Saillard Et Al., 2008.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Saillard Et Al., 2008.Pdf Earth and Planetary Science Letters 277 (2009) 50–63 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating M. Saillard a,⁎, S.R. Hall b, L. Audin a,c, D.L. Farber b,d, G. Hérail a,c, J. Martinod a, V. Regard a, R.C. Finkel d,e, F. Bondoux a,b a Université de Toulouse; UPS (SVT-OMP); LMTG; 14 Av, Edouard Belin, F-31400 Toulouse, France b University of California, Santa Cruz, Department of Earth Sciences, Santa Cruz, CA 95060, USA c IRD; LMTG; F-31400 Toulouse, France d Lawrence Livermore National Laboratory, LLNL, Livermore, CA 94550, USA e University of California, Berkeley, Department of Earth and Planetary Sciences, Berkeley, CA 94720, USA a r t i c l e i n f o a b s t r a c t Article history: Pleistocene uplift of the Chilean coast is recorded by the formation of wave-cut platforms resulting from Received 21 January 2008 marine erosion during sea-level highstands. In the Altos de Talinay area (~31°S), we have identified a Received in revised form 18 September 2008 sequence of 5 wave-cut platforms. Using in situ produced 10Be exposure ages we show that these platforms Accepted 26 September 2008 were formed during interglacial periods at 6, 122, 232, 321 and 690 ka. These ages correspond to marine Available online 22 November 2008 isotopic stages (MIS) or substages (MISS) 1, 5e, 7e, 9c and 17. Shoreline angle elevations used in conjunction Editor: C.P. Jaupart with our chronology of wave-cut platform formation, illustrate that surface uplift rates vary from 103± 69 mm/ka between 122 and 6 ka, to 1158±416 mm/ka between 321 and 232 ka. The absence of preserved Keywords: platforms related to the MIS 11, 13 and 15 highstands likely reflects slow uplift rates during these times. We Beryllium-10 suggest that since 700 ka, the Altos de Talinay area was predominantly uplifted during 2 short periods marine terrace following MIS 17 and MISS 9c. This episodic uplift of the Chilean coast in the Pleistocene may result from Pleistocene subduction related processes, such as pulses of tectonic accretion at the base of the forearc wedge. uplift rate © 2008 Elsevier B.V. All rights reserved. Central Andes underplating 1. Introduction the average long-term rate over a time period of ~0.4–1 Ma (Bloom et al., 1974; Bull, 1985; Lajoie, 1986; Burbank and Anderson, 2001; A former assumption used in the analysis of tectonic deformation Marquardt et al., 2004). In this paper, we study and date a sequence of over geodetic (10 yr) and geologic (106 yr) time scales is that the rate five marine terraces to constrain the variability of the coastal Andean of deformation should remain constant over these time scales. In uplift rate. Considering that each marine terrace has a time resolution order to resolve this question and provide new constraints for related to one sea-level highstand, our data integrate uplift rate over integrating studies of geodetic, seismologic and geochronologic data, 100 kyr time steps, the periodicity of marine terrace formation. More our study focuses on uplift rate calculations over various time ranges. rapid uplift rate variations that may have occurred during this time This should lead to a unique estimation of long-term rates of step will not be represented on the morphological scale and thus are deformation (Chéry and Vernant, 2006) while, at the same time, not considered. provide an estimation of variability over shorter time scales. This Marine terraces are an important class of geologic markers that are premise is currently being tested (cf. Friedrich et al., 2003; produced through complex interactions between sea-level fluctua- Allmendinger et al., 2005). However when calculating slip- or uplift- tions and uplift along an active margin (Bradley and Griggs, 1976; rates in order to define active tectonics, it was necessary in most of Merritts and Bull, 1989; Anderson et al., 1999; Muhs et al., 1990; Lajoie previous studies to assume that the short-term rate inferred from the et al., 1991) that can in theory, provide important constraints on the displacement of a geologic marker (b100 ka), may be a robust signal of rates of coastal uplift (Chappell, 1983; Lajoie, 1986; Burbank and Anderson, 2001). Along the Andean forearc, sequences of marine terraces record changes in sea-level together with the uplift history of ⁎ Corresponding author. Tel.: +33 5 61 33 26 62; fax: +33 5 61 33 25 60. the coastal area (DeVries, 1988; Hsu, 1992; Goy et al., 1992; Macharé E-mail addresses: [email protected] (M. Saillard), [email protected] and Ortlieb,1992; Ortlieb et al., 1992, 1996; Ota et