CONTINUOUS CATEGORIES and EXPONENTIABLE TOPOSES Peter

Total Page:16

File Type:pdf, Size:1020Kb

CONTINUOUS CATEGORIES and EXPONENTIABLE TOPOSES Peter Journal of Pure and Applied Algebra 25 (1982) 255-296 2JS North-Holland Publishing Company CONTINUOUS CATEGORIES AND EXPONENTIABLE TOPOSES Peter JOHNSTONE Dept. of Pure Mathematics, University of Cambridge, Cambridge, CB2 ISB, England and Andre JOYAL D&t. de Matkmatiques. Universitk du Quebec ri Montre‘al, MontrtiaI, H3C 3P8, Canada Communicated by P.J. Freyd Received 13 October 1981 Introduction The main objective of this paper is to contribute to the study of toposes as ‘generalized spaces’, by obtaining conditions for the existence of ‘function spaces’ (i.e. exponentials) in the 2-category of (Grothendieck) toposes and geometric morphisms. In view of the importance of function spaces in many areas of topology, we feel that this objective requires little justification. However, in analysing the notion of function space in the topos-theoretic context, we have been led to introduce a new concept which we have christened a ‘continuous category’, and which seems likely to be of considerable independent interest for the light which it sheds on the rapidly growing subject of continuous lattices. Accordingly, the first two sections of the paper are devoted to developing this new concept, and it therefore seems worthwhile to preface them with a reasonably non-technical account of how it has arisen. It has been known for many years [6] that, if X and Y are spaces, the space Yx of continuous functions from X to Y has its most pleasing properties if X is locally compact. It was first pointed out by Day and Kelly [2] that this good behaviour is related to a certain lattice-theoretic property of the open-set lattices of locally compact spaces. Subsequently, lattices with this property were studied (and given the name ‘continuous lattices’) by Scott [33], for rather different reasons: his researches in the theory of computation led him to regard them as a natural generalization of algebraic lattices (in fact the completion of the latter under splitting of idempotents in a suitable category of ‘continuous maps’). More strikingly, Scott also showed that every continuous lattice admits a certain intrinsic topology, and that the spaces obtained in this way from continuous lattices are 0022-4049/82/0000-0000/$02.75 0 1982 North-Holland 256 P. Johnslone. A. Joyal precisely the injective objects (with respect to subspace inclusions) in the category of To-spaces and continuous maps. Later, work of Isbell [19], Hofmann and Lawson [15] and Banaschewski [l] emphasized the links between local compactness, exponentiability (=possessing well-behaved function-spaces), and having continuous open-set lattice. Hyland [17] took a further step in this direction when he replaced the category of spaces by that of locales (i.e. complete Heyting algebras, regarded as generalized open-set lattices [18]); he was able to show that the link between continuous lattices and exponenti- ability remained valid in this context. However, none of these authors made explicit the link between exponentiability and injectivity in the category of To-spaces (or of locales); since this link is one of the important elements in our approach to exponentiability, we sketch it here. Suppose X is a To-space (or a locale, according to taste) which is exponentiable; i.e., the functor (-) xX has a right adjoint (-)x. Let S denote the Sierpinski space, i.e. the two-point space with just one open point. It is trivial to verify that S is injective (see [33]). Moreover, the functor (-) xX preserves subspace inclusions, so its right adjoint (-)x must preserve injectives; hence Sx is injective, and by Scott’s theorem its points form a continuous lattice in a canonical way. But by the adjunction, points of Sx correspond bijectively to continuous maps X-S, and hence to open subsets of X, so these too form a continuous lattice. (Of course, it is necessary to check that the canonical ordering on points of Sx coincides with the inclusion ordering on open subsets of X, we omit the details.) In the above argument, we used only the existence of the particular exponential Sx. But this is no accident: since S is a cogenerator for the category of sober spaces, the existence of Sx implies the existence of Yx for any sober space Y. In the converse direction, suppose we know that the open sets of X form a continuous lattice. Endowing this lattice with Scott’s topology, we obtain an injective space which is clearly the only possible candidate for the exponential Sx. Once again, some further work is needed to show that this space does have the universal property of an exponential, and we shall not give the details here. Let us now compare these arguments with what happens in the category 23?op/y of Grothendieck toposes. (Here Y denotes ‘the’ classical topos