Interfield Variability in the Microbial Communities of Hydrothermal Vent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioenergetics of Mixotrophic Metabolisms: a Theoretical Analysis
Bioenergetics of mixotrophic metabolisms: A theoretical analysis by Stephanie Slowinski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Earth Sciences (Water) Waterloo, Ontario, Canada, 2019 © Stephanie Slowinski 2019 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions This thesis consists of two co-authored chapters. I contributed to the study design and execution in chapters 2 and 3. Christina M. Smeaton (CMS) and Philippe Van Cappellen (PVC) provided guidance during the study design and analysis. I co-authored both of these chapters with CMS and PVC. iii Abstract Many biogeochemical reactions controlling surface water and groundwater quality, as well as greenhouse gas emissions and carbon turnover rates, are catalyzed by microorganisms. Representing the thermodynamic (or bioenergetic) constraints on the reduction-oxidation reactions carried out by microorganisms in the subsurface is essential to understand and predict how microbial activity affects the environmental fate and transport of chemicals. While organic compounds are often considered to be the primary electron donors (EDs) in the subsurface, many microorganisms use inorganic EDs and are capable of autotrophic carbon fixation. Furthermore, many microorganisms and communities are likely capable of mixotrophy, switching between heterotrophic and autotrophic metabolisms according to the environmental conditions and energetic substrates available to them. -
Which Organisms Are Used for Anti-Biofouling Studies
Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E. -
Lectures 2020
Dr. Warshi Dandeniya Environmental microbiology SS 5113 Dr. Warshi Dandeniya Bioenergetics of microorganisms 2 h WS Evolution of metabolic pathways 2 h Reading assignment Techniques in environmental 3 h microbiology Presentation Microbial communities 3 h Biogeocycling of nutrients 4 h Enzymes in the soil env. 4 h Midterm paper All assessments 60% Microorganisms as sinks and 7 h WB sources of pollutants Presentation (15%) Principles of biological treatments 3 h End term examination 2h 25% Dr. Warshi Dandeniya Environmental microbiology The study of microorganisms that inhabit the Earth and their roles in carrying out processes in both natural and human made systems Ecology Physiology Environmental Microbial Sciences Ecology Thermodynamics Habitat diversity Evolution Dr. Warshi Dandeniya Traits of Microorganisms • Small size • Wide distribution throughout Earth’s habitat • High specific surface area • High rate of metabolic activity • Physiological responsiveness • Genetic malleability • Potential rapid growth rate • Incomparable nutritional diversity • Unbeatable enzymatic diversity What are the ecological consequences of traits? Can you name major taxonomic groups? Dr. Warshi Dandeniya Ubiquitous in the environment Dr. Warshi Dandeniya So much to explore • Estimated global diversity of microorganisms ~5 million species • So far cultured and characterized ~6,500 species • Documented based on biomarkers ~100,000 species Dr. Warshi Dandeniya An example from polar environment A metagenomic study with sea water revealed: • Very high microbial diversity in polar ocean • OTUs – 16S RNA gene markers with 97% similarity Cao et al., 2020 https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00826-9 Dr. Warshi Dandeniya Sri Lankan experience: Diversity of fungi in dry mixed evergreen forests (Dandeniya and Attanayake 2017) Maximum of 10 different CFU/plate 177 species Undisturbed forest Regenerating forest Chena 8 Culture based approach Metagenomic approach 8 Dr. -
Laboratory of Marine Environmental Microbiology
Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University 12/09/2017 Laboratory of Marine Environmental Microbiology Professor:Shigeki SAWAYAMA, Associate professor:Satoshi NAKAGAWA This laboratory is doing researches on microalgal productions of ω-3 fatty acids, carotenoids and third-generation biofuels by genetic engineering. ω-3 Fatty acids and carotenoids have physiological functions and are used for dietary supplements. We are also searching novel and useful fungi from marine environments. In addition, we have studied ecophysiology and evolution of ‘earth-eating’ microorganisms inhabiting various extreme marine environments such as deep-sea hydrothermal fields. ω-3 Fatty acids, carotenoids and biofuel production using microalgae Chlorella spp. produce ω-3 fatty acids and Dunaliella spp. produce β-carotene known as a vitamin A pre-cursor. We are doing researches on molecular biology of these microalgae to produce useful compounds. Dunaliella salina Marine fungi and methanogens Fungi producing large amount of enzymes are widely used for fermentation industries. We are conducting research on screening of novel marine fungi. We are also studying ecological roles of methanogens in aquatic environments. Marine fungus with melon flavor Microbial ecophysiology and evolution in extreme marine environments. Rich microbial ecosystems exist in deep-sea and oceanic sediments, and even in rock deep inside Earth’s crust, where not long ago it was thought that life could not exist. We have studied ecophysiology and evolution of microorganisms inhabiting extreme marine environments. ©JAMSTEC DSV Shinkai6500 Key words Microalgae, ω-3 Fatty acid, Carotenoid, Biofuel, Fungi, Yeast, Methanogen, Deep-sea vents, Symbiosis, Extremophiles Research Achievements 2017 Overexpression of DnaJ-like chaperone enhances carotenoid synthesis in Chlamydomonas reinhardtii. -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds. -
Microbiome of Grand Canyon Caverns, a Dry Sulfuric Karst Cave in Arizona, Supports Diverse Extremophilic Bacterial and Archaeal Communities
Raymond Keeler and Bradley Lusk. Microbiome of Grand Canyon Caverns, a dry sulfuric karst cave in Arizona, supports diverse extremophilic bacterial and archaeal communities. Journal of Cave and Karst Studies, v. 83, no. 1, p. 44-56. DOI:10.4311/2019MB0126 MICROBIOME OF GRAND CANYON CAVERNS, A DRY SULFURIC KARST CAVE IN ARIZONA, SUPPORTS DIVERSE EXTREMOPHILIC BACTERIAL AND ARCHAEAL COMMUNITIES Raymond Keeler1 and Bradley Lusk2,C Abstract We analyzed the microbial community of multicolored speleosol deposits found in Grand Canyon Caverns, a dry sulfuric karst cave in northwest Arizona, USA. Underground cave and karst systems harbor a great range of microbi- al diversity; however, the inhabitants of dry sulfuric karst caves, including extremophiles, remain poorly understood. Understanding the microbial communities inhabiting cave and karst systems is essential to provide information on the multidirectional feedback between biology and geology, to elucidate the role of microbial biogeochemical processes on cave formation, and potentially aid in the development of biotechnology and pharmaceuticals. Based on the V4 region of the 16S rRNA gene, the microbial community was determined to consist of 2207 operational taxonomic units (OTUs) using species-level annotations, representing 55 phyla. The five most abundant Bacteria were Actinobacteria 51.3 35.4 %, Proteobacteria 12.6 9.5 %, Firmicutes 9.8 7.3 %, Bacteroidetes 8.3 5.9 %, and Cyanobacteria 7.1 7.3 %. The relative abundance of Archaea represented 1.1 0.9 % of all samples and 0.2 0.04 % of samples were unassigned. Elemental analysis found that the composition of the rock varied by sample and that calcium (6200 3494 ppm), iron (1141 ± 1066 ppm), magnesium (25 17 ppm), and phosphorous (37 33 ppm) were the most prevalent elements detected across all samples. -
Pdf Circulation
Western Washington University Western CEDAR Biology Faculty and Staff ubP lications Biology 8-28-2017 Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc Kevin W. Hager Western Washington University Heather Fullerton Western Washington University David A. Butterfield University of Washington Craig L. Moyer Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/biology_facpubs Part of the Biology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Hager KW, Fullerton H, Butterfield DA and Moyer CL (2017) Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc. Front. Microbiol. 8:1578. doi: 10.3389/fmicb.2017.01578 This Article is brought to you for free and open access by the Biology at Western CEDAR. It has been accepted for inclusion in Biology Faculty and Staff ubP lications by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. ORIGINAL RESEARCH published: 28 August 2017 doi: 10.3389/fmicb.2017.01578 Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc Kevin W. Hager 1†, Heather Fullerton 1†, David A. Butterfield 2 and Craig L. Moyer 1* 1 Department of Biology, Western Washington University, Bellingham, WA, United States, 2 National Oceanic and Atmospheric Administration Pacific Marine Environmental Lab, Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, United States Edited by: Jesse G. Dillon, California State University, Long The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex Beach, United States geological setting, which provides a natural laboratory to study the influence of local Reviewed by: environmental conditions on microbial community structure as well as large-scale Gilberto E. -