al., 1995; Zazo, 1999; (S.R. Hall), [email protected] (L. Audin), [email protected] (D.L. Farber), Zazo et al., 1994; Cantalamessa and DiCelma, 2004; Marquardt et al., [email protected] (G. Hérail), [email protected] (J. Martinod), [email protected] (V. Regard), [email protected] (R.C. Finkel), 2004; Pedoja, 2003; Pedoja et al., 2006; Quezada et al., 2007). [email protected] (F. Bondoux). However, at many locations (e.g., Papua New Guinea, USA, Peru, Chile, 0012-821X/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.epsl.2008.09.039 M. Saillard et al. / Earth and Planetary Science Letters 277 (2009) 50–63 51 Ecuador) where marine terraces have been studied, steady uplift is The study area is located above the Pacific shoreline, at the foot of often assumed and chronostratigraphical correlation of the terraces to the Chilean Coastal Cordillera along a ~100 km-long stretch of coast sea-level highstands is used to assign ages due to restricted access to from Tongoy (30.25°S) to south of Bahía El Teniente (31°S; Coquimbo datable material (Muhs et al., 1990; Hsu, 1992; Macharé and Ortlieb, region, Chile; Fig. 1). Due to the subduction of the Nazca Plate beneath 1992; Goy et al., 1992; Ota et al., 1995; Burbank and Anderson, 2001; the South American plate at a rate of ~82 mm/a (DeMets et al., 1994), Cantalamessa and Di Celma, 2004; Pedoja et al., 2006). In this study, this segment of the Chilean coast is seismically active and the area we focus on the Altos de Talinay area of Chile (~30°–31°S). The general experiences a recurrent major interplate event approximately every morphology of the area has been previously described (Paskoff, 1966, 100 yrs (1647, Mw =8.5; 1730, Mw= 8.7; 1880, Mw= 7.7; 1943, 1970; Chávez, 1967; Herm, 1969; Ota et al., 1995; Benado, 2000; Mw=8.3; Beck et al., 1998; Heinze, 2003). Moreover, this region Heinze, 2003). This area shows a well developed sequence of five shows a high degree of seismic coupling between the subducting wave-cut platforms (WCPs) directly abraded into the bedrock. Nazca and the overriding South America plates (Lemoine et al., 2001; Fig. 1. Geodynamic setting of the study area (black box) on bathymetric and topographic digital elevation model of Eastern Pacific Ocean and South America. Velocities are calculated from NNR-NUVEL-1A plate motion model of DeMets et al. (1994). White line with triangles corresponds to the Peru–Chile trench. White line between two dashes mark flat slab subduction zone. Black triangles are active volcanoes. Black stars with numbers correspond to previously study marine terrace locations. 1: Ecuador – north of the Talarac Arc (Cantalamessa and DiCelma, 2004; Pedoja, 2003; Pedoja et al., 2006). 2: Northern Peru – south of the Talarac Arc (DeVries,1988; Pedoja, 2003; Pedoja et al., 2006). 3: Southern Peru – above the Nazca Ridge and Chala Bay (Hsu,1992; Goy et al.,1992; Macharé and Ortlieb,1992; Zazo,1999; Saillard, 2008). 4: Southern Peru – Ilo (Ortlieb et al.,1992; Zazo et al.,1994; Saillard, 2008). 5: Chile – Mejillones area (Ortlieb et al., 1996; Zazo, 1999). 6: Chile – Caldera (Marquardt et al., 2004; Quezada et al., 2007). 7: Chile – Altos de Talinay area (Ota et al., 1995; Saillard, 2008). 52 M. Saillard et al. / Earth and Planetary Science Letters 277 (2009) 50–63 Pardo et al., 2002; Gardi et al., 2006). This suggests that the upper 33°S, the morphology of the margin along this segment of the Andean plate morphology may display evidence of the ongoing subduction Cordillera does not show a Central Depression nor an active volcanic processes related to the position of the seismogenic zone (i.e. marine arc. This particular morphological sequence is developed above a terraces or/and active tectonics; Audin et al., 2008). segment of flat subduction – between 30°S and 33°S – which is In the Coquimbo region, the Coastal Cordillera progressively passes bordered to the north and south by normal dipping subduction zones to the Precordillera and finally the high Cordillera of the Andes. In (Gutscher et al., 2000; Yañez et al., 2001; Fig. 1). Yañez et al. (2001) contrast to the morphology north of La Serena (~29.9°S) or south of suggest that the flat slab segment of the Nazca plate in this area is Fig 2. Map of the study area showing the morphostructural units (modified from Heinze, 2003), the distribution of marine terraces, major faults and rivers. The black boxes outline the location of Fig. 4A and B. PAF: Puerto Aldea Fault. White concentric circles in the Tongoy Paleobay Depression are Losa deposits (see paragraph 2). ‘Cenozoic basin’ corresponds to Tongoy–Limari basin with Cenozoic marine and continental sediments.
