Geology of the Manitoba Legislative Building W

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Manitoba Legislative Building W Document généré le 27 sept. 2021 16:12 Geoscience Canada Geology of the Parliament Buildings 5: Geology of the Manitoba Legislative Building W. C. Brisbin, Graham Young et Jeff Young Volume 32, numéro 4, december 2005 Résumé de l'article L'édifice du Palais législatif du Manitoba a été conçu par Frank Worthington URI : https://id.erudit.org/iderudit/geocan32_4ser03 Simon, assisté de Henry Boddington III, deux architectes de Liverpool en Angleterre. Il s'agit d'un édifice de style néoclassique comprenant des éléments Aller au sommaire du numéro et des motifs grecs, romains et égyptiens. Sa construction s'est achevé au début des années 1920 et son inauguration a eu lieu à l'occasion du cinquantième anniversaire de la Province, soit le 15 juillet 1920. Éditeur(s) L'édifice est situé au cœur de Winnipeg, non loin de la rive nord de la rivière Assiniboine, la géologie environnante consistant en une couche d'argile du lac The Geological Association of Canada Agassiz de 14 m d'épaisseur reposant sur du till et un socle calcaire. Le poids de l'édifice repose sur 421 caissons de béton qui s'enfoncent jusqu'au till consolidé ISSN ou jusqu'au socle. Des structures d'acier appuyées sur ces caissons supportent 0315-0941 (imprimé) le poids des murs de briques fabriquées avec des schistes argileux et des 1911-4850 (numérique) argiles du Manitoba. Des pierres de taille parent les murs porteurs à l'extérieur comme à l'intérieur Découvrir la revue ainsi que les planchers et les escaliers intérieurs. Chaque type de pierre de taille présente des caractéristiques particulières, et chacun témoigne de processus géologique d'une époque particulière de l'histoire de la Terre. La pierre de Tyndall est celle qui prédomine tant à l'extérieur qu'à l'intérieur. Les Citer cet article marbres gris, roses et rouges du Tennessee proviennent du Sud de la chaîne Brisbin, W. C., Young, G. & Young, J. (2005). Geology of the Parliament Buildings des Appalaches. Les marbres de Botticino ont été extraits du piémont des Alpes 5: Geology of the Manitoba Legislative Building. Geoscience Canada, 32(4), dans le Nord de l'Italie. Les marbres noirs et les porphyres verts antiques 177–193. proviennent des États du Vermont et de New York, au Nord des Appalaches. Les marbres de Missisquoi ont été extraits de carrières du Sud du Québec près de Phillipsburg proviennent aussi du Nord des Appalaches. Les calcaires de Bedford qui ont été principalement utilisés comme matériau statuaire proviennent du centre-sud de l'État d'Indiana. Les granites de Butler provenant de Ignace en Ontario ont été utilisés pour les marches et les planchers des quatre portiques. La brèche de marbre rouge qui a été utilisée pour la décoration de la plupart des foyers pourrait provenir du Nord de la France. All rights reserved © The Geological Association of Canada, 2005 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ GEOSCIENCE CANADA Volume 32 Number 4 December 2005 177 SERIES walls constructed of bricks manufac- ern Appalachians. Missisquoi marble is tured from Manitoba shale and clay. from quarries in southern Québec near Dimension stones decorate the Philipsburg, and also represents a north- bearing walls inside and outside, and the ern Appalachian source. floors and stairways within. Each type of Bedford limestone, used for stone has its own decorative characteris- most of the statuary, is from south-cen- tics and each records geologic processes tral Indiana. Butler granite from Ignace, at different times in Earth history. The Ontario, was used for steps and floor predominant dimension stone both out- surfaces of all four porticos. Red marble side and inside the building is Manitoba breccia, used to decorate most fireplaces, Tyndall Stone. Grey, pink and red may have come from northern France. Geology of the Parliament Tennessee marbles are from the south- ern Appalachians. Botticino marble was SUMMAIRE Buildings 5: quarried in the foothills of the Alps in L'édifice du Palais législatif du Manitoba Geology of the Manitoba northern Italy. Ordovician black marble a été conçu par Frank Worthington Legislative Building and Verde Antique are from the Simon, assisté de Henry Boddington III, Vermont-New York region in the north- deux architectes de Liverpool en W.C. Brisbin1, Graham Young2, and Jeff Young1 1Department of Geological Sciences, University Geology of the Parliament Buildings of Canada: Series Update. of Manitoba, Winnipeg, MB R3T 2N2 [email protected] The accompanying paper, “Geology of the Manitoba