<<

ARCHIVUM MATHEMATICUM (BRNO) Tomus 48 (2012), 197–206

ON THE GEOMETRY OF FRAME BUNDLES

Kamil Niedziałomski

Abstract. Let (M, g) be a , L(M) its frame . We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the TM. We compute the Levi–Civita connection and curvatures of these metrics.

1. Introduction Let (M, g) be a Riemannian manifold, L(M) its frame bundle. The first example of a Riemannian metric on L(M) was considered by Mok [12]. This metric, called the Sasaki–Mok metric or the diagonal lift gd of g, was also investigated in [5] and [6]. It is very rigid, for example, (L(M), gd) is never locally symmetric unless (M, g) is locally Euclidean. Moreover, with respect to the Sasaki–Mok metric vertical and horizontal distributions are orthogonal. A wider and less rigid class of metrics g¯, in which vertical and horizontal distributions are no longer orthogonal, has been recently considered by Kowalski and Sekizawa in the series of papers [9, 10, 11]. These metrics are defined with respect to the decomposition ofthe vertical distribution V into n = dim M subdistributions V1,..., Vn. In this short paper we introduce a new class of Riemannian metrics on the frame bundle. We identify distributions Vi with the vertical distribution in the second tangent bundle TTM. Namely, each map Ri : L(M) → TM, Ri(u1, . . . , un) = ui i induces a linear isomorphism Ri∗ : H ⊕ V → TTM, where H is a horizontal distribution defined by the Levi–Civita connection ∇ on M. By this identification we pull–back the Riemannian metric from TM. We pull–back natural metrics, in the sense of Kowalski and Sekizawa [8], from TM and study the geometry of such Riemannian manifolds. We compute the Levi–Civita connection, the curvature tensor, sectional and scalar curvature.

2. Riemannian metrics on frame bundles Let (M, g) be a Riemannian manifold. Its frame bundle L(M) consists of pairs (x, u) where x = πL(M)(u) ∈ M and u = (u1, . . . , un) is a of a tangent space

2010 Mathematics Subject Classification: primary 53C10; secondary 53C24, 53A30. Key words and phrases: Riemannian manifold, frame bundle, tangent bundle, natural metric. The author is supported by the Polish NSC grant No. 6065/B/H03/2011/40. Received May 4, 2012, revised May 2012. Editor O. Kowalski. DOI: 10.5817/AM2012-3-197 198 K. NIEDZIAŁOMSKI

TxM. We will write u instead of (x, u). Let (x1, . . . , xn) be a local coordinate system on M. Then, for every i = 1, . . . , n, we have X ∂ u = uj i i ∂x j j

j j for some smooth functions ui on L(M). Putting αi = xi ◦ πL(M), (αi, uk) is a local coordinate system on L(M). Let ω be a of L(M) corresponding to Levi–Civita connection ∇ on M. We have a decomposition of the tangent bundle TL(M) into the horizontal and vertical distribution:

L(M) L(M) TuL(M) = Hu ⊕ Vu , L(M) L(M) h where H = ker ω and V = ker πL(M)∗. Let Xu denotes the horizontal lift L(M) of a vector X ∈ TxM, πL(M)(u) = x, to Hu . Let Lu : GL(n) → L(M), Lu(a) = ua, be a left multiplication of a ∈ GL(n) by a ∗ basis u ∈ L(M). Let Au = Lu∗(A) be a fundamental vertical vector corresponding to a matrix A ∈ gl(n). Denote by Vi a linear subspace of VL(M) spanned by fundamental vertical vectors A∗, where the matrix A ∈ gl(n) has only nonzero i-th column. For an index i = 1, . . . , n define a map Ri : L(M) → TM as follows

Ri(u) = ui , u = (u1, . . . , un) ∈ L(M) . n Ri is the right multiplication by a i-th vector of a canonical basis in R . We will need some basic facts about the second tangent bundle TTM. There is TM TM a decomposition of TTM into horizontal and vertical part, Tζ TM = Hζ ⊕ Vζ , with respect to the connection map K : TTM → TM and the projection in the h,T M v,T M tangent bundle πTM : TM → M, see for example [7]. Let Xζ and Xζ denote the horizontal and vertical lifts to Tζ TM, ζ ∈ TxM, of a vector X ∈ TxM, respectively.

Proposition 2.1. The operator Ri has the following properties. L(M) TM (1) Ri∗ is a linear isomorphism of H onto H . Moreover, h h,T M Rξ∗X = X .

i TM (2) Ri∗ is a linear isomorphism of V onto V and Ri∗ is identically equal zero on Vj for j 6= i. (3) There is a decomposition VL(M) = V1 ⊕ ... ⊕ Vn .

