The Role of Medial Habenula-Interpeduncular Nucleus Pathway in Anxiety: a Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Medial Habenula-Interpeduncular Nucleus Pathway in Anxiety: a Dissertation University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2015-06-22 The Role of Medial Habenula-Interpeduncular Nucleus Pathway in Anxiety: A Dissertation Xueyan Pang University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Behavioral Neurobiology Commons, and the Molecular and Cellular Neuroscience Commons Repository Citation Pang X. (2015). The Role of Medial Habenula-Interpeduncular Nucleus Pathway in Anxiety: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2VP49. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/811 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. THE ROLE OF MEDIAL HABENULA-INTERPEDUNCULAR NUCLEUS PATHWAY IN ANXIETY A Dissertation Presented By XUEYAN PANG Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY June 22, 2015 PROGRAM IN NEUROSCIENCE THE ROLE OF MEDIAL HABENULA-INTERPEDUNCULAR NUCLEUS PATHWAY IN ANXIETY A Dissertation Presented By XUEYAN PANG The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Andrew R. Tapper, Ph.D., Thesis Advisor Paul D. Gardner, Ph.D., Thesis Advisor Joel Richter, Ph.D., Member of Committee Haley E. Melikian, Ph.D., Member of Committee Fen-Biao Gao, Ph.D., Member of Committee Darlene H. Brunzell, Ph.D., Member of Committee The signature of the Chair of the Committee signifies that the written dissertation meets the requirements of the Dissertation Committee David R. Weaver, Ph.D., Chair of Committee The signature of the Dean of the Graduate School of Biomedical Sciences signifies that the student has met all graduation requirements of the school. Anthony Carruthers, Ph.D., Dean of the Graduate School of Biomedical Sciences Program in Neuroscience June 22, 2015 iii This dissertation is dedicated to my beloved husband-Yong, my lovely children- Sophia and Eric and my parents. I give my deepest expression of love and appreciation for the encouragement that you gave and the sacrifices you made during this graduate program. Thank you for the support and company during late nights of typing. iv ACKNOWLEDGEMENTS First of all, I want to thank my graduate advisors, Dr. Andrew R. Tapper and Dr. Paul D. Gardner. I first worked with Andrew as a research associate for one year from 2009. That time I just came from China and had some problem to communicate with people because of the language barrier. But I could feel Andrew‟s enthusiasm and determination toward learning, teaching and researching. Instead of letting me focus on the routine lab maintenance, he encouraged me to take part in an interesting research project. Andrew has an ability to explain a topic in depth and yet simplify it with an interdisciplinary point of view. And we talked about the project progress every week. From that on, I started to enjoy the boring research and decided to become a graduate student and study for the PhD degree. In 2010, I enrolled in UMass Medical School and joined the Program in Neuroscience. After several rotations in the first year, I decided to join in Dr. Tapper‟s lab and Dr. Gardner‟s lab (Tardner lab), as I really like the training and guidance I can get from the mentors. It is very nice that Andrew and Paul both have “open door policy” in their office and we have “two on one” meeting almost every week. Therefore, in the past five years, whenever there is any problem about my project, I can talk with them and they always encourage me and try to figure it out together. With their help, I went through the ups and downs for the projects, which make me grow up to be a more independent researcher. And finally now I am close to get my PhD degree. v Not only for the research project, I also got many help for my life. As an international student who lives in a totally different culture, it is very stressful. But like the lab parents, whenever there is frustration and happiness in life, decision to make for the career planning, they are always there to listen, to support and to give advice. Thanks, Andrew and Paul. I am also sincerely grateful to my thesis committee members –Dr. David Weaver, Dr. Fen-Biao Gao, Dr. Joel Richter, Dr. Haley Melikian, and Dr. Darlene Brunzell. Thank you for all the insightful comments for my research presented in the thesis here. Special thanks to Dr. David Weaver, who is the chair of the Program in Neuroscience and also the chair of my QE, TRAC and dissertation exam. Thank you for always taking the time to listen, to support, and to encourage. I would like to thank everyone in the Tardner lab: Rubing Zhao-Shea, Liwang Liu, Jennifer Ngolab, Melissa Guilford, Steven Degroot, Alison Casserly, Susanna Casacuberta, Ciearra Smith, Anthony Sacino; as well as the former Tadner lab members: Linzy Hendrickson, Lindsey Soll, Ma Reina Improgo, Eric Hogan, Michael Scofield. Thank you so much