of sets, but in practice it could easily be replaced by any base topos having a natural number object.) The first thing to note is that, since ‘$J’top/9’ is a 2-category, we must concern ourselves with exponentiability in the 2-categorical sense; that is, we shall say a topos A is exponentiable if there exists a functor (-)# and a natural equivalence of categories 82op/.Y( r? x, 6, .i) = 233sop/~( C?,F ) for any pair of toposes (.6 ~9) (rather than a bijection between the objects of these categories). In ‘?J2op/.r/ the role of Sierpiriski space is played by the object classifier 9 [Xl (see [24]); it is easily deduced from the universal property of this topos that it is injective Conrinuous categories and e.rponenriable roposes 25-l (with respect to subtopos inclusions) and a cogenerator in a suitable 2-categorical sense. Accordingly, we may reduce the question of whether a topos (5 is exponentiable to that of whether the particular exponential .‘/[Xl” exists; and if this exponential exists it is necessarily an injective topos. But by the adjunction, the category of points of .Y[Xl” (i.e. geometric morphisms .Y-+ .‘/[Xl”) is equivalent to C: itself. Conversely, if A is equivalent to the category of points of an injective topos, then that topos (which, as we shall see, is determined up to equivalence by its category of points) is the natural candidate for the exponential .Y[Xl’, and we shall show that it does indeed have the right universal property. Our main result on exponentiability may thus be summarized as follows: Theorem. For a bounded .‘/-topos 6, the following are equivalent: (i) A is exponentiable in B?op/.v: (ii) The exponential .Y [Xl’ exists. (iii) 6 is equivalent to the category of points of an injective topos. The proof of this theorem will occupy Section 4 of this paper. However, before we embark on its proof, it is clearly advisable to study injective toposes and their categories of points in some detail. The first investigation of injective toposes was carried out by Johnstone [21]; although this investigation was incomplete in certain important respects, it did establish the fact that the injective toposes are precisely the retracts in %32op/Y of functor categories [r!““9 91 where % has finite limits. (Note: we shall refrain from using the usual exponential notation for functor categories, since we wish to reserve it for topos exponentials.) Thus the categories of points of injective toposes are retracts, in an appropriate category, of the categories of points of such functor categories - but it is well known that the category of points of [VP, .c/‘I is equivalent to the category of flat (=left exact) covariant functors V-19’. And the categories which arise in this way are exactly the locally finitely presentable categories of Gabriel and Ulmer [7]. Thus we are led to seek a categorical characterization of the idempotent- completion of locally finitely presentable categories - which is very reminiscent of Scott’s characterization of continuous lattices as the idempotent-completion of algebraic lattices. When we have this characterization, it turns out that we can reverse the implication in the last paragraph: if C?is a retract of a locally finitely pre- sentable category, then there exists an injective topos, determined up to equivalence by d, whose category of points is equivalent to 6. But there is another direction in which we can generalize this result. It was first pointed out by Markowsky [28] that the concept of continuous lattice has a natural generalization to posets which are not necessarily lattices, and that the resulting ‘continuous posets’ have a number of useful applications. In the same way, it seems profitable to develop our ‘continuous categories’ in a context which does not require the existence of finite limits or colimits, and this is what we shall do in Section 2. We shall then be able to extend our results on injective toposes to the class of ail toposes 258 P. Johnstone. A. Jo_val which occur as retracts of presheaf toposes; the latter appears as the natural analogue of the ‘projective sober spaces’ of Hoffmann [14], i.e. the spaces obtained by endowing continuous posets with the Scott topology. What then is our definition of a continuous category? Clearly, we should seek it by taking the definition of a continuous poset and generalizing it to suit the context where the underlying structure is a category rather than a partial order. But we must exercise some care here. The usual definition of a continuous poset or lattice is phrased in terms of the properties of a certain auxiliary relation (the ‘way-below relation’) on the elements of the poset; whilst an analogue of the way-below relation (the concept of ‘wavy arrow’) certainly exists in a continuous category, it seems hard to give an intrinsic characterization of it, and it is therefore not convenient to use it in a definition.
