of Random Boolean Network Reservoirs for Model-Free Environments by Padmashri Gargesa A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering Thesis Committee: Christof Teuscher, Chair Richard P. Tymerski Marek A. Perkowski Portland State University 2013 Abstract Reservoir Computing (RC) is an emerging machine learning paradigm where a fixed kernel, built from a randomly connected "reservoir" with sufficiently rich dynamics, is capable of expanding the problem space in a non-linear fashion to a higher dimensional feature space. These features can then be interpreted by a linear readout layer that is trained by a gradient descent method. In comparison to traditional neural networks, only the output layer needs to be trained, which leads to a significant computational advantage.
    [Show full text]
  • Solving Satisfiability Problem by Quantum Annealing
    UNIVERSITY OF CALIFORNIA Los Angeles Towards Quantum Computing: Solving Satisfiability Problem by Quantum Annealing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering by Juexiao Su 2018 c Copyright by Juexiao Su 2018 ABSTRACT OF THE DISSERTATION Towards Quantum Computing: Solving Satisfiability Problem by Quantum Annealing by Juexiao Su Doctor of Philosophy in Electrical Engineering University of California, Los Angeles, 2018 Professor Lei He, Chair To date, conventional computers have never been able to efficiently handle certain tasks, where the number of computation steps is likely to blow up as the problem size increases. As an emerging technology and new computing paradigm, quantum computing has a great potential to tackle those hard tasks efficiently. Among all the existing quantum computation models, quantum annealing has drawn significant attention in recent years due to the real- ization of the commercialized quantum annealer, sparking research interests in developing applications to solve problems that are intractable for classical computers. However, designing and implementing algorithms that manage to harness the enormous computation power from quantum annealer remains a challenging task. Generally, it requires mapping of the given optimization problem into quadratic unconstrained binary optimiza- tion(QUBO) problem and embedding the subsequent QUBO onto the physical architecture of quantum annealer. Additionally, practical quantum annealers are susceptible to errors leading to low probability of the correct solution. In this study, we focus on solving Boolean satisfiability (SAT) problem using quantum annealer while addressing practical limitations. We have proposed a mapping technique that maps SAT problem to QUBO, and we have further devised a tool flow that embeds the QUBO onto the architecture of a quantum annealing device.
    [Show full text]
  • When Is a Deck of Cards Well Shuffled?
    Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics When is a deck of cards well shuffled? (Nederlandse titel: Wanneer is een pak kaarten goed geschud?) Verslag ten behoeve van het Delft Institute of Applied Mathematics als onderdeel ter verkrijging van de graad van BACHELOR OF SCIENCE in TECHNISCHE WISKUNDE door RICARDO TEBBENS Delft, Nederland Augustus 2018 Copyright © 2018 door Ricardo Tebbens. Alle rechten voorbehouden. 2 BSc verslag TECHNISCHE WISKUNDE \When is a deck of cards well shuffled?" (Nederlandse titel: \Wanneer is een pak kaarten goed geschud?)" RICARDO TEBBENS Technische Universiteit Delft Begeleider Dr. M.T. Joosten Overige commissieleden Dr. B. van den Dries Prof. Dr.ir. M.C. Veraar Augustus, 2018 Delft Abstract When is a deck of cards shuffled good enough? We have to perform seven Riffle Shuffles to randomize a deck of 52 cards. The mathematics used to calculate this, has some strong connections with permutations, rising sequences and the L1 metric: the variation distance. If we combine these factors, we can get an expression of how good a way of shuffling is in randomizing a deck. We say a deck is randomized, when every possible order of the cards is equally likely. This gives us the cut-off result of seven shuffles. Furthermore, this gives us a window to look at other ways of shuffling, some even used in casinos. It turns out that some of these methods are not randomizing a deck enough. We can also use Markov chains in order to see how we randomize cards by "washing" them over a table.
    [Show full text]