Legislative Building”, by 2The Manitoba Museum, 190 Rupert Ave., W.C. Brisbin, Graham Young and Jeff Young, is the 5th paper in this Geoscience Winnipeg, MB R3B 0N2 Canada series. The previous published papers in the series are: SUMMARY “Building Stones of Canada’s Federal Parliament Buildings”, by D.E. The Manitoba Legislative Building was Lawrence, Vol 28, No 1, March 2001 designed by Frank Worthington Simon, “Geology of the Alberta Legislative Buildings”, by R.A. Burwash, D.M. assisted by Henry Boddington III, archi- Cruden and R. Mussieux, Vol 29, No 4, December 2002 tects from Liverpool, England. The “Building Stones of Ontario’s Provincial Parliament” by E.B. Freeman, Vol building style is neoclassical, incorporat- 30, No 2, June 2003, and ing Greek, Roman and Egyptian motifs “Geology of the Quebec Parliament Buildings” (in French) by R. Ledoux and elements. Construction was com- and H-L Jacob, Vol 30, No 4, December 2003 pleted early in 1920 and the building was Five further papers are in various stages of completion: British Columbia, dedicated July 15, 1920, on the fiftieth lead author Danny Hora; Newfoundland and Labrador, lead author Jeff Pollock; anniversary of the Province. Nova Scotia, lead author Howard Donohoe; New Brunswick, lead author Gwen The building is located in central Martin; and the Northwest Territories, lead author DE Lawrence. Winnipeg, close to the north bank of We are still looking for authors for the Parliament Buildings of Prince the Assiniboine River and rests on 14 m Edward Island, Saskatchewan, Yukon, and Nunavut. For those who may be inter- of glacial Lake Agassiz clays over till and ested, broad guidelines for the preparation of the papers are described by the limestone bedrock. The mass of the Series Editor in an introduction to the first paper in the series, in Vol 29, No 1, building is supported by 421 concrete March 2001. caissons that extend through the clays to If readers have any questions about the series, please contact the Series indurated till or bedrock. Steel frames Editor, Doug VanDine, email [email protected], or telephone 250-598-1028. rest on the caissons and support bearing 178 Angleterre. Il s'agit d'un édifice de style Le poids de l'édifice repose sur 421 cais- particulière de l'histoire de la Terre. La néoclassique comprenant des éléments sons de béton qui s'enfoncent jusqu'au pierre de Tyndall est celle qui prédomine et des motifs grecs, romains et égyptiens. till consolidé ou jusqu'au socle. Des tant à l'extérieur qu'à l'intérieur. Les Sa construction s'est achevé au début structures d'acier appuyées sur ces cais- marbres gris, roses et rouges du des années 1920 et son inauguration a eu sons supportent le poids des murs de Tennessee proviennent du Sud de la lieu à l'occasion du cinquantième briques fabriquées avec des schistes chaîne des Appalaches. Les marbres de anniversaire de la Province, soit le 15 argileux et des argiles du Manitoba. Botticino ont été extraits du piémont des juillet 1920. Des pierres de taille parent les Alpes dans le Nord de l'Italie. Les mar- L'édifice est situé au cœur de murs porteurs à l'extérieur comme à l'in- bres noirs et les porphyres verts antiques Winnipeg, non loin de la rive nord de la térieur ainsi que les planchers et les proviennent des États du Vermont et de rivière Assiniboine, la géologie environ- escaliers intérieurs. Chaque type de New York, au Nord des Appalaches. nante consistant en une couche d'argile pierre de taille présente des caractéris- Les marbres de Missisquoi ont été du lac Agassiz de 14 m d'épaisseur tiques particulières, et chacun témoigne extraits de carrières du Sud du Québec reposant sur du till et un socle calcaire. de processus géologique d'une époque près de Phillipsburg proviennent aussi du Nord des Appalaches. Les calcaires de Bedford qui ont été principalement utilisés comme matériau statuaire provi- ennent du centre-sud de l'État d'Indiana. Les granites de Butler provenant de Ignace en Ontario ont été utilisés pour les marches et les planchers des quatre portiques. La brèche de marbre rouge qui a été utilisée pour la décoration de la plupart des foyers pourrait provenir du Nord de la France. INTRODUCTION The geology of the Manitoba Legislative Building encompasses the subsurface geological conditions of its site, and the source and characteristics of the dimen- sion stones and of other geological materials used in its construction. The first Legislative Building was opened in 1871. This humble, rough- hewn log building was destroyed by fire on December 3, 1873. A second, archi- tecturally-designed Legislative Building was completed in 1884.
