Columbia River Estuary Ecosystem Classification— Concept and Application

Total Page:16

File Type:pdf, Size:1020Kb

Columbia River Estuary Ecosystem Classification— Concept and Application Prepared in cooperation with the University of Washington and the Lower Columbia River Estuary Partnership Columbia River Estuary Ecosystem Classification— Concept and Application Open-File Report 2011–1228 U.S. Department of the Interior U.S. Geological Survey Cover: Photograph showing view of lower Columbia River estuary, approximately 55 km from the mouth, looking down-estuary with Welch Island in the foreground; the ocean entrance in the background. Photograph taken by Charles Simenstad, University of Washington, May 26, 2005. Columbia River Estuary Ecosystem Classification— Concept and Application By Charles A. Simenstad and Jennifer L. Burke, University of Washington; Jim E. O’Connor and Charles Cannon, U.S. Geological Survey; Danelle W. Heatwole and Mary F. Ramirez, University of Washington; Ian R. Waite and Timothy D. Counihan, U.S. Geological Survey; and Krista L. Jones, Lower Columbia River Estuary Partnership Prepared in cooperation with the University of Washington and the Lower Columbia River Estuary Partnership Open-File Report 2011-1228 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Simenstad, C.A., Burke, J.L., O’Connor, J.E., Cannon, C., Heatwole, D.W., Ramirez, M.F., Waite, I.R., Counihan, T.D., and Jones, K.L., 2011, Columbia River Estuary Ecosystem Classification—Concept and Application: U.S. Geological Survey Open-File Report 2011-1228, 54 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Executive Summary ....................................................................................................................................................... 1 Introduction .................................................................................................................................................................... 2 Impetus for New Estuarine Ecosystem Classification ................................................................................................ 3 Objectives .................................................................................................................................................................. 6 Approach ....................................................................................................................................................................... 6 Columbia River Estuary, Processes and Ecosystems ................................................................................................ 6 Setting of the Columbia River Basin and Estuary ................................................................................................... 7 Contemporary Hydrologic and Geomorphic Processes and Landforms ................................................................. 8 Floods and Tides ................................................................................................................................................ 8 Sediment Movement and Transfers .................................................................................................................... 9 Design of Columbia River Estuary Ecosystem Classification ....................................................................................11 Methods ........................................................................................................................................................................12 Data Criteria and Requirements ................................................................................................................................12 Primary Criteria for Classification Design ..............................................................................................................12 Secondary .............................................................................................................................................................12 GIS Structure ............................................................................................................................................................13 Base Data and Analytical Steps ................................................................................................................................13 Historical Flood Plain and Tidal Extent ..................................................................................................................13 Level-Specific Data Sources .................................................................................................................................13 Levels 1 and 2— Ecosystem Province and Ecoregion ......................................................................................13 Level 3—Hydrogeomorphic Reach ....................................................................................................................14 Level 4—Ecosystem Complex ...........................................................................................................................15 Level 5—Geomorphic Catena............................................................................................................................16 Level 6—Primary Cover Class ...........................................................................................................................17 Results ..........................................................................................................................................................................18 Level 1—Ecosystem Province ..................................................................................................................................18 Level 2—Ecoregion ...................................................................................................................................................18 Level 3—Hydrogeomorphic Reach ...........................................................................................................................18 Level 4—Ecosystem Complex ..................................................................................................................................22 Level 5—Geomorphic Catena ...................................................................................................................................23 Level 6—Primary Cover Class ..................................................................................................................................23 Discussion ....................................................................................................................................................................24 General and Unique Applicability to Estuarine Classification Needs .........................................................................24 Utility and Application to Estuarine Science, Monitoring, Restoration and Management ..........................................24 Research ...............................................................................................................................................................25 Change Analyses ..................................................................................................................................................25 Monitoring .............................................................................................................................................................26 Restoration and Preservation Planning .................................................................................................................27 Management .........................................................................................................................................................27 Constraints on Data Adequacy and Application of the Classification to the Entire Columbia River Estuary .............28 Validation Needs .......................................................................................................................................................29 Summary and Recommendations.................................................................................................................................29 Acknowledgments ........................................................................................................................................................30 References Cited ..........................................................................................................................................................30 iii Appendix A. Summary of location, geographic and geomorphic setting, major landforms, geologic content and history, characteristic geomorphic and hydrologic processes, and anthropogenic factors affecting key processes in eight Hydrogeomorphic Reach forming the Columbia River Estuary
Recommended publications
  • Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: an Evaluation of the Effects of Selected Factors on Salmonid Population Viability
    NOAA Technical Memorandum NMFS-NWFSC-69 Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: An Evaluation of the Effects of Selected Factors on Salmonid Population Viability September 2005 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue infor- mal scientific and technical publications when com- plete formal review and editorial processing are not appropriate or feasible due to time constraints. Docu- ments published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Fresh, K.L., E. Casillas, L.L. Johnson, and D.L. Bottom. 2005. Role of the estuary in the recovery of Columbia River basin salmon and steelhead: an evaluation of the effects of selected factors on salmo- nid population viability. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-69, 105 p. NOAA Technical Memorandum NMFS-NWFSC-69 Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: An Evaluation of the Effects of Selected Factors on Salmonid Population Viability Kurt L.
