Numerical Reproducibility and Parallel Computations: Issues for Interval Algorithms Nathalie Revol, Member, IEEE, and Philippe Theveny´

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Reproducibility and Parallel Computations: Issues for Interval Algorithms Nathalie Revol, Member, IEEE, and Philippe Theveny´ NUMERICAL REPRODUCIBILITY AND INTERVAL ALGORITHMS 1 Numerical Reproducibility and Parallel Computations: Issues for Interval Algorithms Nathalie Revol, Member, IEEE, and Philippe Theveny´ Abstract—What is called numerical reproducibility is the The inclusion property is satisfied by the defi- problem of getting the same result when the scientific nition of the arithmetic operations, and other op- computation is run several times, either on the same erations and functions acting on intervals. Imple- machine or on different machines, with different types mentations of interval arithmetic on computers often and numbers of processing units, execution environments, computational loads etc. This problem is especially strin- rely on the floating-point unit provided by the gent for HPC numerical simulations. In what follows, the processor. The inclusion property is preserved via focus is on parallel implementations of interval arithmetic the use of directed roundings. If an interval is using floating-point arithmetic. For interval computations, given exactly for instance by its endpoints, the left numerical reproducibility is of course an issue for testing endpoint of its floating-point representation is the and debugging purposes. However, as long as the computed rounding towards −∞ of the left endpoint of the result encloses the exact and unknown result, the inclusion property, which is the main property of interval arithmetic, exact interval. Likewise, the right endpoint of its is satisfied and getting bit for bit identical results may not floating-point representation is the rounding towards be crucial. Still, implementation issues may invalidate the +1 of the right endpoint of the exact interval. inclusion property. Several ways to preserve the inclusion Similarly, directed roundings are used to implement property are presented, on the example of the product of mathematical operations and functions: in this way, matrices with interval coefficients. roundoff errors are accounted for and the inclusion Index Terms—interval arithmetic, numerical repro- property is satisfied. ducibility, parallel implementation, floating-point arith- In this paper, the focus is on the problems en- metic, rounding mode. countered while implementing interval arithmetic, using floating-point arithmetic, on multicore archi- tectures. In a sense these issues relate to issues I. INTRODUCTION known as problems of numerical reproducibility in Interval arithmetic is a mean to perform numeri- scientific computing using floating-point arithmetic cal computations and to get a guarantee on the com- on emerging architectures. The common points and puted result. In interval arithmetic, one computes the differences and concerns which are specific to with intervals, not numbers. These intervals are interval arithmetic will be detailed. guaranteed to contain the (set of) exact values, both The main contributions of this paper are the arXiv:1312.3300v1 [cs.NA] 11 Dec 2013 input values and computed values, and this property identification of problems that cause numerical is preserved throughout the computations. Indeed, irreproducibility of interval computations, and the fundamental theorem of interval arithmetic is the recommendations to circumvent these problems. inclusion property: each computed interval contains The classification proposed here distinguishes be- the exact (set of) result(s). To learn more about tween three categories. The first category, addressed interval arithmetic, see [29], [30], [32], [42], [43], in Section IV, concerns problems of variable com- [50]. puting precision that occur both in sequential and parallel implementations, both for floating-point and Universite´ de Lyon - LIP (UMR 5668 CNRS - ENS de Lyon - interval computations. These behaviours are mo- INRIA - UCBL), ENS de Lyon, France Nathalie Revol is with INRIA - tivated by the quest of speed, at the expense of [email protected] - WWW home page: accuracy on the results, be they floating-point or http://perso.ens-lyon.fr/nathalie.revol/ intervals results. However, even if these behaviours Philippe Theveny´ is with ENS de Lyon - [email protected] - WWW home page: hinder numerical reproducibility, usually they