Recommended publications
  • Covers, Envelopes, and Cotorsion Theories in Locally Presentable
    COVERS, ENVELOPES, AND COTORSION THEORIES IN LOCALLY PRESENTABLE ABELIAN CATEGORIES AND CONTRAMODULE CATEGORIES L. POSITSELSKI AND J. ROSICKY´ Abstract. We prove general results about completeness of cotorsion theories and existence of covers and envelopes in locally presentable abelian categories, extend- ing the well-established theory for module categories and Grothendieck categories. These results are then applied to the categories of contramodules over topological rings, which provide examples and counterexamples. 1. Introduction 1.1. An abelian category with enough projective objects is determined by (can be recovered from) its full subcategory of projective objects. An explicit construction providing the recovery procedure is described, in the nonadditive context, in the paper [13] (see also [21]), where it is called “the exact completion of a weakly left exact category”, and in the additive context, in the paper [22, Lemma 1], where it is called “the category of coherent functors”. In fact, the exact completion in the additive context is contained already in [19], as it is explained in [35]. Hence, in particular, any abelian category with arbitrary coproducts and a single small (finitely generated, finitely presented) projective generator P is equivalent to the category of right modules over the ring of endomorphisms of P . More generally, an abelian category with arbitrary coproducts and a set of small projective generators is equivalent to the category of contravariant additive functors from its full subcategory formed by these generators into the category of abelian groups (right modules over arXiv:1512.08119v2 [math.CT] 21 Apr 2017 the big ring of morphisms between the generators). Now let K be an abelian category with a single, not necessarily small projective generator P ; suppose that all coproducts of copies of P exist in K.
    [Show full text]
  • Introduction to Category Theory (Notes for Course Taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT)
    Introduction to category theory (notes for course taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT) Alexander Yom Din February 10, 2021 It is never true that two substances are entirely alike, differing only in being two rather than one1. G. W. Leibniz, Discourse on metaphysics 1This can be imagined to be related to at least two of our themes: the imperative of considering a contractible groupoid of objects as an one single object, and also the ideology around Yoneda's lemma ("no two different things have all their properties being exactly the same"). 1 Contents 1 The basic language 3 1.1 Categories . .3 1.2 Functors . .7 1.3 Natural transformations . .9 2 Equivalence of categories 11 2.1 Contractible groupoids . 11 2.2 Fibers . 12 2.3 Fibers and fully faithfulness . 12 2.4 A lemma on fully faithfulness in families . 13 2.5 Definition of equivalence of categories . 14 2.6 Simple examples of equivalence of categories . 17 2.7 Theory of the fundamental groupoid and covering spaces . 18 2.8 Affine algebraic varieties . 23 2.9 The Gelfand transform . 26 2.10 Galois theory . 27 3 Yoneda's lemma, representing objects, limits 27 3.1 Yoneda's lemma . 27 3.2 Representing objects . 29 3.3 The definition of a limit . 33 3.4 Examples of limits . 34 3.5 Dualizing everything . 39 3.6 Examples of colimits . 39 3.7 General colimits in terms of special ones . 41 4 Adjoint functors 42 4.1 Bifunctors . 42 4.2 The definition of adjoint functors . 43 4.3 Some examples of adjoint functors .
