Methyl Tert-Butyl Ether (MTBE), Its Movement and Fate in the Environment and Potential for Natural Attenuation, 5B

Total Page:16

File Type:pdf, Size:1020Kb

Methyl Tert-Butyl Ether (MTBE), Its Movement and Fate in the Environment and Potential for Natural Attenuation, 5B Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) xx-10-1999 Technical 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Final Methyl tert-Butyl Ether (MTBE), Its Movement and Fate in the Environment and Potential for Natural Attenuation, 5b. GRANT NUMBER Technical Summary Report 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Parsons Engineering Science, Inc. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Parsons Engineering Science, Inc. 1700 Broadway, Suite 900, Denver, CO 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Center for AFCEE Environmental Excellence 3300 Sidney Brooks 11. SPONSOR/MONITOR’S REPORT Brooks City-Base, TX 78235 NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes the approach to be followed when evaluating the natural attenuation of MTBE and other fuel oxygenate and considers the consequences of the unique physical and chemical characteristics and their resultant behavior in the environment. 15. SUBJECT TERMS MTBE, natural attenuation, fuel hydrocarbons, oxygenates, biodegradation, groundwater remediation, geochemistry, contaminant destruction rates 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON UNCLASSIFIED OF ABSTRACT OF PAGES Mr. Jerry Hansen a. REPORT b. ABSTRACT c. THIS PAGE SAR 221 19b. TELEPHONE NUMBER (include area U U U code) 210-536-4353 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 FINAL CH 3 HC CH Methy3 lterO t 3-ButylEther CH MTBE 3 CH O (MTBE) 3 H3C C O C H CH 3 CH 3 H3C C OH t-ButylFormate (TBF) CH Its3 Movement t-ButylAlcohol (TBA) and Fatein O HO H3C C CH 3 theEnvironmenAcetontane d H3C C CH 3 O PotentialfoH rNaturalAttenuation 2-Propanol H3C C CH 3 MethylAcetate October1999 AirForceCenterfor EnvironmentalExcellence 1700Broadway,Suite900•Denver,Colorado80290 FINAL Methyl tert-Butyl Ether (MTBE) – Its Movement and Fate in the Environment and Potential for Natural Attenuation Technical Summary Report October 1999 Prepared For Air Force Center for Environmental Excellence Technology Transfer Division Brooks Air Force Base San Antonio, Texas Prepared By Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290 TABLE OF CONTENTS Page ACRONYMS AND ABBREVIATIONS.........................................................................v SECTION 1 - INTRODUCTION.................................................................................1-1 SECTION 2 - PROPERTIES AND ENVIRONMENTAL FATE OF MTBE................2-1 2.1 History of Development and Use of Methyl Tert-Butyl Ether............................2-1 2.2 Sources of MTBE in the Environment...............................................................2-4 2.2.1MTBE in Air.........................................................................................2-4 2.2.2MTBE in Ambient Groundwater............................................................2-5 2.3 Regulatory Standards for MTBE.......................................................................2-7 2.4 Physical and Chemical Composition of Fuel Hydrocarbons and Oxygenates.......................................................................................................2-8 2.4.1Chemical Structure of Hydrocarbon Compounds...................................2-9 2.4.1.1 Composition of Petroleum-Based Fuels.................................2-9 2.4.1.2 MTBE, TBA, and TBF.......................................................2-10 2.5 Phase Partitioning of Chemicals in the Environment........................................2-12 2.6 Physical and Chemical Transport and Attenuation Mechanisms for MTBE......2-17 2.6.1Solubility and Dissolution....................................................................2-17 2.6.2Advective Transport............................................................................2-21 2.6.3Dispersion...........................................................................................2-22 2.6.4Solid/Liquid Partitioning and Retardation............................................2-23 2.6.5Volatilization.......................................................................................2-28 2.7 Biodegradation of MTBE................................................................................2-29 2.7.1Overview of Biodegradation Processes................................................2-29 2.7.2Degradation as a First-Order Process...................................................2-33 2.7.3Potential for Biodegradation of MTBE................................................2-34 2.7.4Microcosm Investigations of MTBE Degradation................................2-37 2.7.5Field-Scale Investigations of MTBE Degradation................................2-41 2.7.5.1 MTBE Degradation Experiment, CFB Borden.....................2-45 2.7.5.2 U.S. Geological Survey UST Field Site, Laurel Bay Exchange, Beaufort, South Carolina....................................2-47 2.7.5.3 South Platte River