do http://perso.ens-lyon.fr/philippe.theveny/ not threaten the validity of interval computations: NUMERICAL REPRODUCIBILITY AND INTERVAL ALGORITHMS 2 interval results satisfy the inclusion property. modification of shared data structures. The order The second category, developed in Section V, in which communications from different senders concerns the order of operations. Due mainly to arrive at a common receiver, the relative order in the indeterminism in multithreaded computations, which threads or processes are executed, the order the order of operations may vary. It is the most in which shared data structures such as working acknowledged problem. Again, this problem is due lists are consulted or modified, is not deterministic. to the quest of short execution time, again it hin- Indeed, for the example of threads, the quest for ders numerical reproducibility of floating-point or speed leads a greedy scheduler to start a task as interval computations, but at first sight it does soon as it is ready, and not at the time or order at not invalidate the inclusion property. However, an which it should start in a sequential execution. One interval algorithm will be presented, whose validity consequence of this indeterminism is that speed is relies on an assumption on the order of operations. traded against numerical reproducibility of floating- The problems of the third category, detailed in point computations: computed results may differ, Section VI, are specific to interval computations and depending on the order in which events happened have an impact on the validity of interval results. in one run or another. However, numerical repro- The question is whether directed rounding modes, ducibility is a desirable feature, at least for debug- set by the user or the interval library, are respected ging purposes: how is it possible to find and fix a by the environment. These problems occur both for bug that occurs sporadically, in an indeterministic sequential and parallel computations. Ignoring the way? Testing is also impossible without numeri- rounding modes can permit to reduce the execution cal reproducibility: when a program returns results time. Indeed, changing the rounding mode can incur which differ from the results of a reference imple- a severe penalty: the slowdown lies between 10 mentation, nothing can be concluded in the absence and 100 on architectures where the rounding modes of numerical reproducibility. To address the issue of are accessed via global flags and where changing a numerical reproducibility, in [45], not only the use rounding mode implies to flush pipelines. However, of higher computing precision is recommended, but it seems that the most frequent motivation is either also the use of interval arithmetic or of some variant the ignorance of issues related to rounding modes, of it in order to get numerical guarantees, and the or the quest for an easier and faster development use of tools that can diagnose sensitive portions of of the execution environment by overlooking these code and take corrective actions. We follow these issues. tracks and we focus on interval arithmetic, the same For each category, we give recommendations conclusions can be drawn for its “variants” such as for the design of interval algorithms: numerical affine arithmetic or polynomial models, e.g. Taylor reproducibility is still not attained, but the impact models. of the problems identified is attenuated and the First, let us introduce the problem of numer- inclusion property is preserved. ical reproducibility in floating-point arithmetic. Floating-point arithmetic is standardised and the Before detailing our classification, numerical re- IEEE-754 standard [18], [19] specifies completely producibility is defined in Section II and then an the formats of floating-point numbers, their binary extensive bibliography is detailed in Section III. representation and the behaviour of arithmetic op- erations. One of the goals of this standardisation was to enable portability and reproducibility of II. PROBLEM OF NUMERICAL REPRODUCIBILITY numerical computations across architectures. How- In computing in general and in scientific com- ever, several runs of the same code on different puting in particular, the quest for speed has led platforms, or even on the same platform when the to parallel or distributed computations, from mul- code is parallel (typically, multithreaded) may yield tithreaded programming to high-performance com- different results. Getting the same result on the