    [Show full text]
  • Filtered Derived Categories and Their Applications
    Filtered derived categories and their applications D. Kaledin∗ Contents 1 f-categories. 1 1.1 Definitions and examples. 1 1.2 Reflecting the filtration. 3 1.3 The comparison functor. 5 1.4 Further adjunctions. 7 1.5 Morphisms. 9 2 End(N)-action. 12 2.1 Prototype: End(N)-action on functor categories. 12 2.2 N-categories. 15 2.3 Uniqueness. 16 2.4 Full embeddings. 19 2.5 Bifibrations. 22 3 Λ∞-categories. 28 3.1 The category Λ∞. ........................ 28 3.2 Unbounded maps. 30 3.3 The bifibration ΛD: preliminaries. 32 3.4 The bifibration ΛD: the construction. 35 3.5 Functoriality. 37 Introduction. 1 f-categories. 1.1 Definitions and examples. Out starting point is a version of a definition given by Beilinson in [B]. ∗Partially supported by grant NSh-1987.2008.1 1 Preliminary version – please do not distribute, use at your own risk 2 Definition 1.1. An f-category is a triple hD, F, si of a triangulated cate- gory D, a fully faithful left-admissible triangulated embedding F : D → D, called the twist functor, and a morphism s : F → Id from F to the identity functor Id : D → D, such that 2 (i) for any M ∈ D, we have sF (M) = F (sM ): F (M) → F (M), and ⊥ (ii) for any M ∈ F (D), the cone of the map sM : F (M) → M lies in F (D)⊥. The quotient category D/F (D) is called the core of the f-category hD, F, si and denoted by C(D,F ), or simply C(D) when there is no danger of confu- sion.
    [Show full text]
  • The Limit-Colimit Coincidence for Categories
    The Limit-Colimit Coincidence for Categories Paul Taylor 1994 Abstract Scott noticed in 1969 that in the category of complete lattices and maps preserving directed joins, limit of a sequence of projections (maps with preinverse left adjoints) is isomorphic to the colimit of those left adjoints (called embeddings). This result holds in any category of domains and is the basis of the solution of recursive domain equations. Limits of this kind (and continuity with respect to them) also occur in domain semantics of polymorphism, where we find that we need to generalise from sequences to directed or filtered diagrams and drop the \preinverse" condition. The result is also applicable to the proof of cartesian closure for stable domains. The purpose of this paper is to express and prove the most general form of the result, which is for filtered diagrams of adjoint pairs between categories with filtered colimits. The ideas involved in the applications are to be found elsewhere in the literature: here we are concerned solely with 2-categorical details. The result we obtain is what is expected, the only remarkable point being that it seems definitely to be about pseudo- and not lax limits and colimits. On the way to proving the main result, we find ourselves also performing the constructions needed for domain interpretations of dependent type polymorphism. 1 Filtered diagrams The result concerns limits and colimits of filtered diagrams of categories, so we shall be interested in functors of the form FCCatcp I! where is a filtered category and FCCatcp is the 2-category of small categories with filtered colimits,I functors with right adjoints which preserve filtered colimits and natural transformations.