Recommended publications
  • Manitoba Tyndall Stone – Geocaching Activity a Cache by Junglehair Hidden : 5/10/2007 Difficulty
    Manitoba Tyndall Stone – Geocaching Activity A cache by junglehair Hidden : 5/10/2007 Difficulty: Terrain: N 49° 53.303 W 097° 08.079 UTM: 14U E 633989 N 5527889 In Manitoba, Canada Geocache Description: This is an EarthCache located in Downtown Winnipeg. It is wheelchair accessible. All fossils can be found on the exterior of the buildings no more than 2 meters above ground. NOTE: The accuracy on your GPS will be low in these areas due to the obstruction of the buildings. Be prepared to search a wider area than usual. Tyndall Stone is used as an ornamental building stone in many cities in Canada and the United States. It is a light brown, fossil bearing limestone that has darker coloured branching streaks called trace fossils. While there are many limestones used as building stone in North America, Tyndall Stone is unique. The colour, beauty and strength of Tyndall Stone has allowed for its use in a variety of ways and architectural styles. Impressive buildings containing Tyndall Stone include the Parliament Buildings in Ottawa, the Canadian Museum of Civilization in Gatineau, the Provincial Legislature in Manitoba, the Rimrock Hotel in Banff, and the Empress Hotel in Victoria. Tyndall Stone is quarried at Garson, Manitoba, about 40 km northeast of Winnipeg. It was first discovered in the area around 1894, when a farmer came upon the mottled limestone while digging a well. The first large quarry was opened by William Garson in 1898. Gillis Quarries Limited began quarrying there in 1915, and the fourth generation of this family-owned business is still at it today.
    [Show full text]
  • Tyndall Stone®
    ® Tyndall Stone Thin Veneer Responding to an overwhelming demand from our clientele, Gillis Quarries Ltd. is very proud to announce the first three products of our new Thin Veneer program for both exterior and interior applications. Continue to REDISCOVER the history and beauty of Tyndall Stone in its new thin format. Cut stone made much simpler. • No shop drawings. • No lead times. • Always in stock. Introducing our first three “universal donors”: 190 190 mm high x 500 mm long x 20 mm deep 4.4 sq.ft. per box 90 90 mm high x 500 mm long x 20 mm deep 4.4 sq.ft. per box SILL 50 mm high x 500 mm long x 70 mm deep 6.5 lineal feet per box Available in Grey colour, Sawn finish. For use as a field material or to accent any other adhered masonry veneer. Limited only by your imagination. Easily cut into headers, quoins, keystones... For pricing inquiries please contact: 2895 Wenzel Street | Winnipeg, Manitoba, Canada R2E 1H4 p. 204.222.2242 | f. 204.222.7849 | www.gillisquarries.com NOTES TO INSTALLERS 1 GENERAL 5.2 Exterior Application: 1.1 Thin Tyndall Limestone is an ornamental veneer and trim, .1 Do not install over rigid insulation exceeding 13mm in and is not a loadbearing or waterproofing product. thickness. .2 Terminate stone panel wall base using weep screed, 1.2 Do not use as a fire-resistive wall assembly. drip screed, casing bead, foundation screed or starter 1.3 In the field of the wall, at terminations, and at penetrations strip required.