same puting (HPC). Within such computations, contrary platform is sometimes called repeatability. Only the to sequential ones, the order in which events occur word reproducibility will be used throughout this is not deterministic. Events here is a generic term paper. which covers communications, threads or processes, Let us give a first explanation to the lack of NUMERICAL REPRODUCIBILITY AND INTERVAL ALGORITHMS 3 numerical reproducibility. On some architectures, that rounding modes are not respected by numerical and with some programming languages and com- libraries such as BLAS [23], nor by compilers pilers, intermediate computations such as the in- when default options are used, nor by execution termediate sum in s a + b + c can take place environment for multithreaded computations, nor with variable precision. This precision can depend
Recommended publications
  • Efficient Splitter for Data Parallel Complex Event Procesing
    Institute of Parallel and Distributed Systems University of Stuttgart Universitätsstraße D– Stuttgart Bachelorarbeit Efficient Splitter for Data Parallel Complex Event Procesing Marco Amann Course of Study: Softwaretechnik Examiner: Prof. Dr. Dr. Kurt Rothermel Supervisor: M. Sc. Ahmad Slo Commenced: March , Completed: September , Abstract Complex Event Processing systems are a promising approach to detect patterns on ever growing amounts of event streams. Since a single server might not be able to run an operator at a sufficiently high rate, Data Parallel Complex Event Processing aims to distribute the load of one operator onto multiple nodes. In this work we analyze the splitter of an existing CEP framework, detail on its drawbacks and propose optimizations to cope with them. This yields the newly developed SPACE framework, which is evaluated and compared with an industry-proven CEP framework, Apache Flink. We show that the new splitter has greatly improved performance and is able to support more instances at a higher rate. In comparison with Apache Flink, the SPACE framework is able to process events at higher rates in our benchmarks but is less stable if overloaded. Kurzfassung Complex Event Processing Systeme stellen eine vielversprechende Möglichkeit dar, Muster in immer größeren Mengen von Event-Strömen zu erkennen. Da ein einzelner Server nicht in der Lage sein kann, einen Operator mit einer ausreichenden Geschwindigkeit zu betreiben, versucht Data Parallel Complex Event Processing die Last eines Operators auf mehrere Knoten zu verteilen. In dieser Arbeit wird ein Splitter eines vorhandenen CEP systems analysiert, seine Nachteile hervorgearbeitet und Optimierungen vorgeschlagen. Daraus entsteht das neue SPACE Framework, welches evaluiert wird und mit Apache Flink, einem industrieerprobten CEP Framework, verglichen wird.
    [Show full text]
  • Phases of Two Adjoints QCD3 and a Duality Chain
    Phases of Two Adjoints QCD3 And a Duality Chain Changha Choi,ab1 aPhysics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794, USA bSimons Center for Geometry and Physics, Stony Brook, NY 11794, USA Abstract We analyze the 2+1 dimensional gauge theory with two fermions in the real adjoint representation with non-zero Chern-Simons level. We propose a new fermion-fermion dualities between strongly-coupled theories and determine the quantum phase using the structure of a `Duality Chain'. We argue that when Chern-Simons level is sufficiently small, the theory in general develops a strongly coupled quantum phase described by an emergent topological field theory. For special cases, our proposal predicts an interesting dynamical scenario with spontaneous breaking of partial 1-form or 0-form global symmetry. It turns out that SL(2; Z) transformation and the generalized level/rank duality are crucial for the unitary group case. We further unveil the dynamics of the 2+1 dimensional gauge theory with any pair of adjoint/rank-two fermions or two bifundamental fermions using similar `Duality Chain'. arXiv:1910.05402v1 [hep-th] 11 Oct 2019 [email protected] Contents 1 Introduction1 2 Review : Phases of Single Adjoint QCD3 7 3 Phase Diagrams for k 6= 0 : Duality Chain 10 3.1 k ≥ h : Semiclassical Regime . 10 3.2 Quantum Phase for G = SU(N)......................... 10 3.3 Quantum Phase for G = SO(N)......................... 13 3.4 Quantum Phase for G = Sp(N)......................... 16 3.5 Phase with Spontaneously Broken Partial 1-form, 0-form Symmetry . 17 4 More Duality Chains and Quantum Phases 19 4.1 Gk+Pair of Rank-Two/Adjoint Fermions .