    [Show full text]
  • Forest Regions of Washington
    What are the Major Geographic Regions of Washington? Geographic Regions of Washington Okanogan Highlands Puget Basin Columbia Plateau The Rivers of WA & the 5 Geographic Regions Okanogan Highlands Columbia Puget Basin Plateau Direction of flow for WA rivers? Direction of flow for WA the rivers: Okanogan Highlands Puget Basin Columbia Plateau Where does the water end up? All water in WA eventually makes it into the Pacific, but there are 5 main drainage points in WA. The 5 Drainage Points Puget Columbia Pacific Ocean Pacific Sound River Snake River Columbia River Describe: 5 Drainage Points of Washington 1. Snake River -drains rivers in SE WA before it empties into Columbia 2. Columbia River -drains rivers E of Cascades and in S WA, and flows to the Pacific 3. Pacific Ocean - drains rivers W of Coast Range 4. Strait of Juan de Fuca – drains rivers N of Coast Range 5. Puget Sound - drains rivers E of Coast Range & W of Cascade Crest Where does the water end up? Puget Columbia Pacific Ocean Pacific Sound River Snake River Columbia River 5 Regions Descriptions Okanogan Highlands • Forested hills, grassy lowlands – Dry, inland forest. • Climate: Moderately hot, dry summers; cold winters with measurable snowfall • Elevation: 1,000‘ – 6,000’. – Cities: Spokane, Okanogan, Colville – Rivers: Okanogan, Kettle River, Okanogan Spokane, Pend Oreille, Highlands Upper Columbia Okanogan Highlands Okanogan Highlands Columbia Plateau • Semi-desert – Shrub & grasslands. Trees along some stretches of local rivers • Climate: Hot, dry summers; cold winters with occasional snowfall. – Rivers: Columbia, Snake, Yakima, Wenatchee, Palouse – Cities: Yakima, Wenatchee, Tri-Cities, Moses Lake, Ephrata – Hanford Nuclear Reservation Columbia Plateau Columbia Plateau Columbia Plateau Coast Range Olympic Mtns Black Hills Willapa Hills Coast Range • Olympic Mountains, Black Hills, & Willapa Hills – Rain forest on western side of range.
    [Show full text]
  • Missouri River Floodplain from River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St
    Hydrogeomorphic Evaluation of Ecosystem Restoration Options For The Missouri River Floodplain From River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St. Louis, Missouri Prepared For: U. S. Fish and Wildlife Service Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 15-02 Mickey E. Heitmeyer Joseph L. Bartletti Josh D. Eash December 2015 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR THE MISSOURI RIVER FLOODPLAIN FROM RIVER MILE (RM) 670 SOUTH OF DECATUR, NEBRASKA TO RM 0 AT ST. LOUIS, MISSOURI Prepared For: U. S. Fish and Wildlife Service Region 3 Refuges and Wildlife Minneapolis, Minnesota By: Mickey E. Heitmeyer Greenbrier Wetland Services Advance, MO 63730 Joseph L. Bartletti Prairie Engineers of Illinois, P.C. Springfield, IL 62703 And Josh D. Eash U.S. Fish and Wildlife Service, Region 3 Water Resources Branch Bloomington, MN 55437 Greenbrier Wetland Services Report No. 15-02 December 2015 Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Route 2, Box 2735 Advance, MO 63730 www.GreenbrierWetland.com Publication No. 15-02 Suggested citation: Heitmeyer, M. E., J. L. Bartletti, and J. D. Eash. 2015. Hydrogeomorphic evaluation of ecosystem restoration options for the Missouri River Flood- plain from River Mile (RM) 670 south of Decatur, Nebraska to RM 0 at St. Louis, Missouri. Prepared for U. S. Fish and Wildlife Service Region 3, Min- neapolis, MN. Greenbrier Wetland Services Report 15-02, Blue Heron Conservation Design and Print- ing LLC, Bloomfield, MO. Photo credits: USACE; http://statehistoricalsocietyofmissouri.org/; Karen Kyle; USFWS http://digitalmedia.fws.gov/cdm/; Cary Aloia This publication printed on recycled paper by ii Contents EXECUTIVE SUMMARY ....................................................................................