Two-Plume Site, Denver, Colorado........2-48 -i- 022/733939/18.doc TABLE OF CONTENTS (Continued) Page 2.7.5.4 UST Site, Sampson County, North Carolina........................2-42 2.7.5.5 Leaking Underground Storage Tank Site, East Patchogue, New York.........................................................2-49 2.7.5.6 U.S. Coast Guard Support Center, Elizabeth City, North Carolina....................................................................2-51 2.7.5.7 Fire Station Spill, Elizabeth City, North Carolina.................2-52 2.7.5.8 Service Station UST Site, Michigan.....................................2-52 2.7.6Summary.............................................................................................2-53 2.8 Results of multi-site MTBE Plume Studies......................................................2-53 SECTION 3 - METHODS FOR EVALUATING NATURAL ATTENUATION OF MTBE............................................................................................3-1 3.1 Review Existing Site Information......................................................................3-7 3.2 Develop Preliminary Conceptual Model and Assess Potential for Natural Attenuation.......................................................................................................3-8 3.3 Perform Site Characterization in Support of Natural Attenuation.......................3-9 3.4 Refine Conceptual Model, Complete Pre-Modeling Calculations, and Document Indicators of Natural Attenuation...................................................3-15 3.5 Simulate Natural Attenuation Using Solute Fate and Transport Models...........3-15 3.6 Prepare Long-Term Monitoring Plan...............................................................3-16 3.7 Regulatory Considerations..............................................................................3-17 SECTION 4 - CONCLUSIONS AND RECOMMENDATIONS..................................4-1 SECTION 5 - REFERENCES......................................................................................5-1 Appendix A: Annotated Bibliography of MTBE References Appendix B: Participation in Oxyfuels and RFG Programs, MTBE Content of Representative Gasolines, and State Regulations Dealing With MTBE Appendix C: Partitioning of MTBE Between Dissolved and Vapor Phases Appendix D: Chemical Analyses for Fuel Constituents in Environmental Samples Appendix E: Methods of Quantifying Biodegradation Rates Appendix F: Comments to Draft Report by Waste Policy Institute, with Parsons ES’ Responses -ii- 022/733939/18.doc TABLE OF CONTENTS (Continued) LIST OF TABLES No. Title Page 2.1 Properties of Common Gasoline Constituents and MTBE Degradation Products.........................................................................................................2-18 2.2 Calculation of Retardation Coefficients...........................................................2-26 2.3 Summary of MTBE Microcosm Studies..........................................................2-38 2.4 Summary of MTBE Field Investigations..........................................................2-39 3.1 Soil and Groundwater Analytical Protocol.......................................................3-10 LIST OF FIGURES No. Title Page 2.1 Chemical Structure of MTBE..........................................................................2-12 2.2 UST Leak and Dissolved Hydrocarbon Plume.................................................2-15
Recommended publications
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Example of Tier I SPCC Plan
    Auto Service Station Facility Scenario Example Tier I Qualified Facility SPCC Plan Here is an example of an automotive service station facility and how the Step 1: Determine if the Gas owner determines he is covered by the SPCC rule and prepares an SPCC and Care Express needs an Plan. SPCC Plan. Description of Gas and Care Express Jack Smith, owner of the Gas and Care Express, believes he may have Gas and Care Express located in Malham, Pennsylvania is a self-service gasoline to develop, maintain, and implement station and automotive service shop offering basic automotive maintenance and a spill prevention plan under the repair services, including vehicle safety and emission inspections. The facility is SPCC rule. Let’s walk through the owned and operated by Jack Smith and is located at the intersection of Anywhere following scenario to determine if he and Sideways Streets. An empty lot sits adjacent to the back of the facility. A needs an SPCC Plan, and if so, then concrete storm drainage channel runs past one side of the empty lot and conveys we need to determine if he is eligible storm water into an unnamed creek about a 1/4-mile downstream from this location. to self‐certify his SPCC Plan and use The unnamed creek is a tributary of Muddy Creek, which is a tributary to the the Tier I SPCC Plan Template. Susquehanna River. There are four street storm culverts at the intersection where the facility is located. Storm water runoff collected by these culverts is conveyed by Is the facility or part of the facility the storm sewer into Muddy Creek at an outfall about 1 mile away.