    [Show full text]
  • Basic Electrical Engineering
    BASIC ELECTRICAL ENGINEERING V.HimaBindu V.V.S Madhuri Chandrashekar.D GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous) Index: 1. Syllabus……………………………………………….……….. .1 2. Ohm’s Law………………………………………….…………..3 3. KVL,KCL…………………………………………….……….. .4 4. Nodes,Branches& Loops…………………….……….………. 5 5. Series elements & Voltage Division………..………….……….6 6. Parallel elements & Current Division……………….………...7 7. Star-Delta transformation…………………………….………..8 8. Independent Sources …………………………………..……….9 9. Dependent sources……………………………………………12 10. Source Transformation:…………………………………….…13 11. Review of Complex Number…………………………………..16 12. Phasor Representation:………………….…………………….19 13. Phasor Relationship with a pure resistance……………..……23 14. Phasor Relationship with a pure inductance………………....24 15. Phasor Relationship with a pure capacitance………..……….25 16. Series and Parallel combinations of Inductors………….……30 17. Series and parallel connection of capacitors……………...…..32 18. Mesh Analysis…………………………………………………..34 19. Nodal Analysis……………………………………………….…37 20. Average, RMS values……………….……………………….....43 21. R-L Series Circuit……………………………………………...47 22. R-C Series circuit……………………………………………....50 23. R-L-C Series circuit…………………………………………....53 24. Real, reactive & Apparent Power…………………………….56 25. Power triangle……………………………………………….....61 26. Series Resonance……………………………………………….66 27. Parallel Resonance……………………………………………..69 28. Thevenin’s Theorem…………………………………………...72 29. Norton’s Theorem……………………………………………...75 30. Superposition Theorem………………………………………..79 31.
    [Show full text]
  • 7. Parallel Methods for Matrix-Vector Multiplication 7
    7. Parallel Methods for Matrix-Vector Multiplication 7. Parallel Methods for Matrix-Vector Multiplication................................................................... 1 7.1. Introduction ..............................................................................................................................1 7.2. Parallelization Principles..........................................................................................................2 7.3. Problem Statement..................................................................................................................3 7.4. Sequential Algorithm................................................................................................................3 7.5. Data Distribution ......................................................................................................................3 7.6. Matrix-Vector Multiplication in Case of Rowwise Data Decomposition ...................................4 7.6.1. Analysis of Information Dependencies ...........................................................................4 7.6.2. Scaling and Subtask Distribution among Processors.....................................................4 7.6.3. Efficiency Analysis ..........................................................................................................4 7.6.4. Program Implementation.................................................................................................5 7.6.5. Computational Experiment Results ................................................................................5
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • Parallel Methods for Matrix Multiplication
    University of Nizhni Novgorod Faculty of Computational Mathematics & Cybernetics IntroductionIntroduction toto ParallelParallel ProgrammingProgramming Section 8. Parallel Methods for Matrix Multiplication Gergel V.P., Professor, D.Sc., Software Department Contents Problem Statement Sequential Algorithm Algorithm 1 – Block-Striped Decomposition Algorithm 2 – Fox’s method Algorithm 3 – Cannon’s method Summary Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P. 2 → 50 Problem Statement Matrix multiplication: C = A⋅ B or ⎛ c , c , ..., c ⎞ ⎛ a , a , ..., a ⎞ ⎛ b , b , ..., a ⎞ ⎜ 0,0 0,1 0,l−1 ⎟ ⎜ 0,0 0,1 0,n−1 ⎟ ⎜ 0,0 0,1 0,l−1 ⎟ ⎜ ... ⎟ = ⎜ ... ⎟ ⎜ ... ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝cm−1,0 , cm−1,1, ..., cm−1,l−1 ⎠ ⎝am−1,0 , am−1,1, ..., am−1,n−1 ⎠ ⎝bn−1,0 , bn−1,1, ..., bn−1,l−1 ⎠ ª The matrix multiplication problem can be reduced to the execution of m·l independent operations of matrix A rows and matrix B columns inner product calculation n−1 T cij = ()ai ,b j = ∑aik ⋅bkj , 0 ≤ i < m, 0 ≤ j < l k=0 Data parallelism can be exploited to design parallel computations Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P. 3 → 50 Sequential Algorithm… // Algorithm 8.1 // Sequential algorithm of matrix multiplication double MatrixA[Size][Size]; double MatrixB[Size][Size]; double MatrixC[Size][Size]; int i,j,k; ... for (i=0; i<Size; i++){ for (j=0; j<Size; j++){ MatrixC[i][j] = 0; for (k=0; k<Size; k++){ MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j]; } } } Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P.