    [Show full text]
  • U.S. Environmental Protection Agency's National Estuary Program
    U.S. Environmental Protection Agency’s National Estuary Program Story Map Text-only File 1) Introduction Welcome to the National Estuary Program story map. Since 1987, the EPA National Estuary Program (NEP) has made a unique and lasting contribution to protecting and restoring our nation's estuaries, delivering environmental and public health benefits to the American people. This story map describes the 28 National Estuary Programs, the issues they face, and how place-based partnerships coordinate local actions. To use this tool, click through the four tabs at the top and scroll around to learn about our National Estuary Programs. Want to learn more about a specific NEP? 1. Click on the "Get to Know the NEPs" tab. 2. Click on the map or scroll through the list to find the NEP you are interested in. 3. Click the link in the NEP description to explore a story map created just for that NEP. Program Overview Our 28 NEPs are located along the Atlantic, Gulf, and Pacific coasts and in Puerto Rico. The NEPs employ a watershed approach, extensive public participation, and collaborative science-based problem- solving to address watershed challenges. To address these challenges, the NEPs develop and implement long-term plans (called Comprehensive Conservation and Management Plans (link opens in new tab)) to coordinate local actions. The NEPs and their partners have protected and restored approximately 2 million acres of habitat. On average, NEPs leverage $19 for every $1 provided by the EPA, demonstrating the value of federal government support for locally-driven efforts. View the NEPmap. What is an estuary? An estuary is a partially-enclosed, coastal water body where freshwater from rivers and streams mixes with salt water from the ocean.
    [Show full text]
  • Chapter 5 Groundwater Quality and Hydrodynamics of an Acid Sulfate Soil Backswamp
    Chapter 5 Groundwater Quality and Hydrodynamics of an Acid Sulfate Soil Backswamp 5.1 Introduction Intensive drainage of coastal floodplains has been the main factor contributing to the oxidation of acid sulfate soils (ASS) (Indraratna, Blunden & Nethery 1999; Sammut, White & Melville 1996). Drainage of backswamps removes surface water, thereby increasing the effect of evapotranspiration on watertable drawdown (Blunden & Indraratna 2000) and transportation of acidic salts to the soil surface through capillary action (Lin, Melville & Hafer 1995; Rosicky et al. 2006). During high rainfall events the oxidation products (i.e. metals and acid) are mobilised into the groundwater, and acid salts at the sediment surface are dissolved directly into the surface water (Green et al. 2006). The high efficiency of drains readily transports the acidic groundwater and surface water into the estuary and can have a detrimental impact on downstream habitats (Cook et al. 2000). The quality of water discharged from a degraded ASS wetland is controlled by the water balance, which over a given time period is: P + I + Li = E + Lo + D + S (Equation 5.1) where P is precipitation, I is irrigation, Li is the lateral inflow of water, E is evapotranspiration, Lo is surface and subsurface lateral outflow of water, D is the drainage to the watertable and S is the change in soil moisture storage above the watertable (Indraratna, Tularam & Blunden 2001; Sammut, White & Melville 1996; White et al. 1997). While this equation may give a general overview of sulfidic floodplain hydrology, an understanding of site-specific details is required for effective remediation and management of degraded ASS wetlands.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Cypress Creek National Wildlife Refuge, Illinois