for all the generous help and support, and also thank you so much for providing fun and happy atmosphere for the past five years. Special thanks to Rubing, who has been a sister, a friend and a teacher in this chapter of my life. Thank you so all the help in academics as well as in everyday life. Finally, I would like to thank my family and friends in China who are always there providing non-stop support and encouragement. Thank you. vi ABSTRACT Recently, the medial habenula-interpeduncular (MHb-IPN) axis has been hypothesized to modulate anxiety although neuronal populations and molecular mechanisms regulating affective behaviors in this circuit are unknown. Here we show that MHb cholinergic neuron activity directly regulates anxiety-like behavior. Optogenetic silencing of MHb cholinergic IPN inputs reduced anxiety-like behavior in mice. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their role as autoreceptors in these neurons has not been described. nAChRs are ligand- gated cation channels that are activated by the excitatory neurotransmitter, acetylcholine (ACh), as well as nicotine, the addictive component of tobacco smoke. We expressed novel nAChR subunits that render nAChRs hypersensitive to ACh, ACh detectors, selectively in MHb cholinergic neurons of adult mice. Mice expressing these ACh detectors exhibited increased baseline anxiety-like behavior that was alleviated by blocking the mutant receptors. Under stressful conditions, such as during nicotine withdrawal, nAChRs were functionally upregulated in MHb cholinergic neurons mediating an increase in anxiety-like behavior. Together, these data indicate that MHb cholinergic neurons regulate anxiety via signaling through nicotinic autoreceptors and point toward nAChRs in MHb as molecular targets for novel anxiolytic therapeutics. vii Table of Contents Title Page…………………………………………...………….…………………………i Signature page…...................................................................................................ii Acknowledgements………..……………………………………………………………iv Abstract……………………….………………………………………….………………vi Table of Contents………………………………………………………………………vii List of Tables……………………….…………………………………….………….......x List of Figures…………………….……………………………………….……………..x List of Abbreviations……………………...……………………………...……………xiii Copy Right Page………………………………………………………………………xvi Chapter I: Introduction…………………………………………………….…………....1 I.A. Anxiety disorder and current therapeutics……..………….……………2 I.B. The brain circuitry of anxiety disorders…..…………….….…..………..3 I.C. The anatomy of medial habenula and interpeduncular nucleus pathway.....................................................................................................10 I.D. The role of MHb in the anxiety, fear and depression.........................19 I.E. nAChR: structure, function and the role in anxiety................………22 I.F. Nicotine, nAChR and anxiety…………………....... ..............................40 Chapter II: MHb cholinergic neurons are involved in anxiety……………….….…44 II.A. Introduction…….…………………………………………………….…45 II.B. Materials and methods………..…………………………………...….…47 II.C. Results……………..…..…………………………………………….…53 nAChR activity in the MHb but not the IPN regulates anxiety-like behavior in mice...………………………….……………………….…53 Silencing of MHb cholinergic neurons decreases anxiety-like behaviors…………….…………………………………………….…55 Activation of MHb cholinergic neurons induces hypolocomotion…57 II.D. Discussion………………………………………………………………...58 viii Chapter III: nAChRs in the MHb cholinergic neurons are critical for anxiety……70 III.A. Introduction………………………………………………………….…71 III.B. Materials and methods……………………………………………….…72 III.C. Results……………………………………………………………………80 nAChRs are highly expressed in the MHb cholinergic neurons…..80 α4* nAChRs are necessary and sufficient for nicotine activation of MHb cholinergic neurons…………………………………………….81 “AChR detectors” are functionally expressed in MHb cholinergic neurons…………………………………………………………………82 “ACh detector” expressing mice showed increased anxiety-like behavior ……………………………………………………………….84 “ACh detector” expressing mice showed prolonged hypolocomotion by high dose of
Recommended publications
  • The Effect of Fasting on the Ultrastructure of the Hypothalamic Arcuate Nucleus in Young Rats