    [Show full text]
  • The Impact of Deep-Tier Burrow Systems in Sediment Mixing and Ecosystem Engineering in Early Cambrian Carbonate Settings
    www.nature.com/scientificreports OPEN The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Received: 17 November 2016 Accepted: 02 March 2017 Cambrian carbonate settings Published: 04 April 2017 Li-Jun Zhang1, Yong-An Qi1, Luis A. Buatois2, M. Gabriela Mángano2, Yao Meng1 & Da Li1 Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models. Bioturbation, involving both particle and solute transport within burrows, into the surrounding sediment and across the sediment-water interface, is one of the most important factors in affecting oxygen concentration in the sediment, chemical cycling, regeneration of nutrients, microbial activity and the rate of organic matter decom- position in modern oceans1–3.
    [Show full text]
  • 100 FACTS for 100 YEARS: the Manitoba Legislative Building 1
    100 FACTS FOR 100 Years: The Manitoba Legislative Building THE LEGISLATIVE ASSEMBLÉE LÉGISLATIVE ASSEMBLY OF MANITOBA DU MANITOBA 100 FACTS FOR 100 YEARS: The Manitoba Legislative Building 1 BACKGROUND The Manitoba Legislative Building 1 Between 1871 and 1873 the Assembly met in the first Legislative Building, a log structure on McDermot Avenue purchased from A.G.B. Bannatyne and refurbished to house the Assembly. When a fire destroyed the building, the Assembly sat temporarily in the court house and then later the old Law Courts Building. 2 From 1884 until 1919, the second Legislative Building, at the corner of Kennedy and Broadway, housed the Assembly. On July 15, 1920, Manitoba officially opened our current Legislative Building. This is the third legislative building to house the Assembly since Manitoba became a province in 1870. Manitoba’s Legislative Building accommodates the Legislative Assembly as well as offices for the Premier, the Lieutenant Governor, PRE-CONSTRUCTION and the ministers and deputy ministers of Government departments. In honour 3 By 1909, with a booming economy and population that had grown of the 100th anniversary of the opening of seven fold since 1881, many felt that the province needed a larger and more impressive building. The 1911 Department of Public Works this building, this booklet contains 100 facts annual report said “The congested state of all the Departments in about the history, construction, and use of the Legislative Buildings renders necessary the erection of more commodious buildings at the earliest possible date.” FACTS the Manitoba Legislative Building. 4 The provincial architect initially suggested putting two new wings on the second Legislative Building at a cost of $400,000, but those plans were Edited and researched by the staff at the Legislative later abandoned.
    [Show full text]
  • A Rock Walk Through Downtown Edmonton
    A Rock Walk Through Downtown Edmonton A rock walk is a stroll along the sidewalks of downtown Edmonton and the opportunity to see the amazing suite of minerals and rocks on display in the building stone and rock materials of the city structures. The information for this rock walk was assembled through a comparison with similar rocks in hand, from other geologists and masons, from referenced publications and, in a very few cases, from the analysis of actual pieces of the building stone. The following are some of the buildings and sites that you see as you do a rock walk through downtown Edmonton. The next time you are standing on the corner waiting for the lights to change, have a look at the building near you. Very attractive, polished pink granite, trade name Rosa Sardo, is used for the fountains and benches in Canada Place (building number 1). The granite is composed of light grey quartz, large pink or flesh-coloured feldspars, white plagioclase feldspar and black mafic minerals. Fired granite is used on the walkways and the floor. The same fired granite is used on the outside sidewalk. Map of downtown Edmonton (not to scale) outlining some of the buildings on the rock walk. 2 • EUB/AGS Rock Walk 2004 The former Imperial Bank of Canada (number 2 on the map) first opened its doors at this site in 1891. In 1950, the building was demolished to build a larger structure. However, due to a shortage of structural steel, construction was delayed until 1952. You may note the relief panels, which show trains and planes, the metal spandrels with the bank’s logo, as well as the quoins and A view of the south pilasters stylized as bands of rectangles.