Recommended publications
  • The Rock Cycle Compressed and Cemented to Form What the Original Rocks on Earth Were Like
    | The Rock Cycle compressed and cemented to form what the original rocks on Earth were like. sedimentary rock, such as sandstone. IMMG has some excellent examples of Soluble material can be precipitated from these extraterrestrial visitors in our The continual set of processes affecting water to form sedimentary rocks such as meteorite exhibit. rocks is called the rock cycle. All existing limestone and gypsum. Sedimentary rocks rocks on Earth have been changed over can also be exposed at the surface and Various examples of the three different time by various geologic processes. Earth undergo erosion, providing materials for types of rocks are listed below. Specimens was formed about 4.6 billion years ago, and future sedimentary rocks. of some of these rocks can be found the oldest known rock unit is found in throughout the museum. Canada, dated at just over 4 billion years If sedimentary rocks become buried deep old. This rock material was altered by heat within the crust, they can be subjected to How many can you find? and pressure into the metamorphic rock high heat and pressure along with physical gneiss. stresses such as compression or extension, Igneous which transforms them into metamorphic rocks such as schist or gneiss Originally all of Earth’s crustal rocks had Basalt Gabbro Diorite an igneous origin. They start as semi- (“metamorphic” simply means “changed molten magma in the upper mantle and form”). Sometimes igneous rocks can be Rhyolite Syenite Andesite either rise to the surface as extrusive lava metamorphosed by similar processes (like Granite Granodiorite Obsidian (like basalt) in volcanoes and oceanic rifts, granite into gneiss).
    [Show full text]
  • Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319999645 Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile Chapter · September 2017 DOI: 10.1002/9781119154051.ch10 CITATIONS READS 0 332 28 authors, including: Nelson A Lagos Ricardo Norambuena University Santo Tomás (Chile) University of Concepción 65 PUBLICATIONS 1,052 CITATIONS 13 PUBLICATIONS 252 CITATIONS SEE PROFILE SEE PROFILE Claudio Silva Marco A Lardies Pontificia Universidad Católica de Valparaíso Universidad Adolfo Ibáñez 54 PUBLICATIONS 432 CITATIONS 70 PUBLICATIONS 1,581 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Irish moss - green crab interactions View project Influence of environment on fish stock assessment View project All content following this page was uploaded by Pedro A. Quijón on 11 November 2017. The user has requested enhancement of the downloaded file. 239 10 Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile Eleuterio Yáñez1, Nelson A. Lagos2,13, Ricardo Norambuena3, Claudio Silva1, Jaime Letelier4, Karl-Peter Muck5, Gustavo San Martin6, Samanta Benítez2,13, Bernardo R. Broitman7,13, Heraldo Contreras8, Cristian Duarte9,13, Stefan Gelcich10,13, Fabio A. Labra2, Marco A. Lardies11,13, Patricio H. Manríquez7, Pedro A. Quijón12, Laura Ramajo2,11, Exequiel González1, Renato Molina14, Allan Gómez1, Luis Soto15, Aldo Montecino16, María Ángela Barbieri17, Francisco Plaza18, Felipe Sánchez18,
    [Show full text]
  • Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake
    GEOTECHNICAL EXTREME EVENTS RECONNAISSANCE (GEER) ASSOCIATION Turning Disaster into Knowledge Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake Editors: Gregory P. De Pascale, Gonzalo Montalva, Gabriel Candia, and Christian Ledezma Lead Authors: Gabriel Candia, Universidad del Desarrollo-CIGIDEN; Gregory P. De Pascale, Universidad de Chile; Christian Ledezma, Pontificia Universidad Católica de Chile; Felipe Leyton, Centro Sismológico Nacional; Gonzalo Montalva, Universidad de Concepción; Esteban Sáez, Pontificia Universidad Católica de Chile; Gabriel Vargas Easton, Universidad de Chile. Contributing Authors: Juan Carlos Báez, Centro Sismológico Nacional; Christian Barrueto, Pontificia Universidad Católica de Chile; Cristián Benítez, Pontificia Universidad Católica de Chile; Jonathan Bray, UC Berkeley; Alondra Chamorro, Pontificia Universidad Católica de Chile; Tania