    Folia Morphol. Vol. 68, No. 3, pp. 113–118 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The effect of fasting on the ultrastructure of the hypothalamic arcuate nucleus in young rats J. Kubasik-Juraniec1, N. Knap2 1Department of Electron Microscopy, Medical University of Gdańsk, Poland 2Department of Medical Chemistry, Medical University of Gdańsk, Poland [Received 8 May 2009; Accepted 17 July 2009] In the present study, we described ultrastructural changes occurring in the neurons of the hypothalamic arcuate nucleus after food deprivation. Young male Wistar rats (5 months old, n = 12) were divided into three groups. The animals in Group I were used as control (normally fed), and the rats in Groups II and III were fasted for 48 hours and 96 hours, respectively. In both treated groups, fasting caused rearrangement of the rough endoplasmic reticulum form- ing lamellar bodies and membranous whorls. The lamellar bodies were rather short in the controls, whereas in the fasting animals they became longer and were sometimes participating in the formation of membranous whorls com- posed of the concentric layers of the smooth endoplasmic reticulum. The whorls were often placed in the vicinity of a very well developed Golgi complex. Some Golgi complexes displayed an early stage of whorl formation. Moreover, an increased serum level of 8-isoprostanes, being a reliable marker of total oxida- tive stress in the body, was observed in both fasting groups of rats as com- pared to the control. (Folia Morphol 2009; 68, 3: 113–118) Key words: arcuate nucleus, fasting, membranous whorls, isoprostanes INTRODUCTION membranous whorls in the ARH neurons of a male The arcuate nucleus of the hypothalamus (ARH) rat on the fourth day after castration.
    [Show full text]
  • Lmmunohistochemical Localization of Neuronal Nicotinic Receptors in the Rodent Central Nervous System
    The Journal of Neuroscience, October 1987, 7(10): 3334-3342 lmmunohistochemical Localization of Neuronal Nicotinic Receptors in the Rodent Central Nervous System L. W. Swanson,1v2 D. M. Simmons, I12 P. J. Whiting,’ and J. Lindstrom’ ‘The Salk Institute for Biological Studies, and 2Howard Hughes Medical Institute, La Jolla, California 92037 The distribution of nicotinic acetylcholine receptors (AChR) are structurally unrelated (Kubo et al., 1986a, b) to nicotinic in the rat and mouse central nervous system has been ACh receptors (AChR, Noda et al., 1983a, b), which act by mapped in detail using monoclonal antibodies to receptors regulating directly the opening of a cation channel that is an purified from chicken and rat brain. Initial studies in the intrinsic component of the molecule. Furthermore, subtypes of chicken brain indicate that different neuronal AChRs are con- neuronal AChRs have been identified on the basis of pharma- tained in axonal projections to the optic lobe in the midbrain cological and structural properties (Whiting et al., 1987a). To from neurons in the lateral spiriform nucleus and from retinal understand the functional significanceof ACh in a particular ganglion cells. Monoclonal antibodies to the chicken and rat neural system, it is therefore necessaryto establishthe cellular brain AChRs also label apparently identical regions in all localization of ACh, and the cellular localization and type of major subdivisions of the central nervous system of rats and cholinergic receptor with which it interacts. Immunohistochem- mice, and this pattern is very similar to previous reports of istry provides a sensitive method for localizing cholinergic neu- 3H-nicotine binding, but quite different from that of a-bun- rons with antibodies to the synthetic enzyme choline acetyl- garotoxin binding.
    [Show full text]
  • Retrograde Inhibition by a Specific Subset of Interpeduncular Α5 Nicotinic Neurons Regulates Nicotine Preference
    Retrograde inhibition by a specific subset of interpeduncular α5 nicotinic neurons regulates nicotine preference Jessica L. Ablesa,b,c, Andreas Görlicha,1, Beatriz Antolin-Fontesa,2,CuidongWanga, Sylvia M. Lipforda, Michael H. Riada, Jing Rend,e,3,FeiHud,e,4,MinminLuod,e,PaulJ.Kennyc, Nathaniel Heintza,f,5, and Ines Ibañez-Tallona,5 aLaboratory of Molecular Biology, The Rockefeller University, New York, NY 10065; bDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dNational Institute of Biological Sciences, Beijing 102206, China; eSchool of Life Sciences, Tsinghua University, Beijing 100084, China; and fHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Contributed by Nathaniel Heintz, October 23, 2017 (sent for review October 5, 2017; reviewed by Jean-Pierre Changeux and Lorna W. Role) Repeated exposure to drugs of abuse can produce adaptive changes nicotine withdrawal, and optical activation of IPN GABAergic cells that lead to the establishment of dependence. It has been shown that is sufficient to produce a withdrawal syndrome, while blockade of allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) gene GABAergic cells in the IPN reduced symptoms of withdrawal (17). CHRNA5 is associated with higher risk of tobacco dependence. In the Taken together these studies highlight the critical role of α5in brain, α5-containing nAChRs are expressed at very high levels in the regulating behavioral responses to nicotine. Here we characterize two subpopulations of GABAergic interpeduncular nucleus (IPN). Here we identified two nonoverlapping Amigo1 Epyc α + α Amigo1 α Epyc neurons in the IPN that express α5: α5- and α5- neu- 5 cell populations ( 5- and 5- ) in mouse IPN that respond α Amigo1 α Epyc differentially to nicotine.