Proof. Easy computations left to the reader.  By Proposition 2.1, we have natural identifications HL(M) ←→ HTM ←→ TM (2.1) Xh ←→ Xh,T M ←→ X ON THE GEOMETRY OF FRAME BUNDLES 199 and Vi ←→ VTM ←→ TM (2.2) Xv,i ←→ Xv,T M ←→ X v,i i Hence, we have defined the vertical lift Xu ∈ Vu, u ∈ L(M), of the vector X ∈ TxM, πL(M)(u) = x, satisfying the property R Xv,i = Xv,T M . i∗ u ui n Let c = (c1, . . . , cn) ∈ R and C = (cij) be n × n matrix. We assume that the (n + 1) × (n + 1) matrix  1 c  C¯ = c> C is symmetric and positive definite. Let gTM be a Riemannian metric on TM. Now, we are able to define a new class of Riemannian metrics g¯ = g¯C¯ on L(M). Let F : L(M) → TM be any smooth function. Put h h h,T M h,T M g¯(X ,Y )u = gTM (X ,Y )F (u) , h v,i h,T M v,T M g¯(X ,Y )u = cigTM (X ,Y )F (u) , v,i v,j v,T M v,T M g¯(X ,Y )u = cijgTM (X ,Y )F (u) .

Fix u ∈ L(M). Let e1, . . . , en be a basis in TxM, πL(M)(u) = x, such that h,T M h,T M TM (e1)F (u) ,..., (e1)F (u) is an in HF (u). Then h h v,1 v,1 v,n v,n (2.3) e1 , . . . , en, e1 , . . . , en , . . . , e1 , . . . , en is a basis in TuL(M). Let G be a matrix of the Riemannian metric gTM with h,T M h,T M v,T M v,T M respect to the basis e1 , . . . , en , e1 , . . . , en . The fact that g¯ is positive definite follows from the following lemma. Lemma 2.2. Let  I ghv G = gvh gˆ be a positive definite symmetric 2n × 2n block matrix. Then the matrix  I c ⊗ gvh G¯ = c> ⊗ ghv C ⊗ gˆ is positive definite.

2 Proof. It suffices to show that each principal minor G¯k, k = 1, . . . , n + n , of G¯ is positive. Obviously det G¯k = 1 > 0 for k = 1, . . . , n. Hence we assume k > n. Then each minor G¯k is of the same form as the whole matrix G¯, thus we will make calculations using matrix G¯. Computing the determinant of the block matrix we get det G¯ = det C ⊗ gˆ − (c> ⊗ gvh)(c ⊗ ghv) = det C ⊗ gˆ − (c>c) ⊗ (gvhghv) = det (C − c>c) ⊗ gˆ + (c>c) ⊗ (ˆg − gvhghv) . 200 K. NIEDZIAŁOMSKI

Since

det C − c>c = det C¯ > 0 , detg ˆ > 0 , det c>c ≥ 0 , det gˆ − gvhghv = det G > 0 , it follows that matrices (C − c>c) ⊗ gˆ and (c>c) ⊗ (gˆ − gvhghv) are positive definite. Hence theirs sum is positive definite. 

If C¯ = I and gTM is the Sasaki metric, then we get Sasaki–Mok metric. Assume now C¯ = I and gTM is a natural Riemannian metric on TM [8, 1] such h h TM TM that gTM (X ,Y ) = g(X,Y ) and distributions H , V are orthogonal. Hence, there are two smooth real functions α, β : [0, ∞) → R such that h h g¯(X ,Y )u = g(X,Y ) , h v,i g¯(X ,Y )u = 0 , v,i v,j (2.4) g¯(X ,Y )u = 0 , i 6= j , v,i v,i 2 g¯(X ,Y )u = α |F (u)| g(X,Y ) + β|F (u)|2gX,F (u)gY,F (u) .

The above Riemannian metric does not “see” the index i of the distribution Vi. Since all distributions HL(M), V1,..., Vn are orthogonal, it follows that we may put Fi(u) = ui in the last condition, that is consider a family of maps F1,...,Fn rather than one map F . Then we obtain the positive definite bilinear form, hence the Riemannian metric, of the form

h h g¯(X ,Y )u = g(X,Y ) , h v,i g¯(X ,Y )u = 0 , (2.5) v,i v,j g¯(X ,Y )u = 0 , i 6= j , v,i v,i 2 2 g¯(X ,Y )u = α(|ui| )g(X,Y ) + β(|ui| )g(X, ui)g(Y, ui) .

