Saillard Et Al., 2008.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rock Cycle Compressed and Cemented to Form What the Original Rocks on Earth Were Like
| The Rock Cycle compressed and cemented to form what the original rocks on Earth were like. sedimentary rock, such as sandstone. IMMG has some excellent examples of Soluble material can be precipitated from these extraterrestrial visitors in our The continual set of processes affecting water to form sedimentary rocks such as meteorite exhibit. rocks is called the rock cycle. All existing limestone and gypsum. Sedimentary rocks rocks on Earth have been changed over can also be exposed at the surface and Various examples of the three different time by various geologic processes. Earth undergo erosion, providing materials for types of rocks are listed below. Specimens was formed about 4.6 billion years ago, and future sedimentary rocks. of some of these rocks can be found the oldest known rock unit is found in throughout the museum. Canada, dated at just over 4 billion years If sedimentary rocks become buried deep old. This rock material was altered by heat within the crust, they can be subjected to How many can you find? and pressure into the metamorphic rock high heat and pressure along with physical gneiss. stresses such as compression or extension, Igneous which transforms them into metamorphic rocks such as schist or gneiss Originally all of Earth’s crustal rocks had Basalt Gabbro Diorite an igneous origin. They start as semi- (“metamorphic” simply means “changed molten magma in the upper mantle and form”). Sometimes igneous rocks can be Rhyolite Syenite Andesite either rise to the surface as extrusive lava metamorphosed by similar processes (like Granite Granodiorite Obsidian (like basalt) in volcanoes and oceanic rifts, granite into gneiss). -
Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319999645 Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile Chapter · September 2017 DOI: 10.1002/9781119154051.ch10 CITATIONS READS 0 332 28 authors, including: Nelson A Lagos Ricardo Norambuena University Santo Tomás (Chile) University of Concepción 65 PUBLICATIONS 1,052 CITATIONS 13 PUBLICATIONS 252 CITATIONS SEE PROFILE SEE PROFILE Claudio Silva Marco A Lardies Pontificia Universidad Católica de Valparaíso Universidad Adolfo Ibáñez 54 PUBLICATIONS 432 CITATIONS 70 PUBLICATIONS 1,581 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Irish moss - green crab interactions View project Influence of environment on fish stock assessment View project All content following this page was uploaded by Pedro A. Quijón on 11 November 2017. The user has requested enhancement of the downloaded file. 239 10 Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile Eleuterio Yáñez1, Nelson A. Lagos2,13, Ricardo Norambuena3, Claudio Silva1, Jaime Letelier4, Karl-Peter Muck5, Gustavo San Martin6, Samanta Benítez2,13, Bernardo R. Broitman7,13, Heraldo Contreras8, Cristian Duarte9,13, Stefan Gelcich10,13, Fabio A. Labra2, Marco A. Lardies11,13, Patricio H. Manríquez7, Pedro A. Quijón12, Laura Ramajo2,11, Exequiel González1, Renato Molina14, Allan Gómez1, Luis Soto15, Aldo Montecino16, María Ángela Barbieri17, Francisco Plaza18, Felipe Sánchez18, -
Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake
GEOTECHNICAL EXTREME EVENTS RECONNAISSANCE (GEER) ASSOCIATION Turning Disaster into Knowledge Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake Editors: Gregory P. De Pascale, Gonzalo Montalva, Gabriel Candia, and Christian Ledezma Lead Authors: Gabriel Candia, Universidad del Desarrollo-CIGIDEN; Gregory P. De Pascale, Universidad de Chile; Christian Ledezma, Pontificia Universidad Católica de Chile; Felipe Leyton, Centro Sismológico Nacional; Gonzalo Montalva, Universidad de Concepción; Esteban Sáez, Pontificia Universidad Católica de Chile; Gabriel Vargas Easton, Universidad de Chile. Contributing Authors: Juan Carlos Báez, Centro Sismológico Nacional; Christian Barrueto, Pontificia Universidad Católica de Chile; Cristián Benítez, Pontificia Universidad Católica de Chile; Jonathan Bray, UC Berkeley; Alondra Chamorro, Pontificia Universidad Católica de Chile; Tania Cisterna, Universidad de Concepción; Fernando Estéfan Thibodeaux Garcia, UC Berkeley; José González, Universidad de Chile; Diego Inzunza, Universidad de Concepción; Rosita Jünemann, Pontificia Universidad Católica de Chile; Benjamín Ledesma, Universidad de Concepción; Álvaro Muñoz, Pontificia Universidad Católica de Chile; Antonio Andrés Muñoz, Universidad de Chile; José Quiroz, Universidad de Concepción; Francesca Sandoval, Universidad de Chile; Pedro Troncoso, Universidad de Concepción; Carlos Videla, Pontificia Universidad Católica de Chile; Angelo Villalobos, Universidad de Chile. GEER Association Report No. GEER-043 Version 1: December 10, 2015 FUNDING -
División Político Administrativa Y Censal Región De Coquimbo
DIVISIÓN POLÍTICO ADMINISTRATIVA Y CENSAL REGIÓN DE COQUIMBO DEPARTAMENTO DE GEOGRAFÍA INSTITUTO NACIONAL DE ESTADÍSTICAS Enero/ 2019 CHILE: División Político-Administrativa y Censal REGIÓN, PROVINCIAS, COMUNAS Y Superficie Población Censo 2017 Viviendas Censo 2017 DISTRITOS CENSALES Km2 Total Urbana Rural Total Urbana Rural 04 REGIÓN DE COQUIMBO 40.578,9 757.586 615.116 142.470 308.608 238.503 70.105 1 PROVINCIA ELQUI 17.095,7 496.337 443.484 52.853 197.281 171.416 25.865 04101 Comuna La Serena 1.901,5 221.054 200.640 20.414 87.464 78.787 8.677 Distrito Censal 01 Intendencia 1,2 1.455 1.455 0 564 564 0 02 Mercado 7,7 16.661 15.504 1.157 5.236 4.848 388 03 Francisco de Aguirre 4,0 10.950 10.950 0 6.485 6.485 0 04 Las Vegas 9,0 12.037 12.037 0 9.327 9.327 0 05 La Pampa 13,7 37.096 36.971 125 14.305 14.265 40 06 La Florida 47,4 20.705 16.564 4.141 7.002 6.215 787 07 Algarrobito 72,0 2.358 1.056 1.302 1.038 360 678 08 Porvenir 140,6 3.103 0 3.103 1.542 0 1.542 09 Las Rojas 90,5 3.370 1.292 2.078 1.319 418 901 10 Romero 181,7 3.974 0 3.974 1.734 0 1.734 11 Condoriaco 398,4 66 0 66 71 0 71 12 Almirante Latorre 314,8 107 0 107 140 0 140 13 Islón 220,0 1.920 0 1.920 678 0 678 14 La Compañía 378,4 24.308 22.058 2.250 10.142 8.527 1.615 15 Universidad 5,6 16.328 16.328 0 7.183 7.183 0 16 La Compañía Alta 8,3 45.781 45.703 78 14.071 14.015 56 17 El Olivar 8,1 20.039 19.926 113 6.393 6.346 47 99 Rezagados 796 796 0 234 234 0 04102 Comuna Coquimbo 1.425,1 227.730 214.550 13.180 89.499 82.063 7.436 Distrito Censal 01 Aduana 2,0 8.717 8.717 0 2.640 -
Damage Assessment of the 2015 Mw 8.3 Illapel Earthquake in the North‑Central Chile
Natural Hazards https://doi.org/10.1007/s11069-018-3541-3 ORIGINAL PAPER Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the North‑Central Chile José Fernández1 · César Pastén1 · Sergio Ruiz2 · Felipe Leyton3 Received: 27 May 2018 / Accepted: 19 November 2018 © Springer Nature B.V. 2018 Abstract Destructive megathrust earthquakes, such as the 2015 Mw 8.3 Illapel event, frequently afect Chile. In this study, we assess the damage of the 2015 Illapel Earthquake in the Coquimbo Region (North-Central Chile) using the MSK-64 macroseismic intensity scale, adapted to Chilean civil structures. We complement these observations with the analysis of strong motion records and geophysical data of 29 seismic stations, including average shear wave velocities in the upper 30 m, Vs30, and horizontal-to-vertical spectral ratios. The calculated MSK intensities indicate that the damage was lower than expected for such megathrust earthquake, which can be attributable to the high Vs30 and the low predominant vibration periods of the sites. Nevertheless, few sites have shown systematic high intensi- ties during comparable earthquakes most likely due to local site efects. The intensities of the 2015 Illapel earthquake are lower than the reported for the 1997 Mw 7.1 Punitaqui intraplate intermediate-depth earthquake, despite the larger magnitude of the recent event. Keywords Subduction earthquake · H/V spectral ratio · Earthquake intensity 1 Introduction On September 16, 2015, at 22:54:31 (UTC), the Mw 8.3 Illapel earthquake occurred in the Coquimbo Region, North-Central Chile. The epicenter was located at 71.74°W, 31.64°S and 23.3 km depth and the rupture reached an extent of 200 km × 100 km, with a near trench rupture that caused a local tsunami in the Chilean coast (Heidarzadeh et al. -