    [Show full text]
  • Variations in Number of Dopamine Neurons and Tyrosine Hydroxylase Activity in Hypothalamus of Two Mouse Strains
    0270.6474/83/0304-0832$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 3, No. 4, pp. 832-843 Printed in U.S.A. April 1983 VARIATIONS IN NUMBER OF DOPAMINE NEURONS AND TYROSINE HYDROXYLASE ACTIVITY IN HYPOTHALAMUS OF TWO MOUSE STRAINS HARRIET BAKER,2 TONG H. JOH, DAVID A. RUGGIERO, AND DONALD J. REIS Laboratory of Neurobiology, Cornell University Medical College, New York, New York 10021 Received May 3, 1982; Revised August 23, 1982; Accepted October 8, 1982 Abstract Mice of the BALB/cJ strain have more neurons and greater tyrosine hydroxylase (TH) activity in the midbrain than mice of the CBA/J strain (Baker, H., T. H. Joh, and D. J. Reis (1980) Proc. Natl. Acad. Sci. U. S. A. 77: 4369-4373). To determine whether the strain differences in dopamine (DA) neuron number and regional TH activity are more generalized, regional TH activity was measured and counts of neurons containing the enzyme were made in the hypothalamus of male mice of the BALB/cJ and CBA/J strains. TH activity was measured in dissections of whole hypothalamus (excluding the preoptic area), the preoptic area containing a rostral extension of the Al4 group, the mediobasal hypothalamus containing the A12 group, and the mediodorsal hypothal- amus containing neurons of the Al3 and Al4 groups. Serial sections were taken and the number of DA neurons was established by counting at 50- to 60-pm intervals all cells stained for TH through each area. In conjunction with data obtained biochemically, the average amount of TH per neuron was determined.
    [Show full text]
  • Nicotine Aversion Is Mediated by Gabaergic Interpeduncular Nucleus Inputs to Laterodorsal Tegmentum
    ARTICLE DOI: 10.1038/s41467-018-04654-2 OPEN Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum Shannon L. Wolfman1, Daniel F. Gill1, Fili Bogdanic2, Katie Long3, Ream Al-Hasani4, Jordan G. McCall4,5,6, Michael R. Bruchas5,6 & Daniel S. McGehee1,2 1234567890():,; Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optoge- netics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN–LDTg connection blocks nicotine condi- tioned place aversion, suggesting that the IPN–LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine. 1 Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA. 2 Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA. 3 Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. 4 St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St.
    [Show full text]
  • Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation Or Nicotine Exposure
    6900 • The Journal of Neuroscience, August 1, 2018 • 38(31):6900–6920 Systems/Circuits Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure X Glenn Morton,1 Nailyam Nasirova,1 Daniel W. Sparks,3 Matthew Brodsky,1 Sanghavy Sivakumaran,3 X Evelyn K. Lambe,3,4,5 and XEric E. Turner1,2 1Center for Integrative Brain Research, Seattle Children’s Research Institute, 2Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101, 3Department of Physiology, 4Department of Obstetrics and Gynecology, and 5Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the ␣5, ␣3, and ␤4 nicotinic receptor subunits. The ␣5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpe- duncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcho- line receptor stimulation are markedly reduced in ␣5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of ␣5. To probe the functional role of ␣5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5 Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand.