Cisterna, Universidad de Concepción; Fernando Estéfan Thibodeaux Garcia, UC Berkeley; José González, Universidad de Chile; Diego Inzunza, Universidad de Concepción; Rosita Jünemann, Pontificia Universidad Católica de Chile; Benjamín Ledesma, Universidad de Concepción; Álvaro Muñoz, Pontificia Universidad Católica de Chile; Antonio Andrés Muñoz, Universidad de Chile; José Quiroz, Universidad de Concepción; Francesca Sandoval, Universidad de Chile; Pedro Troncoso, Universidad de Concepción; Carlos Videla, Pontificia Universidad Católica de Chile; Angelo Villalobos, Universidad de Chile. GEER Association Report No. GEER-043 Version 1: December 10, 2015 FUNDING
    [Show full text]
  • División Político Administrativa Y Censal Región De Coquimbo
    DIVISIÓN POLÍTICO ADMINISTRATIVA Y CENSAL REGIÓN DE COQUIMBO DEPARTAMENTO DE GEOGRAFÍA INSTITUTO NACIONAL DE ESTADÍSTICAS Enero/ 2019 CHILE: División Político-Administrativa y Censal REGIÓN, PROVINCIAS, COMUNAS Y Superficie Población Censo 2017 Viviendas Censo 2017 DISTRITOS CENSALES Km2 Total Urbana Rural Total Urbana Rural 04 REGIÓN DE COQUIMBO 40.578,9 757.586 615.116 142.470 308.608 238.503 70.105 1 PROVINCIA ELQUI 17.095,7 496.337 443.484 52.853 197.281 171.416 25.865 04101 Comuna La Serena 1.901,5 221.054 200.640 20.414 87.464 78.787 8.677 Distrito Censal 01 Intendencia 1,2 1.455 1.455 0 564 564 0 02 Mercado 7,7 16.661 15.504 1.157 5.236 4.848 388 03 Francisco de Aguirre 4,0 10.950 10.950 0 6.485 6.485 0 04 Las Vegas 9,0 12.037 12.037 0 9.327 9.327 0 05 La Pampa 13,7 37.096 36.971 125 14.305 14.265 40 06 La Florida 47,4 20.705 16.564 4.141 7.002 6.215 787 07 Algarrobito 72,0 2.358 1.056 1.302 1.038 360 678 08 Porvenir 140,6 3.103 0 3.103 1.542 0 1.542 09 Las Rojas 90,5 3.370 1.292 2.078 1.319 418 901 10 Romero 181,7 3.974 0 3.974 1.734 0 1.734 11 Condoriaco 398,4 66 0 66 71 0 71 12 Almirante Latorre 314,8 107 0 107 140 0 140 13 Islón 220,0 1.920 0 1.920 678 0 678 14 La Compañía 378,4 24.308 22.058 2.250 10.142 8.527 1.615 15 Universidad 5,6 16.328 16.328 0 7.183 7.183 0 16 La Compañía Alta 8,3 45.781 45.703 78 14.071 14.015 56 17 El Olivar 8,1 20.039 19.926 113 6.393 6.346 47 99 Rezagados 796 796 0 234 234 0 04102 Comuna Coquimbo 1.425,1 227.730 214.550 13.180 89.499 82.063 7.436 Distrito Censal 01 Aduana 2,0 8.717 8.717 0 2.640
    [Show full text]
  • Damage Assessment of the 2015 Mw 8.3 Illapel Earthquake in the North‑Central Chile
    Natural Hazards https://doi.org/10.1007/s11069-018-3541-3 ORIGINAL PAPER Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the North‑Central Chile José Fernández1 · César Pastén1 · Sergio Ruiz2 · Felipe Leyton3 Received: 27 May 2018 / Accepted: 19 November 2018 © Springer Nature B.V. 2018 Abstract Destructive megathrust earthquakes, such as the 2015 Mw 8.3 Illapel event, frequently afect Chile. In this study, we assess the damage of the 2015 Illapel Earthquake in the Coquimbo Region (North-Central Chile) using the MSK-64 macroseismic intensity scale, adapted to Chilean civil structures. We complement these observations with the analysis of strong motion records and geophysical data of 29 seismic stations, including average shear wave velocities in the upper 30 m, Vs30, and horizontal-to-vertical spectral ratios. The calculated MSK intensities indicate that the damage was lower than expected for such megathrust earthquake, which can be attributable to the high Vs30 and the low predominant vibration periods of the sites. Nevertheless, few sites have shown systematic high intensi- ties during comparable earthquakes most likely due to local site efects. The intensities of the 2015 Illapel earthquake are lower than the reported for the 1997 Mw 7.1 Punitaqui intraplate intermediate-depth earthquake, despite the larger magnitude of the recent event. Keywords Subduction earthquake · H/V spectral ratio · Earthquake intensity 1 Introduction On September 16, 2015, at 22:54:31 (UTC), the Mw 8.3 Illapel earthquake occurred in the Coquimbo Region, North-Central Chile. The epicenter was located at 71.74°W, 31.64°S and 23.3 km depth and the rupture reached an extent of 200 km × 100 km, with a near trench rupture that caused a local tsunami in the Chilean coast (Heidarzadeh et al.