4 Metabolic and Taxonomic Diversification in Continental Magmatic Hydrothermal Systems
Maximiliano J. Amenabar, Matthew R. Urschel, and Eric S. Boyd 4 Metabolic and taxonomic diversification in continental magmatic hydrothermal systems 4.1 Introduction Hydrothermal systems integrate geological processes from the deep crust to the Earth’s surface yielding an extensive array of spring types with an extraordinary diversity of geochemical compositions. Such geochemical diversity selects for unique metabolic properties expressed through novel enzymes and functional characteristics that are tailored to the specific conditions of their local environment. This dynamic interaction between geochemical variation and biology has played out over evolu- tionary time to engender tightly coupled and efficient biogeochemical cycles. The timescales by which these evolutionary events took place, however, are typically in- accessible for direct observation. This inaccessibility impedes experimentation aimed at understanding the causative principles of linked biological and geological change unless alternative approaches are used. A successful approach that is commonly used in geological studies involves comparative analysis of spatial variations to test ideas about temporal changes that occur over inaccessible (i.e. geological) timescales. The same approach can be used to examine the links between biology and environment with the aim of reconstructing the sequence of evolutionary events that resulted in the diversity of organisms that inhabit modern day hydrothermal environments and the mechanisms by which this sequence of events occurred. By combining molecu- lar biological and geochemical analyses with robust phylogenetic frameworks using approaches commonly referred to as phylogenetic ecology [1, 2], it is now possible to take advantage of variation within the present – the distribution of biodiversity and metabolic strategies across geochemical gradients – to recognize the extent of diversity and the reasons that it exists. -
Complex Subsurface Hydrothermal Fluid Mixing at a Submarine Arc Volcano Supports Distinct and Highly Diverse Microbial Communities
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities Anna-Louise Reysenbacha,1,2, Emily St. Johna,2, Jennifer Meneghina, Gilberto E. Floresb, Mircea Podarc, Nina Dombrowskid, Anja Spangd,e, Stephane L’Haridonf, Susan E. Humphrisg, Cornel E. J. de Rondeh, Fabio Caratori Tontinih, Maurice Tiveyg, Valerie K. Stuckeri, Lucy C. Stewarth,j, Alexander Diehlk,l, and Wolfgang Bachk,l aCenter for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR 97201; bDepartment of Biology, California State University, Northridge, CA 91330; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dRoyal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, NL-1790 AB Den Burg, The Netherlands; eDepartment of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden; fCNRS, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, F-29280 Plouzané, France; gDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; hDepartment of Earth Systems and Resources, GNS Science, Avalon, Lower Hutt 5010, New Zealand; iLaboratories and Collections, GNS Science, Avalon, Lower Hutt 5010, New Zealand; jToha Science, Wellington 6011, New Zealand; kFaculty of Geosciences, University of Bremen, 28359 Bremen, Germany; and lMARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved November 3, 2020 (received for review September 10, 2020) Hydrothermally active submarine volcanoes are mineral-rich bio- seawater circulation through oceanic crust. -
Biotechnological and Ecological Potential of Micromonospora Provocatoris Sp