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Conjugacy of 2–Spherical Subgroups of Coxeter Groups and Parallel Walls
    Algebraic & Geometric Topology 6 (2006) 1987–2029 1987 arXiv version: fonts, pagination and layout may vary from AGT published version Conjugacy of 2–spherical subgroups of Coxeter groups and parallel walls PIERRE-EMMANUEL CAPRACE Let (W; S) be a Coxeter system of finite rank (ie jSj is finite) and let A be the associated Coxeter (or Davis) complex. We study chains of pairwise parallel walls in A using Tits’ bilinear form associated to the standard root system of (W; S). As an application, we prove the strong parallel wall conjecture of G Niblo and L Reeves [18]. This allows to prove finiteness of the number of conjugacy classes of certain one-ended subgroups of W , which yields in turn the determination of all co-Hopfian Coxeter groups of 2–spherical type. 20F55; 20F65, 20F67, 51F15 1 Introduction 1.1 Conjugacy of 2–spherical subgroups A group Γ is called 2–spherical if it possesses a finite generating set T such that any pair of elements of T generates a finite subgroup. By Serre [21, Section 6.5, Corollaire 2], a 2–spherical group enjoys property (FA); in particular, it follows from Stalling’s theorem that it is one-ended. In the literature, a Coxeter group W is called 2–spherical if it has a Coxeter generating set S with the property that any pair of elements of S generates a finite subgroup. If W has a Coxeter generating set S such that some pair of elements of S generates an infinite subgroup, then it is easy to see that W splits non-trivially as an amalgamated product of standard parabolic subgroups, and hence W does not have Serre’s property (FA).
    [Show full text]
  • Parallel Matrix Multiplication: a Systematic Journey∗
    SIAM J. SCI.COMPUT. c 2016 Society for Industrial and Applied Mathematics Vol. 38, No. 6, pp. C748{C781 PARALLEL MATRIX MULTIPLICATION: A SYSTEMATIC JOURNEY∗ MARTIN D. SCHATZy , ROBERT A. VAN DE GEIJNy , AND JACK POULSONz Abstract. We expose a systematic approach for developing distributed-memory parallel matrix- matrix multiplication algorithms. The journey starts with a description of how matrices are dis- tributed to meshes of nodes (e.g., MPI processes), relates these distributions to scalable parallel implementation of matrix-vector multiplication and rank-1 update, continues on to reveal a family of matrix-matrix multiplication algorithms that view the nodes as a two-dimensional (2D) mesh, and finishes with extending these 2D algorithms to so-called three-dimensional (3D) algorithms that view the nodes as a 3D mesh. A cost analysis shows that the 3D algorithms can attain the (order of magnitude) lower bound for the cost of communication. The paper introduces a taxonomy for the resulting family of algorithms and explains how all algorithms have merit depending on parameters such as the sizes of the matrices and architecture parameters. The techniques described in this paper are at the heart of the Elemental distributed-memory linear algebra library. Performance results from implementation within and with this library are given on a representative distributed-memory architecture, the IBM Blue Gene/P supercomputer. Key words. parallel processing, linear algebra, matrix multiplication, libraries AMS subject classifications. 65Y05, 65Y20, 65F05 DOI. 10.1137/140993478 1. Introduction. This paper serves a number of purposes: • Parallel1 implementation of matrix-matrix multiplication is a standard topic in a course on parallel high-performance computing.
    [Show full text]
  • Phys102 Lecture 7/8 Capacitors Key Points • Capacitors • Determination of Capacitance • Capacitors in Series and Parallel • Electric Energy Storage • Dielectrics
    Phys102 Lecture 7/8 Capacitors Key Points • Capacitors • Determination of Capacitance • Capacitors in Series and Parallel • Electric Energy Storage • Dielectrics References SFU Ed: 24-1,2,3,4,5,6. 6th Ed: 17-7,8,9,10+. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Parallel-plate capacitor connected to battery. (b) is a circuit diagram. 24-1 Capacitors When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: The quantity C is called the capacitance. Unit of capacitance: the farad (F): 1 F = 1 C/V. Determination of Capacitance For a parallel-plate capacitor as shown, the field between the plates is E = Q/ε0A. The potential difference: Vba = Ed = Qd/ε0A. This gives the capacitance: Example 24-1: Capacitor calculations. (a) Calculate the capacitance of a parallel-plate capacitor whose plates are 20 cm × 3.0 cm and are separated by a 1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected across the two plates? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1 F, given the same air gap d. Capacitors are now made with capacitances of 1 farad or more, but they are not parallel- plate capacitors. Instead, they are activated carbon, which acts as a capacitor on a very small scale. The capacitance of 0.1 g of activated carbon is about 1 farad.