0 Now, we define functions αi, αi : L(M) → R etc. as follows 2 0 0 2 αi(u) = α(|ui| ) , αi(u) = α (|ui| ) , etc.

0 To make the formulas in the next more concise, we will write αi, αi etc. 2 0 2 instead of α(|ui| ), α (|ui| ) etc.

3. Geometry of g¯ Let (M, g) be a Riemannian manifold, (L(M), g¯) its frame bundle equipped with the metric g¯ of the form (2.5). Let ∇¯ and R¯ denote the Levi–Civita connection and the curvature tensor of g¯, respectively. ON THE GEOMETRY OF FRAME BUNDLES 201

We recall the identities concerning Lie bracket of horizontal and vertical vector fields [9]

h h h X v,i [X ,Y ]u = [X,Y ]u − (R(X,Y )ui) , i h v,i v,i (3.1) [X ,Y ]u = (∇X Y )u , v,i v,j [X ,Y ]u = 0 .

P ∂ Moreover, in the local coordinates, for X = ξi we have i ∂xi

h j X j a (3.2) X (ui ) = − Γabui ξb a,b v,k j (3.3) X (ui ) = ξjδik

j where Γab are Christoffel’s symbols [9]. Proposition 3.1. Connection ∇¯ satisfies the following relations

h h 1 X v,i ∇¯ h Y = (∇ Y ) − (R(X,Y )u ) X u X u 2 i u i v,i αi h v,i ∇¯ h Y = (R(u ,Y )X) + (∇ Y ) X u 2 i u X u h αi h ∇¯ v,i Y = (R(u ,X)Y ) X u 2 i u v,j ¯ v,i ∇X Y u = 0 i 6= j, 0 ¯ v,i αi v,i v,i ∇Xv,i Y u = g(X, ui)Yu + g(Y, ui)Xu αi 0 0 0  βiαi − 2αiβi βi − αi  i + 2 g(X, ui)g(Y, ui) + 2 g(X,Y ) Uu, αi(αi + |ui| βi) αi + |ui| βi

i v,i where Uu = ui . Proof. Follows from the formula for the Levi–Civita connection

2¯g(∇¯ AB,C) = Ag¯(B,C) + Bg¯(A, C) − Cg¯(A, B) +g ¯([A, C],B) +g ¯([B,C],A) +g ¯([A, B],C) relations (3.1) and the following equalities

v,i Xu (g(ui,Y )) = g(X,Y ), v,i 2 Xu (|ui| ) = 2g(X, ui), h Xu (g(ui,Y )) = g(ui, ∇X Y ) .  Before we compute the curvature tensor, we will need some formulas concerning the Levi–Civita connection ∇¯ of certain vector fields. 202 K. NIEDZIAŁOMSKI

Lemma 3.2. The following equalities hold

¯ i ∇Xh U u = 0 , j ¯ v,i ∇X U u = 0 i 6= j , 2 0 2 0 0 i αi + |ui| αi v,i |ui| (αiβi − αiβi) + αiβi i ¯ v,i ∇X U u = Xu + 2 g(X, ui)Uu . αi αi(αi + |ui| βi) and

¯ Q X j Q X j ¯ ∂ Q ∇W (R(ui,X)Y ) = W (ui )(R(ui,X)Y )u + ui ∇W (R( ,X)Y ) u ∂x u j j j for any W ∈ TL(M), where Q denotes the horizontal or vertical lift.

Proof. Follows by standard computations in local coordinates. 

Proposition 3.3. The curvature tensor R¯ at u ∈ L(M) satisfies the following relations

h 1 X R¯(Xh,Y h)Zh = R(X,Y )Z + (∇ R)(X,Y )u )v,i 2 Z i i 1 X − α (R(u ,R(Y,Z)u )X − R(u ,R(X,Z)u )Y 4 i i i i i i h −2R(ui,R(X,Y )ui)Z) ,

α h R¯(Xh,Y h)Zv,i = (R(X,Y )Z)v,i + i (∇ R)(u ,Z)Y − (∇ R)(u ,Z)X 2 X i Y i αi X v,j − R(X,R(u ,Z)Y )u − R(Y,R(u ,Z)X)u  4 i j i j j 0 0 αi v,i βi − αi  i + g(Z, ui) R(X,Y )ui − 2 g R(X,Y )Z, ui U , αi αi + |ui| βi

