University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting IDENTIFICATION OF FUNGI CAUSING LEAF SPOT ON BERMUDAGRASS IN FLORIDA, AND SENSITIVITY OF BIPOLARIS CYNODONTIS TO AZOXYSTROBIN By PRASERT STAVORNVISIT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2015 © 2015 Prasert Stavornvisit To my family and friends ACKNOWLEDGMENTS I would like to thank Dr. Phil Harmon, my major advisor and Dr. Jeff Rollins, committee member for all their guidance and support throughout this process. I thank Dr. Brian Schwartz from University of Georgia for project support. I thank my colleagues, Brenda Rutherford, Anne Vitoreli, Dr. Sladana Bec, Jerry Dewberry and Lydia Munday for their help and instruction. Lastly I would like to thank my family for their patience and understanding. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT .....................................................................................................................................9 CHAPTER 1 LITERATURE REVIEW .......................................................................................................11 Brief History of Fungicide Use in Turfgrass ..........................................................................11 Fungicide Resistance ..............................................................................................................13 History of Fungicide Insensitivity in Turfgrass Pathogens .............................................13 Fungicide Resistance Concept .........................................................................................14 Pathogen Fitness ..............................................................................................................15 Mechanisms of Resistance ..............................................................................................15 Bipolaris Leaf Spot and Melting Out on Bermudagrass .........................................................19 Bipolaris Leaf Blotch and Melting Out ...........................................................................20 Pathogen, Host, Disease Cycle ........................................................................................20 2 SURVEY OF BIPOLARIS SPECIES ISOLATED FROM BERMUDAGRASS GOLF COURSES IN FLORIDA .......................................................................................................22 Introduction .............................................................................................................................22 Materials and Methods ...........................................................................................................23 Sample Collection, Isolation and Storage of Fungal Pathogens ......................................23 DNA Extraction and Amplification .................................................................................24 Sequence and Phylogenetic Analysis ..............................................................................25 Results.....................................................................................................................................25 Isolate Collection .............................................................................................................25 Molecular and Morphological Identification of Bipolaris spp. .......................................26 Discussion ...............................................................................................................................27 3 EVALUATION OF AZOXYSTROBIN RESISTANCE IN BIPOLARIS CYNODONTIS ......................................................................................................................34 Introduction .............................................................................................................................34 Materials and Methods ...........................................................................................................35 Whole Genome Sequencing ............................................................................................35 Primers Sets Used to Attempt Amplification of The Cytochrome b Gene .....................37 Amended Agar Assays ....................................................................................................38 Fungicide Sensitivity Assays ...........................................................................................38 5 In vivo Sensitivity of Bipolaris Isolates to Azoxystrobin Fungicides .............................38 Results.....................................................................................................................................40 Sequencing of Cytb Gene in Bipolaris cynodontis ..........................................................40 Azoxystrobin Sensitivity Assay ......................................................................................40 Pathogenicity Test ...........................................................................................................41 Discussion ...............................................................................................................................41 APPENDIX A: SURVEY FOR BIPOLARIS SPECIES ISOLATED FROM BERMUDAGRASS GOLF COURSES IN FLORIDA .......................................................................................................50 B: EVALUTION OF AZOXYSTROBIN RESISTANCE IN BIPOLARIS CYNODONTIS ....52 LIST