    [Show full text]
  • 12 Notation and List of Symbols
    12 Notation and List of Symbols Alphabetic ℵ0, ℵ1, ℵ2,... cardinality of infinite sets ,r,s,... lines are usually denoted by lowercase italics Latin letters A,B,C,... points are usually denoted by uppercase Latin letters π,ρ,σ,... planes and surfaces are usually denoted by lowercase Greek letters N positive integers; natural numbers R real numbers C complex numbers 5 real part of a complex number 6 imaginary part of a complex number R2 Euclidean 2-dimensional plane (or space) P2 projective 2-dimensional plane (or space) RN Euclidean N-dimensional space PN projective N-dimensional space Symbols General ∈ belongs to such that ∃ there exists ∀ for all ⊂ subset of ∪ set union ∩ set intersection A. Inselberg, Parallel Coordinates, DOI 10.1007/978-0-387-68628-8, © Springer Science+Business Media, LLC 2009 532 Notation and List of Symbols ∅ empty st (null set) 2A power set of A, the set of all subsets of A ip inflection point of a curve n principal normal vector to a space curve nˆ unit normal vector to a surface t vector tangent to a space curve b binormal vector τ torsion (measures “non-planarity” of a space curve) × cross product → mapping symbol A → B correspondence (also used for duality) ⇒ implies ⇔ if and only if <, > less than, greater than |a| absolute value of a |b| length of vector b norm, length L1 L1 norm L L norm, Euclidean distance 2 2 summation Jp set of integers modulo p with the operations + and × ≈ approximately equal = not equal parallel ⊥ perpendicular, orthogonal (,,) homogeneous coordinates — ordered triple representing
    [Show full text]
  • Introduction to Parallel Programming
    Introduction to Parallel Programming Martin Čuma Center for High Performance Computing University of Utah [email protected] Overview • Types of parallel computers. • Parallel programming options. • How to write parallel applications. • How to compile. • How to debug/profile. • Summary, future expansion. 1/12/2014 http://www.chpc.utah.edu Slide 2 Parallel architectures Single processor: • SISD – single instruction single data. Multiple processors: • SIMD - single instruction multiple data. • MIMD – multiple instruction multiple data. Shared Memory . Distributed Memory 1/12/2014 http://www.chpc.utah.edu Slide 3 Shared memory Dual quad-core node • All processors have BUS access to local memory CPU Memory • Simpler programming CPU Memory • Concurrent memory access Many-core node (e.g. SGI) • More specialized CPU Memory hardware BUS • CHPC : CPU Memory Linux clusters, 2, 4, 8, 12, 16 core CPU Memory nodes GPU nodes CPU Memory 1/12/2014 http://www.chpc.utah.edu Slide 4 Distributed memory • Process has access only BUS CPU Memory to its local memory • Data between processes CPU Memory must be communicated • More complex Node Network Node programming Node Node • Cheap commodity hardware Node Node • CHPC: Linux clusters Node Node 8 node cluster (64 cores) 1/12/2014 http://www.chpc.utah.edu Slide 5 Parallel programming options Shared Memory • Threads – POSIX Pthreads, OpenMP (CPU, MIC), OpenACC, CUDA (GPU) – Thread – own execution sequence but shares memory space with the original process • Message passing – processes – Process – entity that executes a program – has its own memory space, execution sequence Distributed Memory • Message passing libraries . Vendor specific – non portable . General – MPI, PVM 1/12/2014 http://www.chpc.utah.edu Slide 6 OpenMP basics • Compiler directives to parallelize .
    [Show full text]