Optimal Experimental Design for Grey Box Models

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Experimental Design for Grey Box Models Downloaded from orbit.dtu.dk on: Oct 07, 2021 Optimal Experimental Design for Grey Box Models Davidescu, Florin Paul Publication date: 2008 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Davidescu, F. P. (2008). Optimal Experimental Design for Grey Box Models. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Optimal experimental design for grey-box models Ph.D. Thesis Florin Paul Davidescu CAPEC Department of Chemical Engineering Technical University of Denmark January 14, 2009 ii Copyright c Florin Paul Davidescu CAPEC Department of Chemical Engineering Technical University of Denmark, 2009 ISBN 87-91435-93-5 Printed by Book Partner, Nørhaven Digital, Copenhagen, Denmark Preface This thesis is submitted as partial fulfillment of the requirements for the Ph.D. degree at Technical University of Denmark. The work has been carried out at the Computer Aided Process Engineering Center research center (CAPEC), at Department of Chemical Engineering at Technical University of Denmark between January 1st 2005 and 31st of December 2007. The project has been funded by the European Union by the EUROBIOSYN project under the 6th Research Framework Program. I will take the opportunity to acknowledge the persons that directly or indi- rectly have contributed to the work presented in this thesis. First of all I would like to express my gratitude to the main supervisor, Professor Sten Bay Jørgensen from the Department of Chemical Engineering for the many discussions that we have had during this project. I would like to thank my co-supervisor, Professor Henrik Madsen from the Department of Informatics and Mathematical Modelling for his inputs all long the way. Secondly, I would like to express my gratitude to the European Union for funding this project through the EUROBIOSYN project under the 6th Re- search Framework Program. I would like to give thanks to all the colleagues from all the four research centers involved in this project and especially Mr. Michael Sch¨umperli for carrying out the necessary laboratory experiments. Thirdly, I would like to thank all the CAPEC co-workers and especially to Loic, Mauricio, Vipasha, Piotr, Jacob, Jan and Steen for creating a good social environment at the CAPEC and during the conferences. I'm sorry if I have not included all of you here. Fourthly, I would like to thank the Department of Chemical Engineering at the Technical University of Denmark for giving me the opportunity to do the study related to this PhD project. Furthermore I would like to acknowledge the computing services kindly offered by Danish High Performance Computing Center at the Department of Informatics and Mathematical Modelling. More- over, I would like to thank the workshop for their help and assistance even though their input did not enter directly into the work presented here but in my teaching assistance activities around the pilot plant of the department. Finally I would like to thank my parents and my brothers for their love and support during this project while being away from them and for trying to understand my work. København, Florin Paul Davidescu iv Preface Abstract In the recent years, chemical and biochemical process modelling has dominated the research and development. There are various targets of the developed mod- els such as steady-state and dynamic simulation in order to better investigate and understand the process, process design, process control, process optimiza- tion and even more recently fault monitoring and diagnosis. In this thesis the main reason to develop process models is to first better understand the behavior of the enzymatic reaction network and to possibly identify the bottle-necks and limitations. The secondary objective and equally important was and still is to optimize the operating conditions of the system of biotransformations (SBT) in order to maximize the yield. Moreover in order to move to the production on a larger scale the reactor design can become an important target. There is a need however for different tools that the end-user needs in order to advance faster in this very time consuming task of building dynamic process models. The contribution of this thesis is therefore twofold at least. The first way is toward the model development for the enzymatic reaction network in form of stochastic differential models. The second way is toward the necessary system- atic methodology and tools needed at various steps in this process. One important step is assessing the possibility of estimating the model param- eters from real life data once the a model has been formulated. In addressing this issues a systematic methodology has been set up. Given a model structure, a set of measured states and perturbed inputs this methodology provides the parameters which can be at least theoretically estimated. Another important step is represented by qualitative experimental design which aims at determining the optimal set of measured states and perturbed inputs. By optimal we mean either the