OF REFERENCES ...............................................................................................................55 BIOGRAPHICAL SKETCH .........................................................................................................66 6 LIST OF TABLES Table page 2-1 Culture collection used in this study ..................................................................................29 2-2 References culture and accession number used in this study ............................................30 2-3 Number of samples with the indicated fungal species isolated by month .........................32 3-1 The primer sets from related fungi .....................................................................................43 3-2 The primer sets designed base on Cochliobolus heterostrophus, scaffold_47:34321- 34542..................................................................................................................................43 3-3 The primer sets designed using R_2014_07_11_13_39_47_user_LIL- 46_Rollins_contig_474 contig (Bipolaris cynodontis cytochrome b gene sequence) .......43 3-4 Results of azoxystrobin amended media assay ..................................................................44 3-5 Results of azoxystrobin amended media assay for species other than Bipolaris cynodontis ..........................................................................................................................45 7 LIST OF FIGURES Figure page 2-1 Distribution of the species identified in the samples submitted from golf course in 22 Florida counties ..................................................................................................................32 2-2 The phylogenetic tree constructed using studied isolates, reference sequences, and the maximum likelihood method .......................................................................................33 3-1 DNA sequence of the contig containing a partial cytochrome b gene sequence of Bipolaris cynodontis isolate 1318 (exon in red and intron in black). Primer Cytbfwd 4 is highlighted in yellow and Cytbrvs 4 reverse complement is highlighted in green. ....46 3-2 Alignment of DNA sequences coding for amino acid residues 127 to 143 of the cytochrome b gene of 38 Bipolaris cynodontis isolates .....................................................47 3-3 Partial amino acid sequences including residues 127 through 143 of the cytochrome b gene from 38 Bipolaris cynodontis isolates. Line 13 shows the F129L mutation found in isolate 1344 ..........................................................................................................48 3-4 Levels of disease severity from isolate 1326, 1344, and 1375. Control pots were inoculated with water only. The w treated pots were sprayed with water and the a treated pots were treated with Heritage fungicide (azoxystrobin). ....................................49 8 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science IDENTIFICATION OF FUNGI CAUSING LEAF SPOT ON BERMUDAGRASS IN FLORIDA, AND SENSITIVITY OF BIPOLARIS CYNODONTIS TO AZOXYSTROBIN By Prasert Stavornvisit December 2015 Chair: Philip F. Harmon Major: Plant Pathology Bipolaris leaf blotch and melting out are destructive diseases of bermudagrass, paspalum, and zoysiagrass maintained as golf course putting greens and fairways. Bipolaris cynodontis is the most common fungal pathogen reported to cause the disease on bermudagrass (Cynodon spp.). In 2012, golf course superintendents who utilized the UF IFAS Plant Diagnostic Center (PDC) Rapid Turfgrass Diagnostic Service
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Molecular Genetic Characterization of Ptr Toxc-Tsc1 Interaction
    MOLECULAR GENETIC CHARACTERIZATION OF PTR TOXC-TSC1 INTERACTION AND COMPARATIVE GENOMICS OF PYRENOPHORA TRITICI-REPENTIS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Gayan Kanishka Kariyawasam In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Plant Pathology November 2018 Fargo, North Dakota North Dakota State University Graduate School Title MOLECULAR GENETIC CHARACTERIZATION OF PTR TOXC-TSC1 INTERACTION AND COMPARATIVE GENOMICS OF PYRENOPHORA TRITICI-REPENTIS By Gayan Kanishka Kariyawasam The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Zhaohui Liu Chair Dr. Shaobin Zhong Dr. Justin D. Faris Dr. Phillip E. McClean Dr. Timothy L. Friesen Approved: November 7, 2018 Jack Rasmussen Date Department Chair ABSTRACT Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an economically important disease worldwide. The disease system is known to involve three pairs of interactions between fungal-produced necrotrophic effectors (NEs) and the wheat sensitivity genes, namely Ptr ToxA- Tsn1, Ptr ToxB-Tsc2 and Ptr ToxC-Tsc1, all of which result in susceptibility. Many lines of evidence also suggested the involvement of additional fungal virulence and host resistance factors. Due to the non-proteinaceous nature, Ptr ToxC, has not been purified and the fungal gene (s) controlling Ptr ToxC production is unknown. The objective for the first part of research is to map the fungal gene (s) controlling Ptr ToxC production. Therefore, A bi-parental fungal population segregating for Ptr ToxC production was first developed from genetically modified heterothallic strains of AR CrossB10 (Ptr ToxC producer) and 86-124 (Ptr ToxC non-producer), and then was genotyped and phenotyped.