    [Show full text]
  • Tyndall Stone Hunting Ordovician Fossils in Downtown and Inner-City Calgary Article and Photos by Tako Koning
    Tyndall Stone Hunting Ordovician Fossils in Downtown and Inner-City Calgary Article and photos by Tako Koning he Tyndall limestone is iconic building stone interval within the lower part of the Selkirk Member Tfrom the Late Ordovician (450 million years old) (Pratt et al., 2016). Red River Formation, at Garson Quarry, near the Tyndall Stone is used throughout Canada as an town of Tyndall, about 30 km northeast of Winnipeg, ornamental building stone. It is one of the most Manitoba. The Tyndall limestone, also known as beautiful building stones in the world. In Ottawa the Tyndall Stone, occurs within the Red River’s Selkirk interior of the Parliament Building, Centre Block, Member, which is 43 m thick (Coniglio, 1999). The the Confederation Hall and the Hall of Honour Tyndall Stone is extracted from a 6 – 8 m thick are clad in Tyndall. The exterior of the Museum of Figure 1. The entrance to the Bank of Montreal Building (currently Goodlife Fitness) on the northeast corner of 1 Street and 8 Av- enue SW, (Stephen Avenue Mall), the columns and façade are entirely Tyndall Stone. APS Bulletin 27 December 2020 Civilization in Gatineau, Quebec is clad in Tyndall. generally globular, though commonly squashed due The exteriors of the Provincial Legislature buildings to sediment compaction. Basically it comprises a in Winnipeg and Regina are Tyndall. It clads the hollow, double-walled spheroid, with inner and outer University of Alberta’s Tory Building, the Rimrock walls separated by a layer of closely spaced pillars Hotel in Banff, the Chateau Lake Louise and the (Figures 29 and 30).
    [Show full text]
  • Building Stones of Canada's Federal Parliament Buildings
    Volume 28 Numbu 1 also restored the role of the geologist, with they represent. Their design and construc- the requirement to understand the tion has been the work of formative complex reactions of the building stone to architects and builders. Great pains have the environment and its neighbouring been taken to ensure that these are masonry clcments, and in the quest to significant structures, of unique design find suitable replacement stone. and beauty, using quality materials and built with exacting craftsmanship, worrhy R~UM~ of thc importance of the business that Les pierres de construction utilisk pour transpirs within thcir walls. Canada's les tdifices du Parlement h Omwa Parliament Buildings in Ottawa are no prwienncnt de nombreuses carrikres exception. autant au Canada, aux &ts-Unis que de This is the first of a series of Building Stones plusieurs pays europkns. Ells ont et4 articles about the building stones of till&, pods et sculpt& suivant des Canada's federal and provincial Parlia- of Canada's Federal procedCs precis, en conformite avec 1s ment Buildings. Historians, political Parliament Buildings r&glesde I'an de I'epoque. La rcconstruc- scientists, architects, and engineers have tion de I'Cdifice du centre qui est le sujet written at length about the buildings and D.E. Lawxnce du prCsent article, a ttt une &rc qui tbcir varied histories. Geologists, for the Geological Survey of Cad s'est Ctirk Ctant donnt les prioritCs lors de most part, have been silent. It is expected GO1 Booth Smrt la Grande Guerrc de 1914-1918. Ces that this series will be written by a Ottawa, Ontario KIA OE8 pierres de revetement des edifices du number of geologists, and may cover all [email protected] Parlement ont subi les avanies du climat, provinces and territories to document the du feu, de tremblements de terre et de la stories of the stones themselves.