    [Show full text]
  • 14. Diesel Fuel Standard and Compliance Program
    California’s Diesel Fuel Program November 29, 2018 1 Oil & Gas and GHG Mitigation Branch California Air Resources Board (CARB) 2 California Diesel Fuel Requirements ´ASTM D975, Standard Specification for Diesel Fuel Oils (enforced by the California Department of Agriculture’s Division of Measurement Standards) ´The California Diesel Fuel Regulations ´13 CCR 2281, Sulfur Content of Diesel Fuel ´13 CCR 2282, Aromatic Hydrocarbon Content of Diesel Fuel ´13 CCR 2293, et seq., Commercialization of Alternative Diesel Fuel 3 ASTM D975 - 2018, Standard Specification for Diesel Fuel Oils, Grade No. 2-D, S15 ´Flash Point, minimum, 52 °C (126 °F) ´Kinematic Viscosity at 40 °C, 1.9 - 4.1 mm2/s ´Cetane Number, minimum, 40 ´Cetane Index, minimum, or Aromaticity, maximum, 40 or 35 percent by volume ´Lubricity, High-Frequency Reciprocating Rig (HFRR), at 60 °C, maximum, 520 microns ´Conductivity, minimum, 25 pS/m (10-12 ohm-1m-1) 4 13 CCR 2281, Sulfur Content of Diesel Fuel ´Sulfur content maximum of 15 ppmw (mg/kg) ´Applicable to every gallon of vehicular and non-vehicular diesel fuel sold or supplied in California ´Enforced at all points of storage and distribution in California, from production or importation to dispensing 13 CCR 2282, Aromatic Content of 5 Diesel Fuel ´Aromatic hydrocarbon (AHC) content maximum of 10 percent by volume, or ´Certified emission-equivalent formulation established by engine emission testing, or ´Designated equivalent limits: ´AHC content, maximum, 21.0 percent by weight ´Polycyclic aromatic hydrocarbon (PAH) content,
    [Show full text]
  • Internal Revenue Service, Treasury § 48.4081–2
    Internal Revenue Service, Treasury § 48.4081±2 practical and commercial fitness solely sentence in the definition of terminal by reason of its possible or rare use as are effective January 2, 1998. a fuel in the propulsion engine of a [T.D. 8659, 61 FR 10453, Mar. 14, 1996, as highway vehicle, train, or boat. amended by T.D. 8748, 63 FR 25, Jan. 2, 1998] (iii) Cross reference. For the tax on blended taxable fuel, see § 48.4081±3(g). § 48.4081±1T Taxable fuel; definitions For the back-up tax on certain uses of (temporary). liquids other than diesel fuel, see (a) [Reserved] § 48.4082±4. (b) Definitions. (3) Gasoline blendstocksÐ(i) In general. Kerosene means, after June 30, 1998Ð Except as provided in paragraph (1) The two grades of kerosene (No. 1± (c)(3)(ii) of this section, gasoline K and No. 2±K) described in ASTM blendstocks meansÐ Specification D 3699; and (A) Alkylate; (2) Kerosene-type jet fuel described in (B) Butane; ASTM Specification D 1655 and mili- tary specifications MIL±T±5624R and (C) Butene; MIL±T±83133D (Grades JP±5 and JP±8). (D) Catalytically cracked gasoline; For availability of ASTM and military (E) Coker gasoline; specification material, see § 48.4081± (F) Ethyl tertiary butyl ether 1(c)(2)(i). (ETBE); (G) Hexane; [T.D. 8774, 63 FR 35801, July 1, 1998] (H) Hydrocrackate; § 48.4081±2 Taxable fuel; tax on re- (I) Isomerate; moval at a terminal rack. (J) Methyl tertiary butyl ether (a) Overview. This section provides (MTBE); the general rule that all removals of (K) Mixed xylene (not including any taxable fuel at a terminal rack are sub- separated isomer of xylene); ject to tax and the position holder with (L) Natural gasoline; respect to the fuel is liable for the tax.