    [Show full text]
  • Elsevier Editorial System(Tm) for Fungal Ecology Manuscript Draft
    Elsevier Editorial System(tm) for Fungal Ecology Manuscript Draft Manuscript Number: FUNECO-D-16-00203R1 Title: Intra-diurnal and daily changes in Didymella ascospore concentrations in the air of an urban site Article Type: Original Research Paper Keywords: pathogen; bioaerosol; asthma; exposure time; air quality; fungal ecology Corresponding Author: Dr. Magdalena Sadyś, Ph.D. Corresponding Author's Institution: Rothamsted Research First Author: Magdalena Sadyś, Ph.D. Order of Authors: Magdalena Sadyś, Ph.D.; Jonathan S West, Ph.D. Abstract: Didymella sp. is a common plant pathogen affecting mainly cereal crops in countries with temperate climates, and its airborne spores are also a potential human allergen. A 5-year monitoring study was carried out at an urban site in the UK to establish the most likely exposure time in order to alert people sensitised to spores of this genus. Didymella ascospores occurred in air with a bimodal pattern, with peak concentrations occurring at 03:00 and 22:00. The majority of ascospores were observed from 20:30 to 07:30 according to a multivariate regression tree analysis. Similarly, circular tests indicated that the maximum hourly concentrations were found in the morning hours. The highest ascospore concentrations were observed in very humid conditions occurring after rainfall. The observations taken from an urban site were delayed in relation to the time of ascospore release previously reported from field sites. Thus, there is a high possibility of regional transport of ascospores in the atmosphere from remote sources. Cover Letter Intra-diurnal and daily changes in Didymella ascospore concentrations in the air of an urban site Magdalena Sadyś 1,2 , Jonathan S.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • A New Species of Bipolaris from Heliconia Rostrata in India
    Current Research in Environmental & Applied Mycology 6 (3): 231–237(2016) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2016 Online Edition Doi 10.5943/cream/6/3/11 A new species of Bipolaris from Heliconia rostrata in India Singh R1 and Kumar S2 1Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi – 221005, Uttar Pradesh, India 2Department of Forest Pathology, Kerala Forest Research Institute, Peechi- 680653, Kerala, India Singh R, Kumar S 2016 − A new species of Bipolaris from Heliconia rostrata in India. Current Research in Environmental & Applied Mycology 6(3), 231– 237, Doi 10.5943/cream/6/3/11 Abstract Bipolaris rostratae, a new foliicolous anamorphic fungus discovered on living leaves of Heliconia rostrata (Heliconiaceae), is described and illustrated. The species was compared with closely related species of Bipolaris and similar fungi recorded on Heliconia spp. This species is different from other Bipolaris spp. reported on Heliconia due to its shorter, thinner and less septate conidia. A key is provided to all species of Bipolaris reported on Heliconia. Key words − fungal diversity – morphotaxonomy – Foliicolous fungi – Bipolaris – new species Introduction After several taxonomic refinements, graminicolous Helminthosporium were segregated into several genera including Bipolaris, Curvularia, Drechslera and Exserohilum (Sivanesan 1987). These genera belong to Ascomycota, Dothideomycetes, Pleosporales, Pleosporaceae. These genera can be distinguished on the basis of characters such as conidial shape and size, hilum morphology, origin of the germ tubes from the basal or other conidial cells, and the location and sequence in the development of the conidial septa. Illustrations of different hilum morphologies in graminicolous Helminthosporium species were given by Alcorn (1988).
    [Show full text]
  • Silver Scurf Begins Belowground on Potatoes in Western Washington
    SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON Debra Ann Inglis, Professor Emerita, WSU Mount Vernon NWREC, Washington State University; and Babette Gundersen, Senior Scientific Assistant, WSU Mount Vernon NWREC, Washington State University TB61E WSU EXTENSION | SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON Abstract In western Washington, which has a mild marine climate where silver scurf can be severe on Photographs of multiple sporulation and infection- susceptible smooth-skinned potato cultivars and cycle events on decaying seed potato pieces, where some of these fungicide evaluations have including the roots, stolons, and progeny tubers of occurred, seed piece fungicides, although helpful, potato plants, indicate that silver scurf caused by have not yet been able to eliminate the disease. Helminthosporium solani is a polycyclic disease, Especially puzzling is that even with a low number belowground, on potatoes in western Washington, of lesions on tubers, sporulation by the fungus can be warranting new approaches for disease control. high, as was shown in a two-year field study at WSU Mount Vernon NWREC (Table 1). Moreover, it has Introduction been established in several areas, including western Washington (Table 2), that extended periods Specialty potato growers in western Washington between vine kill and harvest can lead to increasing seek better measures for controlling silver scurf on levels of silver scurf infections and that, oftentimes, smooth-skinned red, yellow, and white potatoes. progeny tubers may already be infected before going Quality is an important issue for fresh market and into storage. seed potato sales, and smooth-skinned cultivars are thought to be more severely damaged than Russet- Many facets of the silver scurf disease cycle in skinned cultivars.