    [Show full text]
  • Exhumation Processes
    Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta­ morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con­ tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin­ guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma­ tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac­ teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere.
    [Show full text]
  • Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian
    www.nature.com/scientificreports OPEN Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian Received: 14 August 2017 Jian Wang1,2, Ying-chang Cao1,2, Xin-tong Wang1, Ke-yu Liu1,3, Zhu-kun Wang1 & Qi-song Xu1 Accepted: 9 January 2018 The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Published: xx xx xxxx Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid- Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confrmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large- scale intracontinental orogeny in the region. The Central Asia Orogenic Belt (CAOB) is the largest accretionary orogen on Earth, which was formed by the amalgamation of multiple micro-continents, island arcs and accretionary wedges1–5.
    [Show full text]
  • Evidence for an Early-Middle Miocene Age of the Navidad Formation (Central Chile): Paleontological, Climatic and Tectonic Implications’ of Gutiérrez Et Al
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Le Roux, Jacobus P.; Gutiérrez, Néstor M.; Hinojosa, Luis F.; Pedroza, Viviana; Becerra, Juan Reply to Comment of Encinas et al. (2014) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 657-669 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 657-669. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl REPLY TO COMMENT Reply to Comment of Encinas et al. (2014) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Jacobus P. Le Roux1, Néstor M. Gutiérrez1, Luis F. Hinojosa2, Viviana Pedroza1, Juan Becerra1 1 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile-Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected] 2 Laboratorio de Paleoecología, Facultad de Ciencias-Instituto de Ecología y Biodiversidad (IEB), Universidad de Chile, Las Palmeras 3425, Santiago, Chile.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation
    [Show full text]
  • A Review of Tertiary Climate Changes in Southern South America and the Antarctic Peninsula. Part 1: Oceanic Conditions
    Sedimentary Geology 247–248 (2012) 1–20 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Review A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions J.P. Le Roux Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile/Centro de Excelencia en Geotérmia de los Andes, Casilla 13518, Correo 21, Santiago, Chile article info abstract Article history: Oceanic conditions around southern South America and the Antarctic Peninsula have a major influence on cli- Received 11 July 2011 mate patterns in these subcontinents. During the Tertiary, changes in ocean water temperatures and currents Received in revised form 23 December 2011 also strongly affected the continental climates and seem to have been controlled in turn by global tectonic Accepted 24 December 2011 events and sea-level changes. During periods of accelerated sea-floor spreading, an increase in the mid- Available online 3 January 2012 ocean ridge volumes and the outpouring of basaltic lavas caused a rise in sea-level and mean ocean temper- ature, accompanied by the large-scale release of CO . The precursor of the South Equatorial Current would Keywords: 2 fi Climate change have crossed the East Paci c Rise twice before reaching the coast of southern South America, thus heating Tertiary up considerably during periods of ridge activity. The absence of the Antarctic Circumpolar Current before South America the opening of the Drake Passage suggests that the current flowing north along the present western seaboard Antarctic Peninsula of southern South American could have been temperate even during periods of ridge inactivity, which might Continental drift explain the generally warm temperatures recorded in the Southeast Pacific from the early Oligocene to mid- Ocean circulation dle Miocene.