case of minimum number of measured states and perturbed inputs rendering all model parameters estimable or at least as many parameters as possible. A related step is designing the experimental conditions, sometimes called quantitative experimental design, for the optimally selected set of measured states and perturbed inputs. Typically, the initial values of measured states, the optimal sampling points, the input profiles are searched for, within a dynamic optimization problem framework formulation. In terms of software, a computer program to determine the optimal quanti- tative experimental design for models described by stochastic differential equa- tions has been developed. The program called Continuous Time Stochastic Modelling (CTSM) Kristensen et al. (2004b) previously developed, has been vi Abstract further extended to be more flexible in handling experimental data obtained under different conditions and in estimating each of the the parameters either globally for all the experiments or locally for each experiment, allowing varying parameters. Resum´ep˚adansk I de seneste ˚arhar kemisk og biokemisk procesmodellering domineret forskn- ing og udvikling. Der er forskellige form˚almed de udviklede modeller s˚asom steady-state og dynamisk simulering af en given proces for bedre at kunne un- dersøge og forst˚aprocessen, procesdesign, procesregulering, procesoptimering samt overv˚agningog diagnose af procesfejl. I dette arbejde har det primære form˚almed udviklingen af procesmodeller været at øge forst˚aelsenaf det enzymatiske reaktionsnetværk og om muligt identificere flaskehalse og begrænsninger. Det sekundære form˚alaf lige s˚astor vigtighed har været og er stadig at optimere procesbetingelserne for systemet af biotransformationer (SBT) for at optimere udbyttet. Derudover, kan reak- tordesign blive en vigtig applikation af modellen ved opskalering af processen. Der er et behov for forskellige værktøjer, som kan hjælpe brugeren til hur- tigt at n˚afremskridt under den uhyre tidskrævende opgave det er at opbygge dynamiske procesmodeller. Bidraget i dette arbejde er derfor mindst tofoldigt. Dels i retning af model ud- vikling for det enzymatiske reaktionsnetværk i form af stokastiske differential- ligninger. Dels i retning af en nødvendig systematisk metodologi og værktøjer, der er behov for under de forskellige trin i processen. Et vigtigt trin er at vurdere muligheden af at estimere model parametre fra virkelige forsøg n˚aren model er blevet formuleret. For at h˚andteredette er en systematisk metodologi blevet sat op. Givet en modelstruktur, et sæt af m˚alte tilstande og pertuberede inputs giver denne metodologi de parametre, som i det mindste teoretisk kan blive estimeret. Et andet vigtigt trin og intet andet end et udvidet identificerbarhedsprob- lem er repræsenteret ved kvalitative eksperimentelle designs, som søger at bestemme det optimale sæt af m˚altetilstande og pertuberede inputs. Med op- timale menes enten det tilfælde hvor alle eller s˚amange parametre som muligt kan blive estimeret ud fra det mindste mulige antal m˚altetilstande og pertu- berede inputs. Et beslægtet trin omhandler design af de eksperimentelle betingelser, ofte benævnt kvantitativt eksperimentelt design, for det valgte sæt af m˚altetil- stande og pertuberede inputs. Typisk søges der efter begyndelsesværdierne af de m˚altetilstande, de optimale tidspunkter for prøveudtagning samt inputpro- filerne indenfor en dynamisk optimeringsproblem framework formulation. Vedrørende software er et computer program til bestemmelse af det opti- male kvantitative eksperimentelle design for modeller beskrevet ved stokastiske differentialligninger blevet udviklet. Dette tidligere udviklede (Kristensen et al. 2004b) program, Continuous Time Stocastic Modelling (CTSM) er blevet viii Resum´ep˚adansk videre
Recommended publications
  • Development of a Grey Box Thermal Dynamic Model Without Building Construction Knowledge
    Development of a Grey Box Thermal Dynamic Model without Building Construction Knowledge by Elizabeth LeRiche B.Sc. in Mechanical Engineering, Queen’s University, 2016 A thesis presented to Ryerson University in partial fulfillment of the requirements for the degree of Master of Applied Science in the program of Building Science Toronto, Ontario, Canada, 2019 © Elizabeth LeRiche, 2019 i AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii Development of a Grey Box Thermal Dynamic Model without Building Construction Knowledge Master of Applied Science 2019, Elizabeth LeRiche Building Science, Department of Architectural Science, Ryerson University ABSTRACT Model Predictive Controllers (MPC) in building Heating Ventilation and Air Conditioning (HVAC) systems have demonstrated significant energy savings when compared to typical on/off controllers. MPCs require information about the building’s thermal dynamics which is challenging to model, especially for older structures without buildings specifications. This research investigates the ability to develop a grey box thermal dynamic model that can determine the net thermal dynamics, without any building construction information.