α h 1 v,i R¯(Xh,Y v,i)Zh = i (∇ R)(u ,Y )Z − R(Z,X)Y  2 X i 2 0 α v,i αi X v,j + i g(Y, u )R(X,Z)u  − R(X,R(u ,Y )Z)u  2α i i 4 i j i j 0 βi − αi  i − 2 g R(X,Z)Y, ui U , 2(αi + |ui| βi) ON THE GEOMETRY OF FRAME BUNDLES 203

α α h R¯(Xh,Y v,i)Zv,j = − i j R(u ,Y )R(u ,Z)X 4 i j 0 α h R¯(Xh,Y v,i)Zv,i = i g(Z, u )R(u ,Y )X − g(Y, u )R(u ,Z)X 2 i i i i 2 α h α h − i R(u ,Y )R(u ,Z)X − i R(Y,Z)X 4 i i 2

v,i v,i h h R¯(X ,Y )Z = αi R(X,Y )Z 2 α h + i R(u ,X)R(u ,Y )Z − R(u ,Y )R(u ,X)Z 4 i i i i 0 h h + αi g(X, ui)(R(ui,Y )Z) − g(Y, ui)(R(ui,X)Z)

α α h R¯(Xv,i,Y v,j)Zh = i j R(u ,X)R(u ,Y )Z − R(u ,Y )R(u ,X)Z 4 i j j i v,i v,i v,i  i R¯(X ,Y )Z ) = Ci g(X, ui)g(Y,Z) − g(Y, ui)g(X,Z) U  v,i + Aig(Y, ui)g(Z, ui) + Big(Y,Z) X  v,i − Aig(X, ui)g(Z, ui) + Big(X,Z) Y

R¯(Xv,i,Y v,j)Zv,k = 0 if ]{i, j, k} > 1 where 0 2 00 0 0 2 0 3(αi) − 2αiαi (αiβi − 2αiβi)(αi + |ui| αi) Ai = 2 + 2 2 , αi αi (αi + |ui| βi)

0 0 2 2 αiβi − 2αiαi − (αi) |ui| Bi = 2 , αi(αi + |ui| βi)

00 2αi Ci = − 2 αi + |ui| βi 0 2 0 2 2 2 0 2 0 0 2 3αi(αi) + 2(αi) βi|ui| + αi βi − αiβi + αiαiβi|ui| + 2 2 αi(αi + |ui| βi) ) Proof. Follows from the characterization of the Levi–Civita connection ∇¯ and Lemma 3.2.  Remark 3.4. Notice that

2 Aiαi − Bβi = Ci(αi + |ui| βi) , which is equivalent to the condition

g¯(R¯(Xv,i,Y v,i)Zv,i,W v,i) =g ¯R¯(Zv,i,W v,i)Xv,i,Y v,i .

Corollary 3.5. Let X, Y be two orthonormal vectors in the tangent space TxM. ¯ Then the scalar curvature K of (L(M), g¯) at u ∈ L(M), πL(M)(u) = x, and K of 204 K. NIEDZIAŁOMSKI

(M, g) at x ∈ M are related as follows

3 X K¯ (Xh,Y h) = K(X,Y ) − α |R(X,Y )u |2 , 4 i i i 2 ¯ h v,i αi 2 K(X ,Y ) = 2 |R(ui,Y )X| , 4(αi + βig(Y, ui) ) 2 2 ¯ v,i v,i Ai(g(X, ui) + g(Y, ui) ) + Bi K(X ,Y ) = 2 2 , αi + βi(g(X, ui) + g(Y, ui) ) K¯ (Xv,i,Y v,j) = 0 i 6= j .

Corollary 3.6. If (M, g) is of constant sectional curvature κ, then

3 X K¯ (Xh,Y h) = κ − κ2 α g(X, u )2 + g(Y, u )2 , 4 i i i i κ2α2g(X, u )2 K¯ (Xh,Y v,i) = i i ≥ 0 . 4(αi + βig(Y, ui))

P 4 ¯ h h If, in addition, i α(ti)ti < 3κ for all ti > 0, then K(X ,Y ) > 0.