    [Show full text]
  • Fluid Handling
    FLUID HANDLING Pumps Fluid Siphon Pump Battery-Operated Polypropylene Multi-Use Fluid Transfer Pump SKU 568475 99 Liquid Transfer Pump Lever-Action Pump SKU 094647 99 24863 14 SKU 471071 99 SKU 688036 99 25713 9 • Transfers Fluids Easily 25712 14 24471 29 • Small and Lightweight • Use to Transfer Gas, Water, Oil and Other Non-Corrosive • Move Liquids Safely and Easily with • Ideal for Diesel, Kerosene, Liquids • Intake and Discharge This Convenient Handheld Pump Lubricants and Other Oils Transfer System • Hose Reaches 6 Ft. • Pumps Gas, Water, Oil and Other • Not for Gasoline, Water-Based with 1/2" Diameter • Pumps Air into Inflatables Non-Corrosive Liquids Chemicals or DEF • Includes: (2) 50" • Pumps Up to 6 Quarts of (127 cm) Long Hoses Liquid per Minute Polypropylene Hand Oil Pump Ryton® Rotary Polypropylene Lever-Action Pump with Lever-Action Pump Barrel Pump Rotary Drum Pump SKU 462495 99 DEF Stainless Steel Rod 24381 27 with Stainless COMPATIBLE SKU 462486 99 SKU 688035 99 SKU 688038 • Oil Pump for Use with Steel Rod 24382 29 24470 79 99 Oil-Based Fluids, Heating 24472 29 SKU 688037 • Fluid Transfer • Ideal for Pumping Diesel, Oils, Motor Oils, Heavy 99 Pump for Use with Oils, Kerosene, Water-Based • Ideal for Pumping and Light Oils, Diesel 24473 39 Diesel, Oils, Kerosene, Oil-Based Fluids, Chemicals, Bases and and Kerosene • Ideal for Pumping Heating Oils, Mild Acids Water-Based Chemicals, • Built-in 1-1/2" and 2" Bung Diesel, Oils, Kerosene, Bases and Mild Acids Motor Oils, ATF, • Not for Gasoline or DEF for Use on 16 to 55 Gallon Water-Based Chemicals, Diesel and • Not for Gasoline or DEF Drums with Either Opening Bases and Acids Including DEF Kerosene • Not for Gasoline • Not for Gasoline • Not for Gasoline Lever-Action Manual Gear Lube Manual Rotary Pump with Hose for 55 Gallon Drums* BONUS Barrel Pump Dispenser SKU 265089 99 5 Qt.