    [Show full text]
  • Fuzzy Identification from a Grey Box Modeling Point of View 1. Introduction
    Fuzzy Identication from a Grey Box Mo deling Point of View P Lindskog Linkoping University S Linkoping Intro duction The design of mathematical mo dels of complex realworld and typically nonlinear systems is essential in many elds of science and engineering The develop ed mo dels can be used eg to explain the b ehavior of the underlying system as well as for prediction and control purp oses A common approach for building mathematical mo dels is socalled black box modeling Ljung Soderstrom and Stoica as opp osed to more traditional physical mo deling or white box mo deling where everything is considered known a priori from physics Strictly sp eaking a blackbox mo del is designed entirely from data using no physical or verbal insight whatso ever The structure of the mo del is chosen from families that are known to b e very exible and successful in past applications This also means that the mo del parameters lackphysical or verbal signicance they are tuned just to t the observed data as well as p ossible The term blackbox mo deling is sometimes used almost as a synonym to system identication although a much more convenient denition and the one often used is that system identication is the theory of designing mathematical mo dels of dynamical systems from observed data Hence by combining the blackbox approachwithphysical or verbal mo deling in suchaway that certain prior knowledge from the system is taken into account we end up with sp ecial identication pro cedures that commonly are referred to as grey box modeling approaches see eg
    [Show full text]
  • Arxiv:1907.06803V3 [Eess.SY] 26 Oct 2020 3 Choice of Model Class8
    A Bird's Eye View of Nonlinear System Identification Luis A. Aguirre Departamento de Engenharia Eletr^onica Programa de P´os-Gradua¸c~aoem Engenharia El´etrica Universidade Federeal de Minas Gerais | Av. Ant^onioCarlos 6627, 31270-901 Belo Horizonte MG, Brazil [email protected] Abstract This text aims at providing a bird's eye view of system identifica- tion with special attention to nonlinear systems. The driving force is to give a feeling for the philosophical problems facing those that build mathematical models from data. Special attention will be given to grey-box approaches in nonlinear system identification. In this text, grey-box methods use auxiliary information such as the system steady- state data, possible symmetries, some bifurcations and the presence of hysteresis. The text ends with a sample of applications. No attempt is made to be thorough nor to survey such an extensive and mature field as system identification. In most parts references will be provided for a more detailed study. Contents 1 Introduction2 2 Testing and Data Collection4 2.1 Testing . .4 2.2 Choosing the sampling period . .7 arXiv:1907.06803v3 [eess.SY] 26 Oct 2020 3 Choice of Model Class8 4 Structure Selection 11 4.1 The ERR, SRR and SSMR criteria . 12 4.2 Other criteria . 13 1 5 Parameter Estimation 15 5.1 Underlying issues . 15 5.2 Classical estimators . 18 5.3 The danger of overparametrization . 21 6 Model Validation 21 6.1 Residual tests . 23 6.2 Dynamical invariants . 23 6.3 Synchronization . 23 7 Grey-Box Techniques 24 7.1 I is the static function .