Exhumation Processes
Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere. -
Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian
www.nature.com/scientificreports OPEN Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian Received: 14 August 2017 Jian Wang1,2, Ying-chang Cao1,2, Xin-tong Wang1, Ke-yu Liu1,3, Zhu-kun Wang1 & Qi-song Xu1 Accepted: 9 January 2018 The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Published: xx xx xxxx Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid- Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confrmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large- scale intracontinental orogeny in the region. The Central Asia Orogenic Belt (CAOB) is the largest accretionary orogen on Earth, which was formed by the amalgamation of multiple micro-continents, island arcs and accretionary wedges1–5. -
Evidence for an Early-Middle Miocene Age of the Navidad Formation (Central Chile): Paleontological, Climatic and Tectonic Implications’ of Gutiérrez Et Al
Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Le Roux, Jacobus P.; Gutiérrez, Néstor M.; Hinojosa, Luis F.; Pedroza, Viviana; Becerra, Juan Reply to Comment of Encinas et al. (2014) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 657-669 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 657-669. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl REPLY TO COMMENT Reply to Comment of Encinas et al. (2014) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Jacobus P. Le Roux1, Néstor M. Gutiérrez1, Luis F. Hinojosa2, Viviana Pedroza1, Juan Becerra1 1 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile-Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected] 2 Laboratorio de Paleoecología, Facultad de Ciencias-Instituto de Ecología y Biodiversidad (IEB), Universidad de Chile, Las Palmeras 3425, Santiago, Chile. -
PDF Linkchapter
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation -
A Review of Tertiary Climate Changes in Southern South America and the Antarctic Peninsula. Part 1: Oceanic Conditions
Sedimentary Geology 247–248 (2012) 1–20 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Review A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions J.P. Le Roux Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile/Centro de Excelencia en Geotérmia de los Andes, Casilla 13518, Correo 21, Santiago, Chile article info abstract Article history: Oceanic conditions around southern South America and the Antarctic Peninsula have a major influence on cli- Received 11 July 2011 mate patterns in these subcontinents. During the Tertiary, changes in ocean water temperatures and currents Received in revised form 23 December 2011 also strongly affected the continental climates and seem to have been controlled in turn by global tectonic Accepted 24 December 2011 events and sea-level changes. During periods of accelerated sea-floor spreading, an increase in the mid- Available online 3 January 2012 ocean ridge volumes and the outpouring of basaltic lavas caused a rise in sea-level and mean ocean temper- ature, accompanied by the large-scale release of CO . The precursor of the South Equatorial Current would Keywords: 2 fi Climate change have crossed the East Paci c Rise twice before reaching the coast of southern South America, thus heating Tertiary up considerably during periods of ridge activity. The absence of the Antarctic Circumpolar Current before South America the opening of the Drake Passage suggests that the current flowing north along the present western seaboard Antarctic Peninsula of southern South American could have been temperate even during periods of ridge inactivity, which might Continental drift explain the generally warm temperatures recorded in the Southeast Pacific from the early Oligocene to mid- Ocean circulation dle Miocene. -