    [Show full text]
  • Mapping the Populations of Neurotensin Neurons in the Male Mouse Brain T Laura E
    Neuropeptides 76 (2019) 101930 Contents lists available at ScienceDirect Neuropeptides journal homepage: www.elsevier.com/locate/npep Mapping the populations of neurotensin neurons in the male mouse brain T Laura E. Schroeder, Ryan Furdock, Cristina Rivera Quiles, Gizem Kurt, Patricia Perez-Bonilla, ⁎ Angela Garcia, Crystal Colon-Ortiz, Juliette Brown, Raluca Bugescu, Gina M. Leinninger Department of Physiology, Michigan State University, East Lansing, MI 48114, United States ARTICLE INFO ABSTRACT Keywords: Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including car- Lateral hypothalamus diovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Parabrachial nucleus Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout Periaqueductal gray the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously Central amygdala identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre Thalamus mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both Nucleus accumbens Preoptic area visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative Abbreviation: 12 N, Hypoglossal nucleus;
    [Show full text]
  • Patterns of Increased Brain Activity Indicative of Pain in a Rat Model of Peripheral Mononeuropathy
    The Journal of Neuroscience. June 1993. 13(6): 2689-2702 Patterns of Increased Brain Activity Indicative of Pain in a Rat Model of Peripheral Mononeuropathy Jianren Mao, David J. Mayer, and Donald D. Price Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298 Regional changes in brain neural activity were examined in haviors in CCI rats and clinical symptoms in neuropathic pain rats with painful peripheral mononeuropathy (chronic con- patients. strictive injury, Ccl) by using the fully quantitative W-2- [Key words: neuropathic pain, P-deoxyglucose, hyperal- deoxyglucose (2-DG) autoradiographic technique to mea- gesia, spontaneous pain, nerve injury, brainstem, cerebral sure local glucose utilization rate. CCI rats used in the cortex, thalamusj experiment exhibited demonstrable thermal hyperalgesia and spontaneous pain behaviors 10 d after sciatic nerve ligation when the 2-DG experiment was carried out. In the absence Peripheral nerve injury sometimes results in a chronic neuro- of overt peripheral stimulation, reliable increases in 2-DG pathic pain syndrome characterized by hyperalgesia, sponta- metabolic activity were observed in CCI rats as compared neouspain, radiation of pain, and nociceptive responsesto nor- to sham-operated rats within extensive brain regions that mally innocuous stimulation (allodynia) (Bon@ 1979; Thomas, have been implicated in supraspinal nociceptive processing. 1984; Price et al., 1989). Most of these symptoms have been These brain regions included cortical somatosensory areas, recently observed in a rodent model of painful peripheral mon- clngulate cortex, amygdala, ventral posterolateral thalamic oneuropathy induced by loose ligation of the rat’s common nucleus, posterior thalamic nucleus, hypothalamic arcuate sciatic nerve(chronicconstrictive injury, CCI) (Bennett and Xie, nucleus, central gray matter, deep layers of superior collic- 1988).
    [Show full text]
  • Cholesterol Synthetic Enzymein Rabbit Nervous System By
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9821-9825, December 1988 Neurobiology Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization (3-hydroxy-3-methylglutaryl-coenzyme A synthase/apoprotein E/myelination/Watanabe heritable-hyperlipidemic rabbit) LARRY W. SWANSON*, DONNA M. SIMMONS*, SANDRA L. HOFMANNt, JOSEPH L. GOLDSTEINt, AND MICHAEL S. BROWNt *The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA 92037; and tDepartments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235 Contributed by Joseph L. Goldstein, September 15, 1988 ABSTRACT The low density lipoprotein receptor and one macrophages. Thus, apoE and the LDL receptor play a role of its ligands, apoprotein E, are known to be synthesized in the in the healing of peripheral nerves. central nervous system. In the current study, we used in situ A role for apoE in the central nervous system (CNS) was hybridization to localize the receptor mRNA in selected neu- demonstrated by Boyles et al. (5), who showed by immuno- rons and glia throughout the nervous system of 9-day-old cytochemistry that astrocytes produce apoE. This finding rabbits. Particularly high levels were found in sensory ganglia, stimulated a search for LDL receptors in the brain. Hofmann sensory nuclei, and motor-related nuclei. The same regions et al. (7), using RNA blotting to measure LDL receptor contained high levels of mRNA for 3-hydroxy-3-methylglu- mRNA, and Pitas et al. (8), using immunocytochemistry, taryl-coenzyme A synthase, a regulated enzyme in cholesterol identified LDL receptors in rabbit, bovine, rat, and monkey biosynthesis.