Proof of Corollary 3.5 and 3.6. The formula for K¯ follows by Proposition 3.3. P 4 Assume now (M, g) is of constant sectional curvature κ and i α(ti)ti < 3κ for all 2 2 2 ti > 0. Since g(X, ui) + g(Y, ui) ≤ |ui| , then

3 X K¯ (Xh,Y h) ≥ κ − κ2 α |u |2 > 0 . 4 i i  i Corollary 3.7. The scalar curvature s¯ of (L(M), g¯) at u ∈ L(M) is of the form

2 1 X 2 X 2|uk| Ck + nBk s¯ = s − αk|R(ei, ej)uk| + (n − 1) . 4 αk i,j,k k where s is the scalar curvature of (M, g) at x ∈ M and e1, . . . , en is an orthonormal basis in TxM, πL(M)(u) = x.

Proof. Fix u ∈ L(M) and let e1, . . . , en be an orthonormal basis in TxM, πL(M)(u) = x. Consider a basis of TuL(M) of the form (2.3). Put

k v,k v,k g¯ij =g ¯(ei , ej ) = αkδij + βkg(ei, uk)g(ej, uk) .

ij k The inverse matrix (¯gk ) to (¯gij) is the following

ij 1 βk g¯k = δij − 2 g(ei, uk)g(ej, uk) . αk αk(αk + |uk| βk) ON THE GEOMETRY OF FRAME BUNDLES 205

Hence X ¯ h h h h X jl ¯ h v,k v,k h s¯ = g¯(R(ei , ej )ej , ei ) + 2 g¯k g¯(R(ei , ej )el , ei ) i,j i,j,l,k X ip jl ¯ v,k v,k v,k v,k + g¯k g¯k g¯(R(ei , ej )el , ep ) i,j,k,l,p

The formula for s¯ follows now by Proposition 3.3, Remark 3.4 and the equality X 2 X 2 |R(ei, ej)uk| = |R(uk, ej)ei)| .  i,j i,j In the end, we show that, in the case of a Cheeger–Gromoll type metric over the manifold of constant sectional curvature, the sectional curvature of L(M) is nonnegative. Corollary 3.8. Assume 1 α(t) = β(t) = , t > 0 . 1 + t Then 2 2 2 4 2 ¯ v,i v,i −|ui| (g(X, ui) + g(Y, ui) ) + |ui| + 3|ui| + 3 K(X ,Y ) = 2 2 2 2 . (1 + |ui| ) (1 + g(X, ui) + g(Y, ui) ) 4 In particular, if (M, g) is of constant sectional curvature 0 < κ < 3n , then the sectional curvature K¯ is nonnegative. Proof. We have X X ti 4 α(t )t = < for all t > 0 i i 1 + t 3κ i i i i 4 ¯ h h if and only if 0 < κ < 3n . Hence, by Corollary 3.6, K(X ,Y ) ≥ 0 for X,Y ∈ TxM 2 2 2 unit and orthogonal. Moreover, g(X, ui) + (Y, ui) ≤ |ui| . Thus 4 4 2 ¯ v,i v,i −|ui| + |ui| + 3|ui| + 3 3 K(X ,Y ) ≥ 2 2 2 = 2 2 > 0.  |ui| (1 + |ui| ) |ui| (1 + |ui| ) Acknowledgement. The author would like to thank Professor Oldřich Kowalski for valuable suggestions.

References [1] Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (1) (2005), 71–92. [2] Baird, P., Wood, J. C., Harmonic morphisms between Riemannian manifolds, Oxford University Press, Oxford, 2003. [3] Benyounes, M., Loubeau, E., Wood, C. M., Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type, Differential Geom. Appl. 25 (3) (2007), 322–334. [4] Benyounes, M., Loubeau, E., Wood, C. M., The geometry of generalised Cheeger-Gromoll metrics, Tokyo J. Math. 32 (2) (2009), 287–312. 206 K. NIEDZIAŁOMSKI

[5] Cordero, L. A., Leon, M. de, Lifts of tensor fields to the frame bundle, Rend. Circ. Mat. Palermo (2) 32 (2) (1983), 236–271. [6] Cordero, L. A., Leon, M. de, On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl. (9) 65 (1) (1986), 81–91. [7] Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88. [8] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification, Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. [9] Kowalski, O., Sekizawa, M., On curvatures of linear frame bundles with naturally lifted metrics, Rend. Sem. Mat. Univ. Politec. Torino 63 (3) (2005), 283–295. [10] Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles, Math. Nachr. 281 (2008), no. 12, 1799–1809 281 (12) (2008), 1799–1809. [11] Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles. II, Ann. Global Anal. Geom. 33 (4) (2008), 357–371. [12] Mok, K. P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math. 302 (1978), 16–31.

Department of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90–238 Łódź, Poland E-mail: [email protected]