3 Fermions and Bosons
3 Fermions and bosons exercises 3.1 and 3.4 by Dr. Peter Denteneer and Dmitry Pikulin 3.1 Second quantization Consider a system of spinless bosons in a (large) volume V . We will investigate how the diVerence between an external (one-body) potential and an interaction (two-body) potential appears when the Hamiltonian is written in terms of creation and annihilation operators (second quantization). Recall the definition of field and number operators, 1 X i~k ~r † È (~r ) e ¢ aˆ~ , nˆ(~r ) È (~r )È (~r ). Æ p k Æ V ~k (The integral over continuous ~k p~/ in infinite space, with a delta-function normalization, Æ ħ is replaced here by a sum over discrete ~k in a finite volume V .) a) In the case of an external potential u(~r ), show that the operator for the total potential energy, Z Uˆ d~r nˆ(~r )u(~r ) , Æ V can be expressed as follows in terms of creation and annihilation operators: X u~q X Uˆ aˆ† aˆ , m~ ~q m~ Æ ~q pV m~ Å where Z 1 i~q ~r u~q d~r e¡ ¢ u(~r ) ´ pV V are the Fourier components of the potential u(~r ). Let v(r ) be a short-range interaction potential, dependent only on the separation r 12 12 Æ ~r ~r . j 1 ¡ 2j b) Show that: 1 Z i(~k ~r1 ~` ~r2 m~ ~r1 ~n ~r2) v(~k~`,m~ ~n) d~r1d~r2 e¡ ¢ Å ¢ ¡ ¢ ¡ ¢ v(r12) Æ V 2 1 ±~k ~`,m~ ~n v~k m~ , Æ Å Å pV ¡ 1 where v~q are the Fourier components of v(r ).
[Show full text]