    [Show full text]
  • Neuromodulation in Treatment of Hypertension by Acupuncture: a Neurophysiological Prospective
    Vol.5, No.4A, 65-72 (2013) Health http://dx.doi.org/10.4236/health.2013.54A009 Neuromodulation in treatment of hypertension by acupuncture: A neurophysiological prospective Peyman Benharash1, Wei Zhou2* 1Division of Cardiothoracic Surgery, University of California, Los Angeles, USA 2Department of Anesthesiology, University of California, Los Angeles, USA; *Corresponding Author: [email protected] Received 28 February 2013; revised 30 March 2013; accepted 6 April 2013 Copyright © 2013 Peyman Benharash, Wei Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT study the effects of acupuncture on the hyper- tensive man. Hypertension is a major public health problem affecting over one billion individuals worldwide. Keywords: Central Nervous System; This disease is the result of complex interac- Electroacupuncture; Neurotransmitter; Brain Stem tions between genetic and life-style factors and the central nervous system. Sympathetic hyper- activity has been postulated to be present in 1. INTRODUCTION most forms of hypertension. Pharmaceutical Hypertension has become a serious public health prob- therapy for hypertension has not been perfected, lem impacting over one billion lives worldwide [1]. At often requires a multidrug regimen, and is as- the turn of this century, 7.6 million deaths were attribut- sociated with adverse side effects. Acupuncture, able to hypertension. The majority of this disease burden a form of somatic afferent nerve stimulation has occurred in working people in low to middle-income been used to treat a host of cardiovascular dis- countries, while its prevalence increases with age and the eases such as hypertension.
    [Show full text]
  • The Accessory Optic System: Basic Organization with an Update on Connectivity, Neurochemistry, and Function
    UC Irvine UC Irvine Previously Published Works Title The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Permalink https://escholarship.org/uc/item/3v25z604 Journal Progress in brain research, 151 ISSN 0079-6123 Authors Giolli, Roland A Blanks, Robert H I Lui, Fausta Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chapter 13 The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function Roland A. Giolli1, , , Robert H.I. Blanks1, 2 and Fausta Lui3 1Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA 2Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., P.O. Box 3091, Boca Raton, FL 33431, USA 3Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Universita di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy Available online 10 October 2005. Abstract The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual–vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS.
    [Show full text]
  • Appetite Suppression and Weight Reduction by a Centrally Active Aminosterol Rexford S
    Appetite Suppression and Weight Reduction by a Centrally Active Aminosterol Rexford S. Ahima,1 Hiralben R. Patel,1 Nobuhiko Takahashi,1 Yong Qi,1 Stanley M. Hileman,2 and Michael A. Zasloff3 The rise in obesity and its complications has generated metabolite of cholesterol that was originally isolated from enormous interest in the regulation of feeding and body the dogfish shark (Squalus acanthias) liver during a weight. We show that a spermine metabolite of choles- search for naturally occurring antimicrobial compounds terol (MSI-1436) decreases body weight, specifically (4,5). MSI-1436 is structurally similar to squalamine (MSI- fat, by suppressing feeding and preventing the reduc- 1256) except for a spermine side-chain at C-3 on the tion in energy expenditure, hormonal changes, and pat- cholesterol A-ring (4,5). The bioactivity of MSI-1436 is also terns of neuropeptide expression normally associated dependent on a seven ␣-OH and sulfated moiety at C-25 with weight loss. MSI-1436 enters the brain after pe- (5). Unexpectedly, MSI-1436 was shown to inhibit feeding ripheral injection and is more potent when injected into and decrease body weight in a highly specific manner in the cerebral ventricle (intracerebroventricular [ICV]). Systemic or ICV MSI-1436 administration induced sim- normal and obese rodents (5). ilar patterns of Fos immunoreactivity in the brain, MSI-1436 is distributed to the brain and several periph- especially the paraventricular hypothalamic nucleus eral tissues (5). A single or intermittent treatment with (PVN). This brain region integrates neural signals from MSI-1436 results in a prolonged reduction in food intake hypothalamic and brain stem nuclei and regulates feed- and body weight and has been partly attributed to its long ing behavior, autonomic function, and neuroendocrine half-life (ϳ7 days in rodents) (5).
    [Show full text]