    [Show full text]
  • Linea Base Limnologica De Los Humedales De Tongoycomplementaria Solicitud De Sitio Ramsar
    INFORME FINAL LINEA BASE LIMNOLOGICA DE LOS HUMEDALES DE TONGOYCOMPLEMENTARIA SOLICITUD DE SITIO RAMSAR Carlos Zuleta Ramos, Víctor Bravo Naranjo &Alex Cea Villablanca Universidad de La Serena Centro de Estudios Ambientales del Norte de Chile DICIEMBRE 2016 ÍNDICE Página 1 INTRODUCCIÓN 6 RESULTADOS 7 Paisajes 7 Riqueza faunística 10 Herpetofauna 10 Mastozoofauna 10 Avifauna 11 Fauna acuática 12 Riqueza Florística 14 HUMEDALES DE TONGOY 15 Estero Tongoy 18 Salinas Chica 21 Salinas Grande 24 Pachingo 27 CONCLUSIONES 31 REFERENCIAS BIBLIOGRÁFICAS 32 ANEXOS Anexo 1. Línea base Herpetofauna de los humedales de Tongoy (Coquimbo) 34 Anexo 2. Línea base Mastozoofauna de los humedales de Tongoy (Coquimbo) 35 Anexo 3: Línea base Ornitofauna de los humedales de Tongoy (Coquimbo) 36 Anexo 3: Línea base Flora de los humedales de Tongoy (Coquimbo) 40 2 TABLAS Página Tabla 1. Riqueza taxonómica registrada para los humedales costeros de Tongoy 10 Tabla 2. Riqueza de fauna acuática de los humedales costeros de la Bahía de Tongoy 13 Tabla 3. Riqueza taxonómica registrada para el humedal Estero Tongoy 18 Tabla 4. Riqueza de la Flora vascular del Estero Tongoy. Se indica el Origen (A=Adventicia, E=Endémica, N=Nativa), Formas de Vida (T=Arbol, F=Fanerofita (arbusto), S=Sufrútice, H= Hierba perenne, HB=Hierba bi-anual, A=Hierba anual, K=Cactácea) según Squeo et al (2001) 20 Tabla 5. Riqueza taxonómica de Vertebrados registrada para el humedal Salinas Chica 21 Tabla 6. Riqueza taxonómica de vertebrados registrada para el humedal Salinas Grande 24 Tabla 7. Riqueza taxonómica de Vertebrados registrada para el humedal Pachingo 27 Tabla 8.
    [Show full text]
  • Estratigrafía Sísmica Y Evidencias Submarinas De Tectónica Activa En La Falla Puerto Aldea, Tongoy, IV Región De Coquimbo, Chile
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Estratigrafía sísmica y evidencias submarinas de tectónica activa en la falla Puerto Aldea, Tongoy, IV Región de Coquimbo, Chile Julio Avilés*, Gabriel Vargas, Cristina Ortega Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile *email: [email protected] Resumen. Estudios previos indican que la actividad de la consideración de antecedentes de testigos de sedimento falla Puerto Aldea habría cesado al menos hace 230 ka en cortos (<1 m de largo) obtenidos en la bahía, en este la Bahía de Tongoy (Saillard, 2012), sin embargo, el trabajo se definen las unidades que constituyen el subsuelo análisis de perfiles acústicos de alta resolución evidencia del fondo marino, se interpreta su génesis y se caracteriza tectónica activa durante el Cuaternario tardío. la deformación que las afecta. La estratigrafía del subsuelo marino de la bahía de Tongoy, muestra 3 unidades sismo-estratigráficas. La unidad intermedia 2 es de tipo agradacional y desarrolla onlap, por En particular, se interpreta la actividad Cuaternaria tardía lo que se interpreta como producto de la transgresión de la falla Puerto Aldea, denotando su carácter activo. global post-glacial en el Pleistoceno tardío-Holoceno temprano. La unidad 3 sobreyace a la anterior, es de tipo progradacional-agradacional, desarrolla toplap y se asocia 2 Antecedentes Geológicos al alto estadio marino desde el Holoceno medio al presente. Estas dos unidades se encuentran afectadas por La falla Puerto Aldea constituye una de las principales fallas normales que deforman estratos y se asocian a estructuras geológicas de la costa semiárida de Chile.
    [Show full text]