    [Show full text]
  • General Tax Information Bulletin #300 Page 2
    INFORMATION BULLETIN #300 GENERAL TAX JUNE 2021 (Replaces Bulletin #300 dated June 2020) Effective Date: July 1, 2021 SUBJECT: Sales of Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) REFERENCES: IC 6-2.5-5-51; IC 6-6-2.5-1; IC 6-6-2.5-16.5; IC 6-6-2.5-22; IC 6-6-2.5- 22.5; IC 6-6-2.5-28; IC 6-6-4.1-1; IC 6-6-4.1-4; IC 6-6-4.1-4.5. DISCLAIMER: Commissioner’s directives are intended to provide nontechnical assistance to the general public. Every attempt is made to provide information that is consistent with the appropriate statutes, rules, and court decisions. Any information that is not consistent with the law, regulations, or court decisions is not binding on either the department or the taxpayer. Therefore, the information provided herein should serve only as a foundation for further investigation and study of the current law and procedures related to the subject matter covered herein. SUMMARY OF CHANGES The bulletin was updated to provide the new special fuel tax rate effective July 1, 2021. I. DEFINITIONS “Natural gas” means compressed or liquid natural gas. “Natural gas product” means: (1) A liquid natural gas (LNG) or compressed natural gas (CNG) product; or (2) A combination of liquefied petroleum gas and a compressed natural gas product; used in an internal combustion engine or a motor to propel any form of vehicle, machine, or mechanical contrivance. “Alternative fuel” means a liquefied petroleum gas, not including a biodiesel fuel or biodiesel blend, used in an internal combustion engine or a motor to propel any form of vehicle, machine, or mechanical contrivance.
    [Show full text]
  • Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M
    Southern Illinois University Carbondale OpenSIUC Presentations Department of Automotive Technology 3-7-2019 Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M. Heisner Southern Illinois University Carbondale, [email protected] Follow this and additional works at: https://opensiuc.lib.siu.edu/auto_pres PowerPoint slides from a technical presentation at the Illinois College Automotive Instructors Association Spring 2019 conference. Recommended Citation Heisner, Blaine M. "Waste Motor Oil (WMO) to Diesel Fuel Project." (Mar 2019). This Article is brought to you for free and open access by the Department of Automotive Technology at OpenSIUC. It has been accepted for inclusion in Presentations by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Waste Motor Oil (WMO) to Diesel Fuel Project -Update Spring 2019- SIUC Automotive Technology Department Blaine Heisner AJ McNay Jake Lichter Colton Karas Ryan Mukherjee WMO? (Waste Motor Oil!) • What is in WMO? • Total amount of WMO generated • Petroleum mainly… • 1.3B gallons annually in U.S. • Crankcase oil, transmission fluid, • Only 60% of oil sold is collected power steering fluid, brake fluid, axle grease, gear oil, compressor oil • However… • What happens to WMO • Dumped • Metal, dirt, leaves, additives, coolant, brake clean, solvent, dead • Burned in open fires (brush piles) animals, fuel, chew spit, water, • Collected with a fee (or payment) benzene, etc… • Dropped off at a collection area • Industrial burners (energy gen.) • WMO Generators • Re-refined into new products • Repair shops, dealerships, public and • Lube, fuel, asphalt, etc… private fleets, personal residences, schools, trucking companies, farms Cost/Value of WMO • “The recent softness in crude oil markets, along with the associated declines in fuel pricing, have decreased the value of our recycled fuel oil (RFO) and other products.
    [Show full text]
  • What's the Difference Between Gasoline, Kerosene, Diesel, Etc?
    What's the difference between gasoline, kerosene, diesel, etc? Browse the article What's the difference between gasoline, kerosene, diesel, etc? The "crude oil" pumped out of the ground is a black liquid called petroleum. This liquid contains aliphatic hydrocarbons, or hydrocarbons composed of nothing but hydrogen and carbon. The carbon atoms link together in chains of different lengths. It turns out that hydrocarbon molecules of different lengths have different properties and behaviors. For example, a chain with just one carbon atom in it (CH4) is the lightest chain, known as methane. Methane is a gas so light that it floats like helium. As the chains get longer, they get heavier. The first four chains -- CH4 (methane), C2H6 (ethane), C3H8 (propane) and C4H10 (butane) -- are all gases, and they boil at -161, -88, -46 and -1 degrees F, respectively (-107, -67, -43 and -18 degrees C). The chains up through C18H32 or so are all liquids at room temperature, and the chains above C19 are all solids at room temperature. So what's the real chemical difference between gasoline, kerosene and diesel? It has to do with their boiling points. Carbon Chains in Petroleum Products The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery -- crude oil is heated and the different chains are pulled out by their vaporization temperatures. (See How Oil Refining Works for details.) The chains in the C5, C6 and C7 range are all very light, easily vaporized, clear liquids called naphthas.