    [Show full text]
  • System Identification of an Engine-Load Setup Using Grey-Box
    Linköping studies in science and technology Licentiate Thesis. No. 1698 System Identification of an Engine-load Setup Using Grey-box Model Neda Nickmehr Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2015 Linköping studies in science and technology Licentiate Thesis. No. 1698 This is a Swedish Licentiate’s Thesis. Swedish postgraduate education leads to a Doctor’s degree and/or a Licentiate’s degree. A Doctor’s degree comprises 240 ECTS credits (4 years of full-time studies). A Licentiate’s degree comprises 120 ECTS credits, of which at least 60 ECTS credits constitute a Licentiate’s thesis. Neda Nickmehr [email protected] www.vehicular.isy.liu.se Division of Vehicular Systems Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright c 2015 Neda Nickmehr. All rights reserved. Nickmehr, Neda System Identification of an Engine-load Setup Using Grey-box Model (With Applications in Ride Quality and Misfire Detection for Passenger Cars) ISBN 978-91-7519-165-2 ISSN 0280-7971 Typeset with LATEX2ε Printed by LiU-Tryck, Linköping, Sweden 2015 To my dearest, Amir Abstract With the demand for more comfortable cars and reduced emissions, there is an increasing focus on model-based system engineering. Therefore, developing accurate vehicle models has become significantly important. The powertrain system, which transfers the engine torque to the driving wheels, is one of the most important parts of a vehicle. Having a reliable methodology, for modeling and parameter estimation of a powertrain structure, helps predict different kinds of behaviors such as torsional vibration which is beneficial for a number of applications in automotive industry.
    [Show full text]
  • Modeling Microalgal Abundance with Artificial Neural Networks: Demonstration of a Heuristic 'Grey-Box' to Deconvolve And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the .SU . U.S. Department of Commerce Department of Commerce 2012 Modeling Microalgal Abundance with Artificial Neural Networks: Demonstration of a Heuristic ‘Grey-Box’ to Deconvolve and Quantify Environmental Influences David F. Millie Palm Island Enviro-Informatics LLC., [email protected] Gary R. Weckman Ohio University - Main Campus William A. Young II Ohio University - Main Campus James E. Ivey Florida Fish and Wildlife Conservation Commission Hunter J. Carrick Central Michigan University See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/usdeptcommercepub Millie, David F.; Weckman, Gary R.; Young, William A. II; Ivey, James E.; Carrick, Hunter J.; and Fahnenstiel, Gary L., "Modeling Microalgal Abundance with Artificial Neural Networks: Demonstration of a Heuristic ‘Grey-Box’ to Deconvolve and Quantify Environmental Influences" (2012). Publications, Agencies and Staff of ht e U.S. Department of Commerce. 501. http://digitalcommons.unl.edu/usdeptcommercepub/501 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the .SU . Department of Commerce by an authorized administrator
    [Show full text]
  • Grey-Box Model Identification Via Evolutionary Computing
    Tan, K.C. and Li, Y. (2002) Grey-box model identification via evolutionary computing. Control Engineering Practice 10(7):pp. 673- 684. http://eprints.gla.ac.uk/3808/ Deposited on: 12 November 2007 Glasgow ePrints Service http://eprints.gla.ac.uk GREY-BOX MODEL IDENTIFICATION VIA EVOLUTIONARY COMPUTING K. C. Tan Department of Electrical and Computer Engineering National University of Singapore 10 Kent Ridge Crescent, Singapore 119260. E-mail: [email protected] Y. Li Centre for Systems and Control, and Department of Electronics & Electrical Engineering University of Glasgow, Glasgow G12 8LT, UK. E-mail: [email protected] ABSTRACT This paper presents an evolutionary grey-box model identification methodology that makes the best use of a-priori knowledge on a clear-box model with a global structural representation of the physical system under study, whilst incorporating accurate black-box models for immeasurable and local nonlinearities of a practical system. The evolutionary technique is applied to building dominant structural identification with local parametric tuning without the need of a differentiable performance index in the presence of noisy data. It is shown that the evolutionary technique provides an excellent fitting performance and is capable of accommodating multiple objectives such as to examine the relationships between model complexity and fitting accuracy during the model building process. Validation results show that the proposed method offers robust, uncluttered and accurate models for two practical systems. It is expected that this type of grey-box models will accommodate many practical engineering systems for a better modelling accuracy. KEYWORDS System identification, grey-box models, evolutionary algorithms, multi-objective 1 1.