marine drugs Article Biotechnological and Ecological Potential of Micromonospora provocatoris sp. nov., a Gifted Strain Isolated from the Challenger Deep of the Mariana Trench Wael M. Abdel-Mageed 1,2 , Lamya H. Al-Wahaibi 3, Burhan Lehri 4 , Muneera S. M. Al-Saleem 3, Michael Goodfellow 5, Ali B. Kusuma 5,6 , Imen Nouioui 5,7, Hariadi Soleh 5, Wasu Pathom-Aree 5, Marcel Jaspars 8 and Andrey V. Karlyshev 4,* 1 Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; [email protected] 2 Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt 3 Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] (L.H.A.-W.); [email protected] (M.S.M.A.-S.) 4 School of Life Sciences Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK; [email protected] 5 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] (M.G.); [email protected] (A.B.K.); [email protected] (I.N.); [email protected] (H.S.); [email protected] (W.P.-A.) 6 Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Citation: Abdel-Mageed, W.M.; Sumbawa University of Technology, Sumbawa Besar 84371, Indonesia 7 Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Al-Wahaibi, L.H.; Lehri, B.; 38124 Braunschweig, Germany Al-Saleem, M.S.M.; Goodfellow, M.; 8 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Kusuma, A.B.; Nouioui, I.; Soleh, H.; UK; [email protected] Pathom-Aree, W.; Jaspars, M.; et al. -
Downloaded 07 January 2019)
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator Michael Jahn1, Nick Crang1, Markus Janasch1, Andreas Hober1, Björn Forsström1, Kyle Kimler1,2, Alexander Mattausch1,3, Qi Chen1, Johannes Asplund-Samuelsson1, Elton P. Hudson1 Affiliation 1School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden. 2current affiliation: The Broad Institute and Boston Children's Hospital, Boston, MA, United States of America 3current affiliation: Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany Corresponding Author and Lead Contact Elton P. Hudson, [email protected] Keywords Cupriavidus necator; Ralstonia eutropha; cellular economy; resource allocation; resource balance; genome scale model; proteomics; mass spectrometry; substrate limitation Highlights ● A large fraction of the C. necator proteome is related to environmental readiness ● Highly utilized enzymes are more abundant and less variable ● Autotrophy related enzymes are largely underutilized ● Re-assimilation of CO2 via CBB cycle does not provide a fitness benefit on sugars 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
ABSTRACT FROCK, ANDREW DAVID. Functional Genomics
ABSTRACT FROCK, ANDREW DAVID. Functional Genomics Analysis of the Microbial Physiology and Ecology of Hyperthermophilic Thermotoga Species. (Under the direction of Dr. Robert Kelly.) Generation of renewable fuels through biological conversion of inexpensive carbohydrate feedstocks has been the focus of intense research, which has mostly involved metabolic engineering of model mesophilic microorganisms. However, hyperthermophilic (Topt ≥ 80°C) bacteria of the genus Thermotoga exhibit several desirable traits for a potential biofuel-producing host. They ferment a variety of carbohydrates to hydrogen with high yields approaching the theoretical limit for anaerobic metabolism of 4 mol H2/mol glucose. High temperature growth facilitates biomass feedstock degradation, decreases risk of contamination, and eliminates the reactor cooling costs associated with growth of mesophiles. To further understand the glycoside hydrolase and carbohydrate transporter inventory of these bacteria, four closely-related Thermotoga species were compared. T. maritima, T. neapolitana, T. petrophila, and T. sp. strain RQ2 share approximately 75% of their genomes, yet each species exhibited distinguishing features during growth on simple and complex carbohydrates that correlated with their genotypes. T. maritima and T. neapolitana displayed similar monosaccharide utilization profiles, with a strong preference for glucose and xylose. Only T. sp. strain RQ2 has a fructose specific phosphotransferase system (PTS), and it was the only species found to utilize fructose. T. petrophila consumes glucose to a lesser extent and up-regulates a transporter normally used for xylose (XylE1F1K1) to compensate for the absence of the primary glucose transporter in these species (XylE2F2K2). In some cases, the use of mixed cultures has been proposed to combine the complementary strengths of different microbes for the development of improved bioprocesses.