    [Show full text]
  • 3 0.2. So, Why Ind-Coherent Sheaves? 4 0.3
    IND-COHERENT SHEAVES DENNIS GAITSGORY To the memory of I. M. Gelfand Abstract. We develop the theory of ind-coherent sheaves on schemes and stacks. The category of ind-coherent sheaves is closely related, but inequivalent, to the category of quasi- coherent sheaves, and the difference becomes crucial for the formulation of the categorical Geometric Langlands Correspondence. Contents Introduction 3 0.1. Why ind-coherent sheaves? 3 0.2. So, why ind-coherent sheaves? 4 0.3. Contents of the paper: the \elementary" part 6 0.4. Interlude: 1-categories 7 0.5. Contents: the rest of the paper 9 0.6. Conventions, terminology and notation 10 0.7. Acknowledgements 12 1. Ind-coherent sheaves 13 1.1. The set-up 13 1.2. The t-structure 13 1.3. QCoh as the left completion of IndCoh 15 1.4. The action of QCoh(S) on IndCoh(S) 16 1.5. Eventually coconnective case 16 1.6. Some converse implications 17 2. IndCoh in the non-Noetherian case 18 2.1. The coherent case 18 2.2. Coherent sheaves in the non-Noetherian setting 18 2.3. Eventual coherence 19 2.4. The non-affine case 21 3. Basic Functorialities 22 3.1. Direct images 22 3.2. Upgrading to a functor 23 3.3. The !-pullback functor for proper maps 26 3.4. Proper base change 27 3.5. The (IndCoh; ∗)-pullback 30 3.6. Morphisms of bounded Tor dimension 33 4. Properties of IndCoh inherited from QCoh 36 4.1. Localization 37 4.2. Zariski descent 39 Date: October 14, 2012.
    [Show full text]
  • Operads and Chain Rules for Calculus of Functors
    OPERADS AND CHAIN RULES FOR THE CALCULUS OF FUNCTORS GREG ARONE AND MICHAEL CHING Abstract. We study the structure possessed by the Goodwillie derivatives of a pointed homotopy functor of based topological spaces. These derivatives naturally form a bimodule over the operad consisting of the derivatives of the identity functor. We then use these bimodule structures to give a chain rule for higher derivatives in the calculus of functors, extending that of Klein and Rognes. This chain rule expresses the derivatives of FG as a derived composition product of the derivatives of F and G over the derivatives of the identity. There are two main ingredients in our proofs. Firstly, we construct new models for the Goodwillie derivatives of functors of spectra. These models allow for natural composition maps that yield operad and module structures. Then, we use a cosimplicial cobar construction to transfer this structure to functors of topological spaces. A form of Koszul duality for operads of spectra plays a key role in this. In a landmark series of papers, [16], [17] and [18], Goodwillie outlines his `calculus of homotopy functors'. Let F : C!D (where C and D are each either Top∗, the category of pointed topological spaces, or Spec, the category of spectra) be a pointed homotopy functor. One of the things that Goodwillie does is associate with F a sequence of spectra, which are called the derivatives of F . We denote these spectra by @1F; @2F; : : : ; @nF; : : :, or, collectively, by @∗F . Importantly, for each n the spectrum @nF has a natural action of the symmetric group Σn.
    [Show full text]
  • Tt-Geometry of Filtered Modules
    TT-GEOMETRY OF FILTERED MODULES MARTIN GALLAUER Abstract. We compute the tensor triangular spectrum of perfect complexes of filtered modules over a commutative ring, and deduce a classification of the thick tensor ideals. We give two proofs: one by reducing to perfect complexes of graded modules which have already been studied in the literature [10, 11], and one more direct for which we develop some useful tools. Contents 1. Introduction1 Acknowledgment4 Conventions5 2. Category of filtered modules5 3. Derived category of filtered modules9 4. Main result 12 5. Central localization 16 6. Reduction steps 19 7. The case of a field 20 8. Continuity of tt-spectra 23 References 26 1. Introduction One of the age-old problems mathematicians engage in is to classify their objects of study,up to an appropriate equivalence relation. In contexts in which the domain is organized in a category with compatible tensor and triangulated structure (we call this a tt-category) it is natural to view objects as equivalent when they can be constructed from each other using sums, extensions, translations, tensor product arXiv:1708.00833v3 [math.CT] 10 Sep 2019 etc., in other words, using the tensor and triangulated structure alone. This can be made precise by saying that the objects generate the same thick tensor ideal (or, tt- ideal) in the tt-category. This sort of classification is precisely what tt-geometry, as developed by Balmer, achieves. To a (small) tt-category it associates a topological space Spc( ) called the tt-spectrum of which, via its ThomasonT subsets, classifies the (radical)T tt-ideals of .