    [Show full text]
  • Fact Sheet for the Winnipeg Temple
    Temple Facts | The Church of Jesus Christ of Latter-day Saints Winnipeg Temple Fact Sheet LOCATION: 2 Centre Street, Winnipeg, Manitoba COMPLETION: It is anticipated that construction of the temple will take approximately 20 months PLANS ANNOUNCED: April 2, 2011 to complete. When the temple is finished, the GROUNDBREAKING: December 3, 2016 public will be invited to an open house before the building is formally dedicated. BUILDING SIZE: 16,100 square feet, 8,050 square feet on the ground floor and 8,050 square feet CHURCH MEMBERSHIP: There are 4,500 on the lower level. The height of the building Latter-day Saints in Manitoba, organized in 12 will be a total of 32 metres. local congregations. In Canada, there are more than 194,000 Mormons in 486 congregations. BUILDING FEATURES: The exterior of the temple Worldwide, there are nearly 16 million will feature a copper steeple, slate roof tiles, and Church members. Tyndall stone quarried just outside Winnipeg. The building will be crowned with a gilded CANADIAN TEMPLES: There are currently eight statue of Moroni, a Book of Mormon prophet temples in Canada. The other temples are who is significant to Latter-day Saints for his role located in Toronto, Halifax, Montreal, Regina, in the restoration of the gospel of Jesus Christ. Calgary, Edmonton, Cardston and Vancouver. Original art glass windows will depict the FOR MORE INFORMATION: prairie crocus. www.mormonnewsroom.ca and ARCHITECT: AABARCH, Vancouver www.presse-mormons.ca For more information about the worldwide Church, visit mormonnewsroom.org 1 © 2016 BY INTELLECTUAL RESERVE, INC. ALL RIGHTS RESERVED.
    [Show full text]
  • Manitoba Stone
    MINERALS ECONOMIC & REGIONAL DEVELOPMENT AGREEMENT The initiation of this brochure is intended to attract wider interest by architects, builders, monument makers and resource developers in the stone industry of the Keystone Province, and also to provide a taste of the abundance and variety of its stone resources both developed and as yet untapped. To this end a small sampling of the attractive, easily accessible granite resources available for develop­ ment is presented along with what is already available from active producers. This project was funded under the Canada-Manitoba Mineral Development Agreement, a five year, $24.7 million program aimed at diversifying and strengthening the Manitoba mining industry. Further information is available from: Manitoba Energy and Mines Energy, Mines & Resources Canadu 555-330 Graham Avenue 1002-213 Notre Dame Avenue Winnipeg, Manitoba Winnipeg , Manitoba CANADA CANADA R3C 4E3 R3B 1N3 (204) 945-6559 (204) 949-8609 This report was prepared by Agricola Mineralia under contract #01SF 23230-5-0111 to Department of Supply and Services Canada. Canada Manitoba ~ MANITOBA STONE Almost every rock type the planet has to offer is to be found in the bedrock geology underlying Manitoba, aptly named "The Keystone Province." Crystalline Precambrian rocks of the Superior Province in southeastern Manitoba, are amongst the oldest on earth, dating isotopically up to 3 billion years in age. This accessible terrain is host to a broad range of igneous rocks-granites, monzonites, syenites, diorites, granodiorites, gabbros and many more, all referred to in the building stone trade as granites. Granites occur as generally irregular masses from a few square kilometres to hundreds of square kilometres in area.
    [Show full text]
  • Tyndall Stone®
    Tyndall Stone® 450 Million Years of History 1 Cover: Tyndall Stone® façade: Above: Interior staircase treads, risers and flooring, rubbed SAWN FACE: sawn face finish, sawn top & bottom finish, buff colour, custom cut dimension stonework. beds, grey colour, 90mm & 190mm course heights. Planters and feature wall: SPLIT FACE: split face finish, sawn top & bottom beds, grey colour, 4 course mixture of 40mm (1 1/2”), 57mm (2 ¼”), 90mm (3 ½”) & 123mm (4 7/8”) course heights. 12 The Source of Beauty 1 3 Its unique mottled pattern, is of no set design, yet magically “it breaks up the light. The air around it is soft and warm and indulgent, as it must have been eons ago when coral thrived in the prehistoric Manitoba sea waters. The stone gives back to us the warmth it received in its making. Canadian Geographic. 14 ” Left: 450 million year old Tyndall Limestone blocks up to 10 tonnes each are being quarried and extracted from pits 30 kms North East of Winnipeg, Manitoba, Canada. Above: Large diamond tip blade saws are used to cut stone from the Earth’s crust. 1 5 n RIDGESTONE: split face finish, 1 split bed & 1 sawn bed, grey colour, course heights vary from 40mm (1 ½”) to 80mm (3 1/8”), complete with sawn finish, grey colour sills. 16 1 7 A n SPLIT FACE: split face finish, sawn top & bottom beds, grey colour, three courses 57mm (2 ¼”), 123mm (4 7/8”), 190mm (7 ½”), complete with sawn finish, grey colour quoins and sill. 18 B n SPLIT FACE: split face finish, sawn top & bottom beds, grey colour, single course height 90mm (3 ½”), complete with sawn finish grey colour quoins and sill.