    [Show full text]
  • Grey Box Modelling of Hydrological Systems 0.25Cm
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 Grey Box Modelling of Hydrological Systems With Focus on Uncertainties Thordarson, Fannar Ørn Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Thordarson, F. Ø. (2011). Grey Box Modelling of Hydrological Systems: With Focus on Uncertainties. Technical University of Denmark. IMM-PHD-2011 No. 263 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ÖÝ ÓÜ ÅÓ ÐÐÒ Ó ËÝ×ØÑ× ¹ ÏØ Ó ÓÒ ¹ FaÒÒaÖ ÖÖÒ ÌhÓÖdaÖ×ÓÒ ÃÓÒgeÒ× ÄÝÒgbÝ ¾¼½½ ÁÅŹÈÀD¹¾¼½½¹XX Ì ÍÒÚÖ×ØÝ Ó ÒÑÖ ÁÒÓ Ò ÅÓ ÐÐÒ ÙÐÒ ¿¾½¸ ù¾¼¼ ÃÓÒÒ× ÄÝÒݸ ÒÑÖ ÈÓÒ · ¾¿¿½¸ Ü · ¾¿ ÛÛÛºÑѺØÙº ÁÅŹÈÀ ÁËËÆ ¼¼¹¿½¾ This thesis was prepared at the department of Informatics and Mathematical Modelling (Informatics), the Technical University of Denmark (DTU) in partial fulfillment of the requirements for acquiring the PhD degree in engineering.
    [Show full text]
  • Grey-Box Models for Wave Loading Prediction
    Grey-box Models for wave loading prediction D.J. Pitchfortha,∗, T.J. Rogersa, U.T.Tygesenb, E.J. Crossa aDynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom bRamboll Energy, Global Division-Jackets, Bavnehøjvej 5, DK-6700 Esbjerg, Denmark Abstract The quantification of wave loading on offshore structures and components is a crucial element in the assessment of their useful remaining life. In many applications the well-known Morison's equation is employed to estimate the forcing from waves with assumed particle velocities and accelerations. This paper develops a grey-box modelling approach to improve the predictions of the force on structural members. A grey-box model intends to exploit the enhanced predictive capabilities of data-based modelling whilst retaining physical insight into the behaviour of the system; in the context of the work carried out here, this can be considered as physics-informed machine learning. There are a number of possible approaches to establish a grey-box model. This paper demonstrates two means of combining physics (white box) and data-based (black box) components; one where the model is a simple summation of the two components, the second where the white-box prediction is fed into the black box as an additional input. Here Morison's equation is used as the physics-based component in combination with a data-based Gaussian process NARX - a dynamic variant of the more well-known Gaussian process regression. Two key challenges with employing the GP-NARX formulation that are addressed here are the selection of appropriate lag terms and the proper treatment of uncertainty propagation within the dynamic GP.