    Hydrogeomorphic Evaluation of Ecosystem Restoration Options for Cypress Creek National Wildlife Refuge, Illinois Prepared For: U. S. Fish and Wildlife Service Division of Refuges, Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 12-05 Mickey E. Heitmeyer Karen E. Mangan July 2012 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR CYPRESS CREEK NATIONAL WILDLIFE REFUGE, ILLINOIS Prepared For: U.S. Fish and Wildlife Service National Wildlife Refuge System, Region 3 Minneapolis, MN and Cypress Creek National Wildlife Refuge Ullin, IL By: Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Rt. 2, Box 2735 Advance, MO 63730 and Karen E. Mangan U.S. Fish and Wildlife Service Cypress Creek National Wildlife Refuge 0137 Rustic Campus Drive Ullin, IL 62992 Greenbrier Wetland Services Report 12-05 July 2012 Mickey E Heitmeyer, PhD Greenbrier Wetland Services Route 2, box 2735 Advance, MO. 63730 Publication No. 12-05 Suggested citation: Heitmeyer, M. E., K. E. Mangan. 2012. Hy- drogeomorphic evaluation of ecosystem restora- tion and management options for Cypress Creek National Wildlife Refuge,Ullin Il.. Prepared for U. S. Fish and Wildlife Service, Region 3, Minne- apolis, MN and Cypress Creek National Wildlife Refuge,Ullin,Il. Greenbrier Wetland Services Report 12-05, Blue Heron Conservation Design and Printing LLC, Bloomfield, MO. Photo credits: COVER: Limekiln Slough by Michael Jeffords Michael Jeffords, Jan Sundberg, Cary Aloia (Gardners- Gallery.com), Karen Kyle This publication printed on recycled paper by ii
    [Show full text]
  • Floodplain Geomorphic Processes and Environmental Impacts of Human Alteration Along Coastal Plain Rivers, Usa
    WETLANDS, Vol. 29, No. 2, June 2009, pp. 413–429 ’ 2009, The Society of Wetland Scientists FLOODPLAIN GEOMORPHIC PROCESSES AND ENVIRONMENTAL IMPACTS OF HUMAN ALTERATION ALONG COASTAL PLAIN RIVERS, USA Cliff R. Hupp1, Aaron R. Pierce2, and Gregory B. Noe1 1U.S. Geological Survey 430 National Center, Reston, Virginia, USA 20192 E-mail: [email protected] 2Department of Biological Sciences, Nicholls State University Thibodaux, Louisiana, USA 70310 Abstract: Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net
    [Show full text]
  • Do Sturgeon Limit Burrowing Shrimp Populations in Pacific Northwest Estuaries?
    Environ Biol Fish (2008) 83:283–296 DOI 10.1007/s10641-008-9333-y Do sturgeon limit burrowing shrimp populations in Pacific Northwest Estuaries? Brett R. Dumbauld & David L. Holden & Olaf P. Langness Received: 22 January 2007 /Accepted: 28 January 2008 /Published online: 4 March 2008 # Springer Science + Business Media B.V. 2008 Abstract Green sturgeon, Acipenser medirostris, and we present evidence from exclusion studies and field white sturgeon, Acipenser transmontanus, are fre- observation that the predator making the pits can have quent inhabitants of coastal estuaries from northern a significant cumulative negative effect on burrowing California, USA to British Columbia, Canada. An shrimp density. These burrowing shrimp present a analysis of stomach contents from 95 green stur- threat to the aquaculture industry in Washington State geon and six white sturgeon commercially landed in due to their ability to de-stabilize the substrate on Willapa Bay, Grays Harbor, and the Columbia River which shellfish are grown. Despite an active burrowing estuary during 2000–2005 revealed that 17–97% had shrimp control program in these estuaries, it seems empty stomachs, but those fish with items in their unlikely that current burrowing shrimp abundance and guts fed predominantly on benthic prey items and availability as food is a limiting factor for threatened fish. Burrowing thalassinid shrimp (mostly Neo- green sturgeon stocks. However, these large predators trypaea californiensis) were important food items for may have performed an important top down control both white and especially for green sturgeon taken in function on shrimp populations in the past when they Willapa Bay, Washington during summer 2003, where were more abundant.