    [Show full text]
  • Vignettes of Winnipeg: Past and Present
    Vignettes of Winnipeg: Past and Present The Manitoba Legislative Building-450 Broadway The present Manitoba Legislative Building is the third to house the Manitoba Legislative Assembly. The Assembly first met in 1871 in the home of Andrew G.B. Bannatyne, Braeside, a large log structure at Main and McDermot. In 1883 an Italianate structure was built on Kennedy Street near Government House. By 1912 this building was deemed to be both out-dated and inadequate. Manitoba had just expanded to its present dimensions, immigrants were pouring in, and both the province and its capital city were booming. A grander seat of government was needed to reflect this spectacular growth. In 1911 the Manitoba Government purchased a 30 acre tract of land, part of the Fort Osborne Barracks, from the Federal Government, and the next year advertized a contest, asking architects to submit designs. The prize was $ 10,000.The winning design was that of Frank Worthington Simon and Henry Boddington III of Liverpool. The architects’ conception exhibited the neo-classical style popular at time throughout North America. The basic structure is Tyndall stone, quarried locally. It is topped by a copper dome of Greek design on which the iconic “Golden Boy” strides into the future, the north, holding a sheaf of wheat and a torch. Scene from a New Year's Levee at the Levee. New Year's Day-Choir at the Levee New Year's Day-Sleigh rides at the Levee Broadway Bears on south lawn of Leg in 2008 A local historian, Frank Alba has done a detailed study of the buildings dimensions, sculptures, carvings, murals, and has concluded that it was designed to be a re-creation of the temple of Solomon, rife with Masonic symbolism.
    [Show full text]
  • Saskatchewan Rocks!
    SASKATCHEWAN ROCKS! Royal Saskatchewan Museum SASKATCHEWAN ROCKS For further information please contact: Public Programs Royal Saskatchewan Museum 2445 Albert Street Regina, Saskatchewan S4P 4W7 Email: [email protected] Website: www.royalsaskmuseum.ca © Royal Saskatchewan Museum 2012 SASKATCHEWAN ROCKS! This document has been created for students and teachers for use in research of Saskatchewan's geological and paleontological past. The contents of this resource package may be reproduced for classroom use only. No portion may be duplicated for publication or sale. © Royal Saskatchewan Museum 2012 Background Information 1. The Rock Cycle The rock cycle is the process in which rocks are being formed, worn down and then formed again; they are constantly being altered or combined. Erosion is the main contributor to the rock cycle. It wears down the rocks, forming sediment. As sediment accumulates over the years, the older sediment gets pushed further down, eventually becoming sedimentary rock. Sedimentary rock is continually pushed down becoming exposed to great heat and pressure, eventually becoming metamorphic rock. The metamorphic rock continues to be pushed further into the earth and eventually gets so hot that it turns back into magma. The magma then returns to the earth’s surface through volcanic activity to become igneous rock, at which point the cycle starts all over again. It takes thousands to millions of years for the cycle to be completed once. Igneous Rocks The earth is made of rocks and minerals. Minerals are the chemical compounds that combine to form rocks. For example, mica, feldspar, and quartz are all individual minerals that can be found together in granite.
    [Show full text]