    [Show full text]
  • Toolbox for Development and Validation of Grey-Box Building Models for Forecasting and Control
    Toolbox for development and validation of grey-box building models for forecasting and control De Coninck, Roel; Magnusson, Fredrik; Åkesson, Johan; Helsen, Lieve Published in: Journal of Building Performance Simulation, Taylor & Francis DOI: 10.1080/19401493.2015.1046933 2016 Document Version: Peer reviewed version (aka post-print) Link to publication Citation for published version (APA): De Coninck, R., Magnusson, F., Åkesson, J., & Helsen, L. (2016). Toolbox for development and validation of grey-box building models for forecasting and control. Journal of Building Performance Simulation, Taylor & Francis, 9(3), 288-303. https://doi.org/10.1080/19401493.2015.1046933 Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact
    [Show full text]
  • Self-Labeling Grey-Box Model: an Interpretable Semi-Supervised Classifier Isel Del Carmen Grau García
    Faculty of Science and Bio-Engineering Sciences Department of Computer Science Artificial Intelligence Lab Self-labeling Grey-box Model: An Interpretable Semi-supervised Classifier Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Science: Computer Science Isel del Carmen Grau García October 9th, 2020 Promotors: Prof. dr. A. Nowé | Vrije Universiteit Brussel, Belgium Prof. dr. M. M. García | Universidad Central de Las Villas, Cuba Advisor: Dr. D. Sengupta | Vrije Universiteit Brussel, Belgium | Queens University Belfast, United Kingdom To be updated ○c Isel Grau 2020 Uitgeverij VUBPRESS Brussels University Press VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv) Keizesrlaan 34 B-1000 Brussels Tel. +32 (0)2 289 26 56 Fax +32 (0)2 289 26 59 E-mail: [email protected] www.vubpress.be ISBN - NUR - Legal deposit - All rights reserved. No parts of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. Jury Members Chairman Internal members Prof. Dr. Beat Signer Prof. Dr. Tom Lenaerts Vrije Universiteit Brussel, Belgium Vrije Universiteit Brussel, Belgium Prof. Dr. Sonia Van Dooren Secretary Centre for Medical Genetics, UZ Brussel, Vrije Universiteit Brussel, Belgium Prof. Dr. Wim Vranken Vrije Universiteit Brussel, Belgium External members Promotors Prof. Dr. Koen Vanhoof Prof. Dr. Ann Nowé Universiteit Hasselt, Belgium Vrije Universiteit Brussel, Belgium Prof. Dr. Chris Cornelis Prof. Dr. Maria M. García Lorenzo Universiteit Gent, Belgium Universidad Central de Las Villas, Cuba 3 Abstract In the context of some machine learning applications, obtaining data points is a rel- atively simple process, yet labeling them could become quite expensive or tedious.
    [Show full text]
  • Grey-Box Modelling for Nonlinear Systems
    i i i i Dissertation im Fachbereich Mathematik der Technischen Universität Kaiserslautern Grey-Box Modelling for Nonlinear Systems Jan Hauth Dezember 2008 1. Gutachter: Prof. Dr. Dieter Prätzel-Wolters, Technische Universität Kaiserslautern 2. Gutachter: Prof. Dr. Jürgen Franke, Technische Universität Kaiserslautern Datum der Disputation: 5. Juni 2008 Vom Fachbereich Mathematik der Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation D 386 i i i i i i i i i i i i i i i i To my parents Irma born Scholtes and Kurt Hauth In memoriam Prof. Walter Blankenheim i i i i i i i i i i i i i i i i Abstract Grey-box modelling deals with models which are able to integrate the following two kinds of information: qualitative (expert) knowledge and quantitative (data) knowledge, with equal importance. The doctoral thesis has two aims: the improvement of an existing neuro-fuzzy ap- proach (LOLIMOT algorithm), and the development of a new model class with corresponding identification algorithm, based on multiresolution analysis (wavelets) and statistical methods. The identification algorithm is able to identify both hidden differential dynamics and hysteretic components. After the presentation of some improvements of the LOLIMOT algorithm based on readily normalized weight functions derived from decision trees, we investigate several mathematical theories, i.e. the theory of nonlinear dynamical systems and hysteresis, statistical decision the- ory, and approximation theory, in view of their applicability for grey-box modelling. These theories show us directly the way onto a new model class and its identification algorithm.
    [Show full text]