Table H13.1), an Order of Extinct Ruling Reptiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy. -
What Are Dinosaurs?
Tote Hughes, 140819 [email protected] Dinosaurs 1/20 What Are Dinosaurs? The following are not dinosaurs∗: • Things that aren’t organisms—There is no rock that is a dinosaur. • Things that existed before the Triassic period† • Pterosaurs The following are dinosaurs: • Birds (Aves) The following contain dinosaurs: • Archosaurs (X.Archosauria) • Reptiles (Reptilia) Dinosaur Overview A discussion of the important dinosaur clades. Dinosaurs are divided into two main groups: the eusaurischians‡ and ornithischians. Eusaurischians • Sauropods – Apatasaurus: diplodocoidean – Barosaurus: diplodocoidean – Brachiosaurus: macronarian – Diplodocus: diplodocoidean • Theropods – Allosaurus: carnosaurian – Archaeopteryx: maniraptor – Giganotosaurus: carnosaurian – Megalosaurus: megalosaurid – Spinosaurus: megalosaurid – Tyrannosaurus: tyrannosauroid – Velociraptor: maniraptor ∗See the Dinosaur Encyclopedia section for details on terms. †See Appendix: Time for details on geological time. ‡These are commonly called saurischians, but since almost every interesting saurischian is actually in the subclade X.Eusaurischia, I’ve taken the liberty of breaking the standard. I hope you will grow to understand and accept my decision. 1/20 Tote Hughes, 140819 [email protected] Dinosaurs 2/20 Ornithischians • Eurypodans (thyreophor) – Ankylosaurus: ankylosaurian – Stegosaurus: stegosaurian • Marginocephalians (cerapod) – Pachycephalosaurus: pachycephalosaurian – Triceratops: ceratopsian • Ornithopods (cerapod) – Hadrosaurus: hadrosauriform – Iguanodon: hadrosauriform -
A New Basal Ornithopod Dinosaur from the Lower Cretaceous of China
A new basal ornithopod dinosaur from the Lower Cretaceous of China Yuqing Yang1,2,3, Wenhao Wu4,5, Paul-Emile Dieudonné6 and Pascal Godefroit7 1 College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning, China 2 College of Paleontology, Shenyang Normal University, Shenyang, Liaoning, China 3 Key Laboratory for Evolution of Past Life and Change of Environment, Province of Liaoning, Shenyang Normal University, Shenyang, Liaoning, China 4 Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, Jilin University, Changchun, Jilin, China 5 Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, Jilin, China 6 Instituto de Investigación en Paleobiología y Geología, CONICET, Universidad Nacional de Río Negro, Rio Negro, Argentina 7 Directorate ‘Earth and History of Life’, Royal Belgian Institute of Natural Sciences, Brussels, Belgium ABSTRACT A new basal ornithopod dinosaur, based on two nearly complete articulated skeletons, is reported from the Lujiatun Beds (Yixian Fm, Lower Cretaceous) of western Liaoning Province (China). Some of the diagnostic features of Changmiania liaoningensis nov. gen., nov. sp. are tentatively interpreted as adaptations to a fossorial behavior, including: fused premaxillae; nasal laterally expanded, overhanging the maxilla; shortened neck formed by only six cervical vertebrae; neural spines of the sacral vertebrae completely fused together, forming a craniocaudally-elongated continuous bar; fused scapulocoracoid with prominent -
Thesis, Dissertation
SCRATCH-DIGGING IN THE CRETACEOUS BASAL ORNITHOPOD DINOSAUR ORYCTODROMEUS CUBICULARIS: EVIDENCE FROM MORPHOMETRIC ANALYSES AND RECONSTRUCTION OF THE FORELIMB MUSCULATURE by Jamie Lynn Fearon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Science MONTANA STATE UNIVERSITY Bozeman, Montana May 2013 ©COPYRIGHT by Jamie Lynn Fearon 2013 All Rights Reserved ii APPROVAL of a thesis submitted by Jamie Lynn Fearon This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School. David J. Varricchio Approved for the Department of Earth Sciences David Mogk Approved for The Graduate School Ronald W. Larsen iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Jamie Lynn Fearon May 2013 iv TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 -
From the Early Cretaceous Wonthaggi Formation
Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. -
Postcranial Anatomy of Jeholosaurus Shangyuanensis (Dinosauria, Ornithischia) from the Lower Cretaceous Yixian Formation of China
Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: http://www.tandfonline.com/loi/ujvp20 Postcranial anatomy of Jeholosaurus shangyuanensis (Dinosauria, Ornithischia) from the Lower Cretaceous Yixian Formation of China Feng-Lu Han , Paul M. Barrett , Richard J. Butler & Xing Xu To cite this article: Feng-Lu Han , Paul M. Barrett , Richard J. Butler & Xing Xu (2012) Postcranial anatomy of Jeholosaurus shangyuanensis (Dinosauria, Ornithischia) from the Lower Cretaceous Yixian Formation of China, Journal of Vertebrate Paleontology, 32:6, 1370-1395, DOI: 10.1080/02724634.2012.694385 To link to this article: http://dx.doi.org/10.1080/02724634.2012.694385 View supplementary material Published online: 31 Oct 2012. Submit your article to this journal Article views: 345 View related articles Citing articles: 9 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Download by: [National Science Library] Date: 24 December 2015, At: 22:03 Journal of Vertebrate Paleontology 32(6):1370–1395, November 2012 © 2012 by the Society of Vertebrate Paleontology ARTICLE POSTCRANIAL ANATOMY OF JEHOLOSAURUS SHANGYUANENSIS (DINOSAURIA, ORNITHISCHIA) FROM THE LOWER CRETACEOUS YIXIAN FORMATION OF CHINA FENG-LU HAN,*,1,2 PAUL M. BARRETT,3 RICHARD J. BUTLER,4 and XING XU1 1Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, and 2Graduate University of the Chinese -
T Riassic Jurassic Cretaceous
Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Avemetatarsalia Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Scleromochlus Pterosauria Ornithodira Lagerpetidae Marasuchus Dinosauromorpha Genasauria Silesauridae Neornithsichia Nyasasaurus Dinosauriformes Thyreophora Ornithischia Eocursor ? Heterodontosauridae Pisanosaurus Dinosauria Sauropodomorpha Herrerasauria Saurischia Eodromaeus Theropoda Daemonosaurus Tawa Neotheropoda Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Cerapoda Ornithopoda Marginocephalia Eocursor Parksosauridae Laquintasaura Kulindadromeus Othnielosaurus Jeholosauridae Neornithischia Leaellynasaura Hexinlusaurus Agilisaurus Stegosauridae Lesothosaurus Stegosaurinae Stegosauria Dacentrurinae Kentrosaurus Tuojiangosaurus Thyreophoroidea Struthiosaurinae Genasauria Huayangosauridae Eurypoda Gigantspinosaurus Panoplosaurinae Nodosauridae Sauropelta Polacanthinae Scelidosaurus Gargoyleosaurus Ankylosauridae Thyreophora Scutellosaurus Kunbarrasaurus Ankylosauria Hylaeosurus Shamosaurinae Ankylosaurinae Pinacosaurus Tianchiasaurus Ankylosaurini Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Triassic Jurassic Cretaceous Euhadrosauria Early Middle Late Early Middle Late Early Late Hadrosaurinae Hadrosauridae Hadrosauromorpha Lambeosaurinae Eotrachodon Tethyshadros Hadrosauriformes Hadrosauria Telmatosaurus Bactrosaurus Protohadros Styracosterna -
A New Primitive Neornithischian Dinosaur from the Jurassic of Patagonia with Gut Contents Received: 02 March 2016 Leonardo Salgado1, José I
www.nature.com/scientificreports OPEN A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents Received: 02 March 2016 Leonardo Salgado1, José I. Canudo2, Alberto C. Garrido3,4, Miguel Moreno-Azanza5, Accepted: 16 January 2017 Leandro C. A. Martínez6,7, Rodolfo A. Coria7,8 & José M. Gasca3,7 Published: 16 February 2017 We describe a new species of an ornithischian dinosaur, Isaberrysaura mollensis gen. et sp. nov. The specimen, consisting in an almost complete skull and incomplete postcranium was collected from the marine-deltaic deposits of the Los Molles Formation (Toarcian-Bajocian), being the first reported dinosaur for this unit, one of the oldest from Neuquén Basin, and the first neornithischian dinosaur known from the Jurassic of South America. Despite showing a general stegosaurian appearance, the extensive phylogenetic analysis carried out depicts Isaberrysaura mollensis gen. et sp. nov. as a basal ornithopod, suggesting that both Thyreophora and neornithischians could have achieved significant convergent features. The specimen was preserved articulated and with some of its gut content place in the middle-posterior part of the thoracic cavity. Such stomach content was identified as seeds, most of them belonging to the Cycadales group. This finding reveals a possible and unexpected role of this ornithischian species as seed-dispersal agent. Dinosaurs were present in most terrestrial ecosystems for 185 million years, interacting with their physical envi- ronment and other living organisms, including plants. As in modern ecosystems, there were complex ecological relations between plants and plant-eating organisms. However, there is little evidence of the type and the parts of plants on which different phytophagous dinosaurs fed1–4. -
The 'Fabrosaurid' Ornithischian Dinosaurs of the Upper Elliot Formation (Lower Jurassic) of South Africa and Lesotho
Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 1452 175218 REVIEW Article ‘FABROSAURIDS’ OF THE UPPER ELLIOT FORMATIONR. J. BUTLER Zoological Journal of the Linnean Society, 2005, 145, 175–218. With 26 figures The ‘fabrosaurid’ ornithischian dinosaurs of the Upper Elliot Formation (Lower Jurassic) of South Africa and Lesotho RICHARD J. BUTLER* Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK, and Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK Received October 2004; accepted for publication March 2005 The Upper Elliot Formation of South Africa and Lesotho contains the world’s most diverse fauna of early Jurassic ornithischian dinosaurs. Nevertheless, despite four decades of work on this fauna there remains significant taxonomic confusion and many important specimens remain undescribed. A review of the non-heterodontosaurid (‘fabrosaurid’) ornithischians of the Upper Elliot Formation is presented, following re-examination of all known orni- thischian material from the Elliot Formation. ‘Fabrosaurus australis’ is based upon a single undiagnostic dentary, and is here considered a nomen dubium. Lesothosaurus diagnosticus is considered to be valid and is rediagnosed based upon a unique combination of plesiomorphic and derived characteristics. Stormbergia dangershoeki gen. et. sp. nov. is described from three partial skeletons including numerous postcranial material. Stormbergia dan- gershoeki is significantly larger than previously described Elliot Formation ornithischians, and can be recognized on the basis of a unique combination of characters, the most important of which is the possession of a distinctive tab- shaped obturator process on the ischium. -
Cretaceous Dinosaurs and the World They Lived In
Southern Methodist University SMU Scholar Earth Sciences Theses and Dissertations Earth Sciences Spring 5-19-2018 Cretaceous Dinosaurs And The World They Lived In: A New Species Of Ornithischian Dinosaur From The Early Cretaceous (Aptian) Of Texas, Reconstruction Of The Brain Endocast And Inner Ear Of Malawisaurus Dixeyi, And Reconstruction Of The Paleoclimate And Paleoenvironment of Cretaceous Terrestrial Formations In Texas And Oklahoma Using Pedogenic Minerals Kate Andrzejewski Southern Methodist University, [email protected] Follow this and additional works at: https://scholar.smu.edu/hum_sci_earthsciences_etds Part of the Geochemistry Commons, Paleobiology Commons, Paleontology Commons, and the Soil Science Commons Recommended Citation Andrzejewski, Kate, "Cretaceous Dinosaurs And The World They Lived In: A New Species Of Ornithischian Dinosaur From The Early Cretaceous (Aptian) Of Texas, Reconstruction Of The Brain Endocast And Inner Ear Of Malawisaurus Dixeyi, And Reconstruction Of The Paleoclimate And Paleoenvironment of Cretaceous Terrestrial Formations In Texas And Oklahoma Using Pedogenic Minerals" (2018). Earth Sciences Theses and Dissertations. 2. https://scholar.smu.edu/hum_sci_earthsciences_etds/2 This Dissertation is brought to you for free and open access by the Earth Sciences at SMU Scholar. It has been accepted for inclusion in Earth Sciences Theses and Dissertations by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. CRETACEOUS DINOSAURS AND THE WORLD THEY LIVED IN: A NEW SPECIES OF ORNITHISCHIAN DINOSAUR FROM THE EARLY CRETACEOUS (APTIAN) OF TEXAS, RECONSTRUCTION OF THE BRAIN ENDOCAST AND INNER EAR OF MALAWISAURUS DIXEYI, AND RECONSTRUCTION OF THE PALEOCLIMATE AND PALEOENVIRONMENT OF CRETACEOUS TERRESTRIAL FORMATIONS IN TEXAS AND OKLAHOMA USING PEDOGENIC MINERALS Approved by: _______________________________________ Dr. -
Boyd Dissertation 2012212.Pdf
Copyright by Clint Aaroen Boyd 2012 The Dissertation Committee for Clint Aaroen Boyd Certifies that this is the approved version of the following dissertation: TAXONOMIC REVISION OF LATEST CRETACEOUS NORTH AMERICAN BASAL NEORNITHISCHIAN TAXA AND A PHYLOGENETIC ANALYSIS OF BASAL ORNITHISCHIAN RELATIONSHIPS Committee: Julia A. Clarke, Supervisor Christopher J. Bell Timothy B. Rowe David C. Cannatella Peter J. Makovicky TAXONOMIC REVISION OF LATEST CRETACEOUS NORTH AMERICAN BASAL NEORNITHISCHIAN TAXA AND A PHYLOGENETIC ANALYSIS OF BASAL ORNITHISCHIAN RELATIONSHIPS by Clint Aaroen Boyd, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2012 Dedication To my grandfather, James Boyd, for teaching me how to hold history in my hands and be filled with its wonder. Acknowledgements Thank you first and foremost to my advisor, Julia Clarke, for giving me the opportunity to pursue a career in the field that I enjoy so much and for dedicating so much of her time and effort towards my professional development. The remaining members of my committee, C. Bell, D. Cannatella, P. Makovicky, and T. Rowe, provided me with valuable guidance during the course of my graduate studies that greatly improved the quality of my research. I would also like to thank the former members of my committee at North Carolina State University (J. Hibbard, M. Schweitzer, and B. Wiegmann) for their guidance and efforts on my behalf during my time at NCSU, which was very much appreciated.