    [Show full text]
  • A G~Ographic Dictionary of Washington
    ' ' ., • I ,•,, ... I II•''• -. .. ' . '' . ... .; - . .II. • ~ ~ ,..,..\f •• ... • - WASHINGTON GEOLOGICAL SURVEY HENRY LANDES, State Geologist BULLETIN No. 17 A G~ographic Dictionary of Washington By HENRY LANDES OLYMPIA FRAN K M, LAMBORN ~PUBLIC PRINTER 1917 BOARD OF GEOLOGICAL SURVEY. Governor ERNEST LISTER, Chairman. Lieutenant Governor Louis F. HART. State Treasurer W.W. SHERMAN, Secretary. President HENRY SuzzALLO. President ERNEST 0. HOLLAND. HENRY LANDES, State Geologist. LETTER OF TRANSMITTAL. Go,:ernor Ernest Lister, Chairman, and Members of the Board of Geological Survey: GENTLEMEN : I have the honor to submit herewith a report entitled "A Geographic Dictionary of Washington," with the recommendation that it be printed as Bulletin No. 17 of the Sun-ey reports. Very respectfully, HENRY LAKDES, State Geologist. University Station, Seattle, December 1, 1917. TABLE OF CONTENTS. Page CHAPTER I. GENERAL INFORMATION............................. 7 I Location and Area................................... .. ... .. 7 Topography ... .... : . 8 Olympic Mountains . 8 Willapa Hills . • . 9 Puget Sound Basin. 10 Cascade Mountains . 11 Okanogan Highlands ................................ : ....' . 13 Columbia Plateau . 13 Blue Mountains ..................................... , . 15 Selkirk Mountains ......... : . : ... : .. : . 15 Clhnate . 16 Temperature ......... .' . .. 16 Rainfall . 19 United States Weather Bureau Stations....................... 38 Drainage . 38 Stream Gaging Stations. 42 Gradient of Columbia River. 44 Summary of Discharge
    [Show full text]
  • Volume II, Chapter 2 Columbia River Estuary and Lower Mainstem Subbasins
    Volume II, Chapter 2 Columbia River Estuary and Lower Mainstem Subbasins TABLE OF CONTENTS 2.0 COLUMBIA RIVER ESTUARY AND LOWER MAINSTEM ................................ 2-1 2.1 Subbasin Description.................................................................................................. 2-5 2.1.1 Purpose................................................................................................................. 2-5 2.1.2 History ................................................................................................................. 2-5 2.1.3 Physical Setting.................................................................................................... 2-7 2.1.4 Fish and Wildlife Resources ................................................................................ 2-8 2.1.5 Habitat Classification......................................................................................... 2-20 2.1.6 Estuary and Lower Mainstem Zones ................................................................. 2-27 2.1.7 Major Land Uses................................................................................................ 2-29 2.1.8 Areas of Biological Significance ....................................................................... 2-29 2.2 Focal Species............................................................................................................. 2-31 2.2.1 Selection Process............................................................................................... 2-31 2.2.2 Ocean-type Salmonids
    [Show full text]
  • EARTH SCIENCES RESEARCH JOURNAL Development of Tropical
    EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 20, No. 1 (March, 2016): O1 - O10 GEOLOGY ENGINEERING Development of Tropical Lowland Peat Forest Phasic Community Zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia Mohamad Tarmizi Mohamad Zulkifley1, Ng Tham Fatt1, Zainey Konjing2, Muhammad Aqeel Ashraf3,4* 1. Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia 2. Biostratex Sendirian Berhad, Batu Caves, Gombak, Malaysia. 3. Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, P. R. China 4. Faculty of Science & Natural Resources, University Malaysia Sabah88400 Kota Kinabalu, Sabah, Malaysia. Corresponding authors: Muhammad Aqeel Ashraf- Faculty of Science & Natural Resources University Malaysia Sabah, 88400, Kota Kinabalu, Sabah. ([email protected]) ABSTRACT Keywords: Lowland peat swamp, Phasic community, Logging observations of auger profiles (Tarmizi, 2014) indicate a vertical, downwards, general decrease of Mangrove swamp, Riparian environment, Pollen peat humification levels with depth in a tropical lowland peat forest in the Kota Samarahan-Asajaya área in the diagram, Vegetation Succession. región of West Sarawak (Malaysia). Based on pollen analyses and field observations, the studied peat profiles can be interpreted as part of a progradation deltaic succession. Continued regression of sea levels, gave rise Record to the development of peat in a transitional mangrove to floodplain/floodbasin environment, followed by a shallow, topogenic peat depositional environment with riparian influence at approximately 2420 ± 30 years B.P. Manuscript received: 20/10/2015 (until present time). The inferred peat vegetational succession reached Phasic Community I at approximately Accepted for publication: 12/02/2016 2380 ± 30 years B.P.
    [Show full text]