    [Show full text]
  • Ecology and Taxonomy of Leptosphaerulina Spp. Associated with Turfgrasses in the United States
    Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States Steven W. Abler Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of Master of Science in Plant Pathology, Physiology, and Weed Science H.B. Couch, Chair A.B. Baudoin E.H. Ervin January 31, 2003 Blacksburg, Virginia Key Words: Leptosphaerulina, Turfgrass, Morphology, Phylogenetics, ITS, EF-1α Copyright 2003, Steven W. Abler Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States Steve W. Abler Abstract Leptosphaerulina spp. are common fungi that have been reported to colonize several turfgrass species. Controversy exists regarding the relationship of Leptosphaerulina spp. and their turfgrass hosts. The fungus has been classified as a saprophyte, senectophyte, weak pathogen, and pathogen of turfgrasses. There has also been conflicting reports regarding the delineation of species within the genus Leptosphaerulina. Because of the uncertainty regarding the ecology and taxonomy of the genus in relation to turfgrasses the present study was undertaken. The ITS and EF-1α gene regions were sequenced and analyzed to compare to the multiple taxonomic schemes reported in the literature. The ITS region offered no resolution of species; however, the phylogeny of the EF-1α gene was consistent with the six-species model of Graham and Luttrell. Inoculation experiments were performed on unstressed and artificially stressed plants to determine whether the fungi are pathogens, senectophytes, or saprophytes of turfgrasses. Perennial ryegrass and creeping bentgrass plants were stressed by placing them in a dew chamber set at 38ºC, 100% R.H., and no light for two and one days respectively.
    [Show full text]
  • Apple Scab (Venturia Inaequalis) and Pests in Organic Orchards
    Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Boel Sandskär Department of Crop Science, Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2003 2 Abstract Sandskär, B. Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Doctoral Dissertation ISSN 1401-6249, ISBN 91-576-6416-1 Domestication of apples goes back several thousand years in time and archaeological findings of dried apples from Östergötland in Sweden have been dated to ca 2 500 B.C. Worldwide, apples are considered an attractive and healthy fruit to eat. Organic production of apples is increasing abroad but is still at very low levels in Sweden. This study deals with major disease and pest problems in organic growing of apples. It concentrates on the most severe disease, the apple scab (Venturia inaequalis). Resistance to apple scab was evaluated during three years in over 450 old and new apple cultivars at Alnarp and Balsgård in southern Sweden. There were significant differences between the cultivars and years. About ten per cent of the cultivars had a high level of resistance against apple scab. The correlation between foliar and fruit scab was stronger when the scab infection pressure was high (1998-1999), compared to when it was low (2000). Polygenic resistance is a desirable trait since such resistance is more difficult to overcome by the pathogen. A common denominator for polygenic resistance among the cultivars assessed was 'Worcester Pearmain'. The leaf infection of apple scab was compared at three locations: Alnarp, Kivik and Rånna (Skövde) in an observation trial for 22 new apple cultivars. The ranking of the cultivars was similar at the three locations.
    [Show full text]
  • Helminthosporium Velutinum and H. Aquaticum Sp. Nov. from Aquatic Habitats in Yunnan Province, China
    Phytotaxa 253 (3): 179–190 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.253.3.1 Helminthosporium velutinum and H. aquaticum sp. nov. from aquatic habitats in Yunnan Province, China DAN ZHU1, ZONG-LONG LUO1,2, DARBHE JAYARAMA BAHT3, ERICH.C. MCKENZIE4, ALI H. BAHKALI5, DE-QUN ZHOU6, HONG-YAN SU1,6 & KEVIN D. HYDE2,3,5 1College of Agriculture and Biology, Dali University, Dali, Yunnan 671003, China. 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand. 3Formerly at Department of Botany, Goa University, Goa, 403206, India. 4Landcare Research, Private Bag 92170, Auckland, New Zealand. 5Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, KSA. 6Faculty of Environmental Sciences & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China. Corresponding author: Hong-yan Su, email: [email protected] Abstract Helminthosporium species from submerged wood in streams in Yunnan Province, China were studied based on morphology and DNA sequence data. Descriptions and illustrations of Helminthosporium velutinum and a new species H. aquaticum are provided. A combined phylogenetic tree, based on SSU, ITS and LSU sequence data, place the species in Massarinaceae, Pleosporales. The polyphyletic nature of Helminthosporium species within Massarinaceae is shown based on ITS sequence data available in GenBank. Key words: aquatic fungi, Dothideomycetes, Massarinaceae, phylogeny, morphology Introduction The genus Helminthosporium Link was previously considered to be a widely distributed genus of dematiaceous hyphomycetes occurring on a wide range of hosts (Dreschler 1934, Ellis 1960, 1971, Manamgoda et al.
    [Show full text]