    [Show full text]
  • Topics in Koszul Duality, Michaelmas 2019, Oxford University Lecture 2
    Topics in Koszul Duality, Michaelmas 2019, Oxford University Lecture 2: Categorical Background In this lecture, we will take a second look at Morita theory, and illustrate several cate- gorical concepts along the way. This will set the stage for the Barr{Beck theorem, which will be discussed in the next lecture, and for its higher categorical generalisation. Abstract categorical arguments of this kind can often be circumvented when dealing with \discrete" objects such as rings or modules, but become an indispensable tool in the study of \homotopical" objects like differential graded algebras or chain complexes. As we have seen in the overview class last week, Koszul duality forces us into a differential graded setting because certain hom-spaces only become nontrivial after having been derived 2 ∼ (e.g. remember that for R = k[]/ , we had HomR(k; k) = k but R HomR(k; k) = k[x]). 2.1. A reminder on Morita theory. The first result from last class will serve as a toy model; we recall it using Notation 1.7 from last class. ~ Proposition 2.1. Let Q 2 ModR be a left module over an associative ring R such that (1) Q is finite projective, i.e. a direct summand of R⊕n for some n; (2) Q is a generator, which means that the functor HomR(Q; −) is faithful. op Then R and S = EndR(Q) are Morita equivalent, which is witnessed by inverse equivalences ~ ~ Ge : ModR ! ModS ;M 7! HomR(Q; M) ~ ~ Fe : ModS ! ModR;N 7! Q ⊗S N: Proving Proposition 2.1 by hand is a reasonably straightforward, yet tedious, exercise.
    [Show full text]
  • Chromatic Homotopy Theory Is Asymptotically Algebraic
    CHROMATIC HOMOTOPY THEORY IS ASYMPTOTICALLY ALGEBRAIC TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON Abstract. Inspired by the Ax{Kochen isomorphism theorem, we develop a notion of categorical ultraproducts to capture the generic behavior of an infinite collection of mathematical objects. We employ this theory to give an asymptotic solution to the approximation problem in chromatic homotopy theory. More precisely, we show that the ultraproduct of the E(n; p)-local categories over any non-prinicipal ultrafilter on the set of prime numbers is equivalent to the ultraproduct of certain algebraic categories introduced by Franke. This shows that chromatic homotopy theory at a fixed height is asymptotically algebraic. arXiv:1711.00844v2 [math.AT] 12 Feb 2018 1 2 TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON Contents 1. Introduction 2 2. Recollections 8 2.1. Ultrafilters 8 2.2. Set-theoretic ultraproducts 9 3. Ultraproducts 12 3.1. Ultraproducts in 1-categories 12 3.2. Ultraproducts of 1-categories 15 3.3. Compactly generated ultraproducts 19 3.4. Protoproducts of compactly generated 1-categories 22 3.5. Filtrations on module categories 27 3.6. Protoproducts of module categories 29 4. Formality 35 4.1. Properties of H 36 4.2. The reduction to the rational and p-complete cases 38 4.3. Rational formality 41 4.4. The Cp−1-action on E-theory 43 4.5. Symmetric monoidal categories from abelian groups 45 4.6. Functorial weight decompositions 48 4.7. Formality of the ultraproduct 52 5. Descent 55 5.1. Abstract descent 55 5.2. Descent for the E-local categories 60 5.3.