Linea Base Limnologica De Los Humedales De Tongoycomplementaria Solicitud De Sitio Ramsar
INFORME FINAL LINEA BASE LIMNOLOGICA DE LOS HUMEDALES DE TONGOYCOMPLEMENTARIA SOLICITUD DE SITIO RAMSAR Carlos Zuleta Ramos, Víctor Bravo Naranjo &Alex Cea Villablanca Universidad de La Serena Centro de Estudios Ambientales del Norte de Chile DICIEMBRE 2016 ÍNDICE Página 1 INTRODUCCIÓN 6 RESULTADOS 7 Paisajes 7 Riqueza faunística 10 Herpetofauna 10 Mastozoofauna 10 Avifauna 11 Fauna acuática 12 Riqueza Florística 14 HUMEDALES DE TONGOY 15 Estero Tongoy 18 Salinas Chica 21 Salinas Grande 24 Pachingo 27 CONCLUSIONES 31 REFERENCIAS BIBLIOGRÁFICAS 32 ANEXOS Anexo 1. Línea base Herpetofauna de los humedales de Tongoy (Coquimbo) 34 Anexo 2. Línea base Mastozoofauna de los humedales de Tongoy (Coquimbo) 35 Anexo 3: Línea base Ornitofauna de los humedales de Tongoy (Coquimbo) 36 Anexo 3: Línea base Flora de los humedales de Tongoy (Coquimbo) 40 2 TABLAS Página Tabla 1. Riqueza taxonómica registrada para los humedales costeros de Tongoy 10 Tabla 2. Riqueza de fauna acuática de los humedales costeros de la Bahía de Tongoy 13 Tabla 3. Riqueza taxonómica registrada para el humedal Estero Tongoy 18 Tabla 4. Riqueza de la Flora vascular del Estero Tongoy. Se indica el Origen (A=Adventicia, E=Endémica, N=Nativa), Formas de Vida (T=Arbol, F=Fanerofita (arbusto), S=Sufrútice, H= Hierba perenne, HB=Hierba bi-anual, A=Hierba anual, K=Cactácea) según Squeo et al (2001) 20 Tabla 5. Riqueza taxonómica de Vertebrados registrada para el humedal Salinas Chica 21 Tabla 6. Riqueza taxonómica de vertebrados registrada para el humedal Salinas Grande 24 Tabla 7. Riqueza taxonómica de Vertebrados registrada para el humedal Pachingo 27 Tabla 8. -
Estratigrafía Sísmica Y Evidencias Submarinas De Tectónica Activa En La Falla Puerto Aldea, Tongoy, IV Región De Coquimbo, Chile
O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Estratigrafía sísmica y evidencias submarinas de tectónica activa en la falla Puerto Aldea, Tongoy, IV Región de Coquimbo, Chile Julio Avilés*, Gabriel Vargas, Cristina Ortega Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile *email: [email protected] Resumen. Estudios previos indican que la actividad de la consideración de antecedentes de testigos de sedimento falla Puerto Aldea habría cesado al menos hace 230 ka en cortos (<1 m de largo) obtenidos en la bahía, en este la Bahía de Tongoy (Saillard, 2012), sin embargo, el trabajo se definen las unidades que constituyen el subsuelo análisis de perfiles acústicos de alta resolución evidencia del fondo marino, se interpreta su génesis y se caracteriza tectónica activa durante el Cuaternario tardío. la deformación que las afecta. La estratigrafía del subsuelo marino de la bahía de Tongoy, muestra 3 unidades sismo-estratigráficas. La unidad intermedia 2 es de tipo agradacional y desarrolla onlap, por En particular, se interpreta la actividad Cuaternaria tardía lo que se interpreta como producto de la transgresión de la falla Puerto Aldea, denotando su carácter activo. global post-glacial en el Pleistoceno tardío-Holoceno temprano. La unidad 3 sobreyace a la anterior, es de tipo progradacional-agradacional, desarrolla toplap y se asocia 2 Antecedentes Geológicos al alto estadio marino desde el Holoceno medio al presente. Estas dos unidades se encuentran afectadas por La falla Puerto Aldea constituye una de las principales fallas normales que deforman estratos y se asocian a estructuras geológicas de la costa semiárida de Chile.