    [Show full text]
  • AP-42, Vol. I, 3.3: Gasoline and Diesel Industrial Engines
    3.3 Gasoline And Diesel Industrial Engines 3.3.1 General The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors. 3.3.2 Process Description All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated. There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI).
    [Show full text]
  • Comparison of Modern CNG, Diesel and Diesel Hybrid-Electric Transit Buses: Efficiency & Environmental Performance
    Comparison of Modern CNG, Diesel and Diesel Hybrid-Electric Transit Buses: Efficiency & Environmental Performance CONCORD, MA - WA SHINGTON, DC 47 JUNCTION SQUA RE DRIVE CONCORD, MA 01742 978-405-1275 www.mjbradley.com Comparison of Modern CNG, Diesel, and Diesel Hybrid-Electric Transit Buses Table of Contents Executive Summary......................................................................................................................... 2 1 Data Sources and Methodology .............................................................................................. 5 2 Results.................................................................................................................................... 10 2.1 Fuel Economy ................................................................................................................. 10 2.2 Emissions ........................................................................................................................ 12 2.1.1 Criteria Pollutants ................................................................................................... 12 2.1.2 Green House Gases ................................................................................................. 15 Appendix A Tabular Summary of Fuel Economy & Emissions List of Figures Figure 1 Altoona Measured Fuel Economy – New Flyer Buses .................................................... 10 Figure 2 Altoona Measured Fuel Economy – Daimler Buses ........................................................ 11 Figure 3
    [Show full text]
  • An Overview of Biodiesel and Petroleum Diesel Life Cycles
    An Overview of Biodiesel and Petroleum Diesel Life Cycles A Joint Study Sponsored by: U.S. Department of Agriculture and U.S. Department of Energy May 1998 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste NREL/TP-580-24772 An Overview of Biodiesel and Petroleum Diesel Life Cycles John Sheehan Vince Camobreco James Duffield Michael Graboski Housein Shapouri National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S.
    [Show full text]
  • Kerosene Toxicological Overview
    Kerosene Toxicological overview Key Points Kinetics and metabolism • As kerosene is a mixture of chemicals, there is no definitive ADME (absorption, distribution, metabolism and excretion) data • Limited data from metabolism studies suggest that kerosene is removed from circulation by the liver and lungs Health effects of acute exposure • The major route of exposure is by inhalation of liquid (aspiration) • Kerosene vapours may be mildly irritating to the respiratory system and spray applications of kerosene may provoke signs of pulmonary irritation such as coughing and dyspnoea • Acute dermal exposure may result in local irritation, but it is not considered to be a skin sensitiser • Acute exposure to kerosene may result in CNS effects including irritability, restlessness, ataxia, drowsiness, convulsions, coma and death Health effects of chronic exposure • The most common health effect associated with chronic kerosene exposure is dermatitis, usually associated with inappropriate use of personal protective equipment • Chronic exposure may also cause non-specific CNS effects such as nervousness, loss of appetite and nausea • Kerosene does not have a measurable effect on human reproduction or development • IARC concluded that there was inadequate evidence to classify kerosene as a human carcinogen Prepared by R P Chilcott CHAPD HQ, HPA 2007 Version 2 KEROSENE – TOXICOLOGICAL OVERVIEW Toxicological Overview Kerosene is a liquid mixture of hydrocarbons (chain length C9 – 16) produced by the distillation of crude oil. The preferred Chemical Abstracts spelling is “kerosine”. The (UK) technical term for kerosene is “C2 Fuel Oil” (Annex I), as it is derived from the “kerosene” fraction of distilled crude oil. Older, flue-less appliances use “paraffin” (C1) fuel.
    [Show full text]