    [Show full text]
  • Sigma Limits in 2-Categories and Flat Pseudofunctors
    Sigma limits in 2-categories and flat pseudofunctors Descotte M.E., Dubuc E.J., Szyld M. Abstract In this paper we introduce sigma limits (which we write σ-limits), a concept that interpolates between lax and pseudolimits: for a fixed family Σ of arrows of a 2-category A, F a σ-cone for a 2-functor A −→ B is a lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible. The conical σ-limit of F is the universal σ-cone. Similary we define σ-natural transformations and weighted σ-limits. We consider also the case of bilimits. We develop the theory of σ-limits and σ-bilimits, whose importance relies on the following key fact: any weighted σ-limit (or σ-bilimit) can be expressed as a conical one. From this we obtain, in particular, a canonical expression of an arbitrary Cat-valued 2-functor as a conical σ-bicolimit of representable 2-functors, for a suitable choice of Σ, which is equivalent to the well known bicoend formula. As an application, we establish the 2-dimensional theory of flat pseudofunctors. We de- fine a Cat-valued pseudofunctor to be flat when its left bi-Kan extension along the Yoneda 2-functor preserves finite weighted bilimits. We introduce a notion of 2-filteredness of a 2-category with respect to a class Σ, which we call σ-filtered. Our main result is: A pseudofunctor A −→Cat is flat if and only if it is a σ-filtered σ-bicolimit of representable 2-functors.
    [Show full text]
  • Brief Introduction to Categories
    Brief Introduction to Categories Torsten Wedhorn TU Darmstadt Contents 1 Categories 1 2 Functors 3 3 Limits and Colimits 5 4 Special cases of limits and colimits 8 1 Categories Definition 1.1. A category C consists ofy (a) a class Ob(C) of objects, (b) for any two objects X and Y a set C(X; Y ) := HomC(X; Y ) = Hom(X; Y ) of morphisms from X to Y , (c) for any three objects X, Y , Z a composition map C(X; Y ) × C(Y; Z) !C(X; Z); (f; g) 7! g ◦ f such that all morphisms sets are disjoint (hence every morphism f 2 C(X; Y ) has unique source X and a unique target Y ) and such that (1) the composition of morphisms is associative (i.e., for all objects X, Y , Z, W and for all f 2 C(X; Y ), g 2 C(Y; Z), h 2 C(Z; W ) one has h ◦ (g ◦ f) = (h ◦ g) ◦ f, (2) For all objects X there exists a morphism idX 2 C(X; X), called identity of X such that for all objects Y and for all morphisms f 2 C(X; Y ) and g 2 C(Y; X) one has f ◦ idX = f and idX ◦g = g. A category is called finite if it has only finitely many objects and morphisms. Remark 1.2. For every object X of a category C the morphism idX is uniquely deter- ~ ~ ~ mined by Condition (2) for if idX and idX are identities of X, then idX = idX ◦ idX = idX .
    [Show full text]
  • Enriched Accessible Categories
    BULL. AUSTRAL. MATH. SOC. 18D20, 18C99 VOL. 54 (1996) [489-501] ENRICHED ACCESSIBLE CATEGORIES FRANCIS BORCEUX AND CARMEN QUINTERIRO We consider category theory enriched in a locally finitely presentable symmetric monoidal closed category V. We define the V-filtered colimits as those colimits weighted by a V-flat presheaf and consider the corresponding notion of V-accessible category. We prove that V-accessible categories coincide with the categories of V-flat presheaves and also with the categories of V-points of the categories of V-presheaves. Moreover, the V-locally finitely presentable categories are exactly the V-cocomplete finitely accessible ones. To prove this last result, we show that the Cauchy completion of a small V-category C is equivalent to the category of V-finitely presentable V-flat presheaves on C. 1. INTRODUCTION The notions of locally finitely presentable category (see [3]) and symmetric monoidal closed category (see [2]) are now classical. Following a work of Kelly (see [6]) we fix a "locally finitely presentable symmetric monoidal closed category V", meaning by this a category having all those properties and in which, moreover, it is assumed that a finite tensor product of finitely presentable objects is again finitely presentable (that is, the unit / of the tensor product is finitely presentable and when V, W are finitely presentable, so is V <g> W). Observe that the categories of sets, Abelian groups, modules on a commutative ring, small categories, and all toposes of presheaves are instances of such categories V. This fixes the assumptions on our base category V; we shall no longer mention them in the rest of the paper.
    [Show full text]