Description of Structural Biases and Associated Data in Sensor-Rich Environments Massinissa Hamidi and Aomar Osmani LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord fhamidi,
[email protected] Abstract In this article, we study activity recognition in the context of sensor-rich en- vironments. We address, in particular, the problem of inductive biases and their impact on the data collection process. To be effective and robust, activity recognition systems must take these biases into account at all levels and model them as hyperparameters by which they can be controlled. Whether it is a bias related to sensor measurement, transmission protocol, sensor deployment topology, heterogeneity, dynamicity, or stochastic effects, it is important to un- derstand their substantial impact on the quality of activity recognition models. This study highlights the need to separate the different types of biases arising in real situations so that machine learning models, e.g., adapt to the dynamicity of these environments, resist to sensor failures, and follow the evolution of the sensors topology. We propose a metamodeling process in which the sensor data is structured in layers. The lower layers encode the various biases linked to transformations, transmissions, and topology of data. The upper layers encode biases related to the data itself. This way, it becomes easier to model hyperpa- rameters and follow changes in the data acquisition infrastructure. We illustrate our approach on the SHL dataset which provides motion sensor data for a list of human activities collected under real conditions. The trade-offs exposed and the broader implications of our approach are discussed with alternative techniques to encode and incorporate knowledge into activity recognition models.